onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (322) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6121 -0
  4. onnxruntime/__init__.py +418 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +175 -0
  7. onnxruntime/backend/backend_rep.py +52 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/build_and_package_info.py +2 -0
  13. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  14. onnxruntime/capi/onnxruntime.dll +0 -0
  15. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  16. onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
  17. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  18. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  19. onnxruntime/capi/onnxruntime_validation.py +154 -0
  20. onnxruntime/capi/version_info.py +2 -0
  21. onnxruntime/datasets/__init__.py +18 -0
  22. onnxruntime/datasets/logreg_iris.onnx +0 -0
  23. onnxruntime/datasets/mul_1.onnx +0 -0
  24. onnxruntime/datasets/sigmoid.onnx +13 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  27. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  28. onnxruntime/quantization/__init__.py +19 -0
  29. onnxruntime/quantization/base_quantizer.py +529 -0
  30. onnxruntime/quantization/calibrate.py +1267 -0
  31. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  32. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  33. onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
  34. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  35. onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
  36. onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
  37. onnxruntime/quantization/fusions/__init__.py +4 -0
  38. onnxruntime/quantization/fusions/fusion.py +311 -0
  39. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  40. onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
  41. onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
  42. onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
  43. onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
  44. onnxruntime/quantization/neural_compressor/__init__.py +1 -0
  45. onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
  46. onnxruntime/quantization/neural_compressor/util.py +80 -0
  47. onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
  48. onnxruntime/quantization/onnx_model.py +600 -0
  49. onnxruntime/quantization/onnx_quantizer.py +1163 -0
  50. onnxruntime/quantization/operators/__init__.py +2 -0
  51. onnxruntime/quantization/operators/activation.py +119 -0
  52. onnxruntime/quantization/operators/argmax.py +18 -0
  53. onnxruntime/quantization/operators/attention.py +73 -0
  54. onnxruntime/quantization/operators/base_operator.py +26 -0
  55. onnxruntime/quantization/operators/binary_op.py +72 -0
  56. onnxruntime/quantization/operators/concat.py +62 -0
  57. onnxruntime/quantization/operators/conv.py +260 -0
  58. onnxruntime/quantization/operators/direct_q8.py +78 -0
  59. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  60. onnxruntime/quantization/operators/gather.py +64 -0
  61. onnxruntime/quantization/operators/gavgpool.py +62 -0
  62. onnxruntime/quantization/operators/gemm.py +172 -0
  63. onnxruntime/quantization/operators/lstm.py +121 -0
  64. onnxruntime/quantization/operators/matmul.py +231 -0
  65. onnxruntime/quantization/operators/maxpool.py +34 -0
  66. onnxruntime/quantization/operators/norm.py +40 -0
  67. onnxruntime/quantization/operators/pad.py +172 -0
  68. onnxruntime/quantization/operators/pooling.py +67 -0
  69. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  70. onnxruntime/quantization/operators/resize.py +34 -0
  71. onnxruntime/quantization/operators/softmax.py +74 -0
  72. onnxruntime/quantization/operators/split.py +63 -0
  73. onnxruntime/quantization/operators/where.py +87 -0
  74. onnxruntime/quantization/preprocess.py +141 -0
  75. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  76. onnxruntime/quantization/qdq_quantizer.py +1477 -0
  77. onnxruntime/quantization/quant_utils.py +1051 -0
  78. onnxruntime/quantization/quantize.py +953 -0
  79. onnxruntime/quantization/registry.py +110 -0
  80. onnxruntime/quantization/shape_inference.py +204 -0
  81. onnxruntime/quantization/static_quantize_runner.py +256 -0
  82. onnxruntime/quantization/tensor_quant_overrides.py +520 -0
  83. onnxruntime/tools/__init__.py +10 -0
  84. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  85. onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
  86. onnxruntime/tools/file_utils.py +47 -0
  87. onnxruntime/tools/logger.py +11 -0
  88. onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
  89. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  90. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
  91. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  92. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  93. onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
  94. onnxruntime/tools/offline_tuning.py +169 -0
  95. onnxruntime/tools/onnx_model_utils.py +416 -0
  96. onnxruntime/tools/onnx_randomizer.py +85 -0
  97. onnxruntime/tools/onnxruntime_test.py +164 -0
  98. onnxruntime/tools/optimize_onnx_model.py +56 -0
  99. onnxruntime/tools/ort_format_model/__init__.py +27 -0
  100. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  140. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  141. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  142. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  143. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  144. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  145. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  146. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  147. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  148. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  149. onnxruntime/tools/ort_format_model/types.py +85 -0
  150. onnxruntime/tools/ort_format_model/utils.py +61 -0
  151. onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
  152. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  153. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  154. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  155. onnxruntime/tools/qnn/add_trans_cast.py +292 -0
  156. onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
  157. onnxruntime/tools/qnn/preprocess.py +165 -0
  158. onnxruntime/tools/reduced_build_config_parser.py +203 -0
  159. onnxruntime/tools/remove_initializer_from_input.py +37 -0
  160. onnxruntime/tools/symbolic_shape_infer.py +3094 -0
  161. onnxruntime/tools/update_onnx_opset.py +31 -0
  162. onnxruntime/transformers/__init__.py +8 -0
  163. onnxruntime/transformers/affinity_helper.py +40 -0
  164. onnxruntime/transformers/benchmark.py +942 -0
  165. onnxruntime/transformers/benchmark_helper.py +643 -0
  166. onnxruntime/transformers/bert_perf_test.py +629 -0
  167. onnxruntime/transformers/bert_test_data.py +641 -0
  168. onnxruntime/transformers/compare_bert_results.py +256 -0
  169. onnxruntime/transformers/constants.py +47 -0
  170. onnxruntime/transformers/convert_generation.py +3605 -0
  171. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  172. onnxruntime/transformers/convert_to_packing_mode.py +385 -0
  173. onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
  174. onnxruntime/transformers/float16.py +501 -0
  175. onnxruntime/transformers/fusion_attention.py +1189 -0
  176. onnxruntime/transformers/fusion_attention_clip.py +340 -0
  177. onnxruntime/transformers/fusion_attention_sam2.py +533 -0
  178. onnxruntime/transformers/fusion_attention_unet.py +1307 -0
  179. onnxruntime/transformers/fusion_attention_vae.py +300 -0
  180. onnxruntime/transformers/fusion_bart_attention.py +435 -0
  181. onnxruntime/transformers/fusion_base.py +141 -0
  182. onnxruntime/transformers/fusion_bias_add.py +57 -0
  183. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  184. onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
  185. onnxruntime/transformers/fusion_conformer_attention.py +222 -0
  186. onnxruntime/transformers/fusion_constant_fold.py +144 -0
  187. onnxruntime/transformers/fusion_embedlayer.py +810 -0
  188. onnxruntime/transformers/fusion_fastgelu.py +492 -0
  189. onnxruntime/transformers/fusion_gelu.py +258 -0
  190. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  191. onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
  192. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  193. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  194. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  195. onnxruntime/transformers/fusion_group_norm.py +180 -0
  196. onnxruntime/transformers/fusion_layernorm.py +489 -0
  197. onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
  198. onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
  199. onnxruntime/transformers/fusion_options.py +340 -0
  200. onnxruntime/transformers/fusion_qordered_attention.py +420 -0
  201. onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
  202. onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
  203. onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
  204. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  205. onnxruntime/transformers/fusion_reshape.py +173 -0
  206. onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
  207. onnxruntime/transformers/fusion_shape.py +109 -0
  208. onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
  209. onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
  210. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  211. onnxruntime/transformers/fusion_transpose.py +167 -0
  212. onnxruntime/transformers/fusion_utils.py +321 -0
  213. onnxruntime/transformers/huggingface_models.py +74 -0
  214. onnxruntime/transformers/import_utils.py +20 -0
  215. onnxruntime/transformers/io_binding_helper.py +487 -0
  216. onnxruntime/transformers/large_model_exporter.py +395 -0
  217. onnxruntime/transformers/machine_info.py +230 -0
  218. onnxruntime/transformers/metrics.py +163 -0
  219. onnxruntime/transformers/models/bart/__init__.py +12 -0
  220. onnxruntime/transformers/models/bart/export.py +98 -0
  221. onnxruntime/transformers/models/bert/__init__.py +12 -0
  222. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  223. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  224. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  225. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
  226. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
  227. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  228. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  229. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  230. onnxruntime/transformers/models/llama/__init__.py +12 -0
  231. onnxruntime/transformers/models/llama/benchmark.py +700 -0
  232. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  233. onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
  234. onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
  235. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  236. onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
  237. onnxruntime/transformers/models/llama/llama_parity.py +343 -0
  238. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  239. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  240. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  241. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  242. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  243. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  244. onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
  245. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  246. onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
  247. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  248. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  249. onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
  250. onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
  251. onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
  252. onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
  253. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  254. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  255. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  256. onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
  257. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
  258. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  259. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  260. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
  261. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  262. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
  263. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
  264. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  265. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
  266. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
  267. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
  268. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
  269. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  270. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  271. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  272. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
  273. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  274. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  275. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  276. onnxruntime/transformers/models/t5/__init__.py +12 -0
  277. onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
  278. onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
  279. onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
  280. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
  281. onnxruntime/transformers/models/t5/t5_helper.py +302 -0
  282. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  283. onnxruntime/transformers/models/whisper/benchmark.py +585 -0
  284. onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
  285. onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
  286. onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
  287. onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
  288. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  289. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
  290. onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
  291. onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
  292. onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
  293. onnxruntime/transformers/onnx_exporter.py +719 -0
  294. onnxruntime/transformers/onnx_model.py +1636 -0
  295. onnxruntime/transformers/onnx_model_bart.py +141 -0
  296. onnxruntime/transformers/onnx_model_bert.py +488 -0
  297. onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
  298. onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
  299. onnxruntime/transformers/onnx_model_clip.py +42 -0
  300. onnxruntime/transformers/onnx_model_conformer.py +32 -0
  301. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  302. onnxruntime/transformers/onnx_model_mmdit.py +112 -0
  303. onnxruntime/transformers/onnx_model_phi.py +929 -0
  304. onnxruntime/transformers/onnx_model_sam2.py +137 -0
  305. onnxruntime/transformers/onnx_model_t5.py +985 -0
  306. onnxruntime/transformers/onnx_model_tnlr.py +226 -0
  307. onnxruntime/transformers/onnx_model_unet.py +258 -0
  308. onnxruntime/transformers/onnx_model_vae.py +42 -0
  309. onnxruntime/transformers/onnx_utils.py +55 -0
  310. onnxruntime/transformers/optimizer.py +620 -0
  311. onnxruntime/transformers/past_helper.py +149 -0
  312. onnxruntime/transformers/profile_result_processor.py +358 -0
  313. onnxruntime/transformers/profiler.py +434 -0
  314. onnxruntime/transformers/quantize_helper.py +76 -0
  315. onnxruntime/transformers/shape_infer_helper.py +121 -0
  316. onnxruntime/transformers/shape_optimizer.py +400 -0
  317. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  318. onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
  319. onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
  320. onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
  321. onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
  322. onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,638 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+
6
+ """
7
+ Benchmark performance of SAM2 encoder with ORT or PyTorch. See benchmark_sam2.sh for usage.
8
+ """
9
+
10
+ import argparse
11
+ import csv
12
+ import statistics
13
+ import time
14
+ from collections.abc import Mapping
15
+ from datetime import datetime
16
+
17
+ import torch
18
+ from image_decoder import SAM2ImageDecoder
19
+ from image_encoder import SAM2ImageEncoder
20
+ from sam2_utils import decoder_shape_dict, encoder_shape_dict, load_sam2_model
21
+
22
+ from onnxruntime import InferenceSession, SessionOptions, get_available_providers
23
+ from onnxruntime.transformers.io_binding_helper import CudaSession
24
+
25
+
26
+ class TestConfig:
27
+ def __init__(
28
+ self,
29
+ model_type: str,
30
+ onnx_path: str,
31
+ sam2_dir: str,
32
+ device: torch.device,
33
+ component: str = "image_encoder",
34
+ provider="CPUExecutionProvider",
35
+ torch_compile_mode="max-autotune",
36
+ batch_size: int = 1,
37
+ height: int = 1024,
38
+ width: int = 1024,
39
+ num_labels: int = 1,
40
+ num_points: int = 1,
41
+ num_masks: int = 1,
42
+ multi_mask_output: bool = False,
43
+ use_tf32: bool = True,
44
+ enable_cuda_graph: bool = False,
45
+ dtype=torch.float32,
46
+ prefer_nhwc: bool = False,
47
+ warm_up: int = 5,
48
+ enable_nvtx_profile: bool = False,
49
+ enable_ort_profile: bool = False,
50
+ enable_torch_profile: bool = False,
51
+ repeats: int = 1000,
52
+ verbose: bool = False,
53
+ ):
54
+ assert model_type in ["sam2_hiera_tiny", "sam2_hiera_small", "sam2_hiera_large", "sam2_hiera_base_plus"]
55
+ assert height >= 160 and height <= 4096
56
+ assert width >= 160 and width <= 4096
57
+
58
+ self.model_type = model_type
59
+ self.onnx_path = onnx_path
60
+ self.sam2_dir = sam2_dir
61
+ self.component = component
62
+ self.provider = provider
63
+ self.torch_compile_mode = torch_compile_mode
64
+ self.batch_size = batch_size
65
+ self.height = height
66
+ self.width = width
67
+ self.num_labels = num_labels
68
+ self.num_points = num_points
69
+ self.num_masks = num_masks
70
+ self.multi_mask_output = multi_mask_output
71
+ self.device = device
72
+ self.use_tf32 = use_tf32
73
+ self.enable_cuda_graph = enable_cuda_graph
74
+ self.dtype = dtype
75
+ self.prefer_nhwc = prefer_nhwc
76
+ self.warm_up = warm_up
77
+ self.enable_nvtx_profile = enable_nvtx_profile
78
+ self.enable_ort_profile = enable_ort_profile
79
+ self.enable_torch_profile = enable_torch_profile
80
+ self.repeats = repeats
81
+ self.verbose = verbose
82
+
83
+ if self.component == "image_encoder":
84
+ assert self.height == 1024 and self.width == 1024, "Only image size 1024x1024 is allowed for image encoder."
85
+
86
+ def __repr__(self):
87
+ return f"{vars(self)}"
88
+
89
+ def shape_dict(self) -> Mapping[str, list[int]]:
90
+ if self.component == "image_encoder":
91
+ return encoder_shape_dict(self.batch_size, self.height, self.width)
92
+ else:
93
+ return decoder_shape_dict(self.height, self.width, self.num_labels, self.num_points, self.num_masks)
94
+
95
+ def random_inputs(self) -> Mapping[str, torch.Tensor]:
96
+ dtype = self.dtype
97
+ if self.component == "image_encoder":
98
+ return {"image": torch.randn(self.batch_size, 3, self.height, self.width, dtype=dtype, device=self.device)}
99
+ else:
100
+ return {
101
+ "image_features_0": torch.rand(1, 32, 256, 256, dtype=dtype, device=self.device),
102
+ "image_features_1": torch.rand(1, 64, 128, 128, dtype=dtype, device=self.device),
103
+ "image_embeddings": torch.rand(1, 256, 64, 64, dtype=dtype, device=self.device),
104
+ "point_coords": torch.randint(
105
+ 0, 1024, (self.num_labels, self.num_points, 2), dtype=dtype, device=self.device
106
+ ),
107
+ "point_labels": torch.randint(
108
+ 0, 1, (self.num_labels, self.num_points), dtype=torch.int32, device=self.device
109
+ ),
110
+ "input_masks": torch.zeros(self.num_labels, 1, 256, 256, dtype=dtype, device=self.device),
111
+ "has_input_masks": torch.ones(self.num_labels, dtype=dtype, device=self.device),
112
+ "original_image_size": torch.tensor([self.height, self.width], dtype=torch.int32, device=self.device),
113
+ }
114
+
115
+
116
+ def create_ort_session(config: TestConfig, session_options=None) -> InferenceSession:
117
+ if config.verbose:
118
+ print(f"create session for {vars(config)}")
119
+
120
+ if config.provider == "CUDAExecutionProvider":
121
+ device_id = torch.cuda.current_device() if isinstance(config.device, str) else config.device.index
122
+ provider_options = CudaSession.get_cuda_provider_options(device_id, config.enable_cuda_graph)
123
+ provider_options["use_tf32"] = int(config.use_tf32)
124
+ if config.prefer_nhwc:
125
+ provider_options["prefer_nhwc"] = 1
126
+ providers = [(config.provider, provider_options), "CPUExecutionProvider"]
127
+ else:
128
+ providers = ["CPUExecutionProvider"]
129
+
130
+ ort_session = InferenceSession(config.onnx_path, session_options, providers=providers)
131
+ return ort_session
132
+
133
+
134
+ def create_session(config: TestConfig, session_options=None) -> CudaSession:
135
+ ort_session = create_ort_session(config, session_options)
136
+ cuda_session = CudaSession(ort_session, config.device, config.enable_cuda_graph)
137
+ cuda_session.allocate_buffers(config.shape_dict())
138
+ return cuda_session
139
+
140
+
141
+ class OrtTestSession:
142
+ """A wrapper of ORT session to test relevance and performance."""
143
+
144
+ def __init__(self, config: TestConfig, session_options=None):
145
+ self.ort_session = create_session(config, session_options)
146
+ self.feed_dict = config.random_inputs()
147
+
148
+ def infer(self):
149
+ return self.ort_session.infer(self.feed_dict)
150
+
151
+
152
+ def measure_latency(cuda_session: CudaSession, input_dict):
153
+ start = time.time()
154
+ _ = cuda_session.infer(input_dict)
155
+ end = time.time()
156
+ return end - start
157
+
158
+
159
+ def run_torch(config: TestConfig):
160
+ device_type = config.device.type
161
+ is_cuda = device_type == "cuda"
162
+
163
+ # Turn on TF32 for Ampere GPUs which could help when data type is float32.
164
+ if is_cuda and torch.cuda.get_device_properties(0).major >= 8 and config.use_tf32:
165
+ torch.backends.cuda.matmul.allow_tf32 = True
166
+ torch.backends.cudnn.allow_tf32 = True
167
+
168
+ enabled_auto_cast = is_cuda and config.dtype != torch.float32
169
+ ort_inputs = config.random_inputs()
170
+
171
+ with torch.inference_mode(), torch.autocast(device_type=device_type, dtype=config.dtype, enabled=enabled_auto_cast):
172
+ sam2_model = load_sam2_model(config.sam2_dir, config.model_type, device=config.device)
173
+ if config.component == "image_encoder":
174
+ if is_cuda and config.torch_compile_mode != "none":
175
+ sam2_model.image_encoder.forward = torch.compile(
176
+ sam2_model.image_encoder.forward,
177
+ mode=config.torch_compile_mode, # "reduce-overhead" if you want to reduce latency of first run.
178
+ fullgraph=True,
179
+ dynamic=False,
180
+ )
181
+
182
+ image_shape = config.shape_dict()["image"]
183
+ img = torch.randn(image_shape).to(device=config.device, dtype=config.dtype)
184
+ sam2_encoder = SAM2ImageEncoder(sam2_model)
185
+
186
+ if is_cuda and config.torch_compile_mode != "none":
187
+ print(f"Running warm up. It will take a while since torch compile mode is {config.torch_compile_mode}.")
188
+
189
+ for _ in range(config.warm_up):
190
+ _image_features_0, _image_features_1, _image_embeddings = sam2_encoder(img)
191
+
192
+ if is_cuda and config.enable_nvtx_profile:
193
+ import nvtx # noqa: PLC0415
194
+ from cuda import cudart # noqa: PLC0415
195
+
196
+ cudart.cudaProfilerStart()
197
+ print("Start nvtx profiling on encoder ...")
198
+ with nvtx.annotate("one_run"):
199
+ sam2_encoder(img, enable_nvtx_profile=True)
200
+ cudart.cudaProfilerStop()
201
+
202
+ if is_cuda and config.enable_torch_profile:
203
+ with torch.profiler.profile(
204
+ activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
205
+ record_shapes=True,
206
+ ) as prof:
207
+ print("Start torch profiling on encoder ...")
208
+ with torch.profiler.record_function("encoder"):
209
+ sam2_encoder(img)
210
+ print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
211
+ prof.export_chrome_trace("torch_image_encoder.json")
212
+
213
+ if config.repeats == 0:
214
+ return
215
+
216
+ print(f"Start {config.repeats} runs of performance tests...")
217
+ start = time.time()
218
+ for _ in range(config.repeats):
219
+ _image_features_0, _image_features_1, _image_embeddings = sam2_encoder(img)
220
+ if is_cuda:
221
+ torch.cuda.synchronize()
222
+ else:
223
+ torch_inputs = (
224
+ ort_inputs["image_features_0"],
225
+ ort_inputs["image_features_1"],
226
+ ort_inputs["image_embeddings"],
227
+ ort_inputs["point_coords"],
228
+ ort_inputs["point_labels"],
229
+ ort_inputs["input_masks"],
230
+ ort_inputs["has_input_masks"],
231
+ ort_inputs["original_image_size"],
232
+ )
233
+
234
+ sam2_decoder = SAM2ImageDecoder(
235
+ sam2_model,
236
+ multimask_output=config.multi_mask_output,
237
+ )
238
+
239
+ if is_cuda and config.torch_compile_mode != "none":
240
+ sam2_decoder.forward = torch.compile(
241
+ sam2_decoder.forward,
242
+ mode=config.torch_compile_mode,
243
+ fullgraph=True,
244
+ dynamic=False,
245
+ )
246
+
247
+ # warm up
248
+ for _ in range(config.warm_up):
249
+ _masks, _iou_predictions, _low_res_masks = sam2_decoder(*torch_inputs)
250
+
251
+ if is_cuda and config.enable_nvtx_profile:
252
+ import nvtx # noqa: PLC0415
253
+ from cuda import cudart # noqa: PLC0415
254
+
255
+ cudart.cudaProfilerStart()
256
+ print("Start nvtx profiling on decoder...")
257
+ with nvtx.annotate("one_run"):
258
+ sam2_decoder(*torch_inputs, enable_nvtx_profile=True)
259
+ cudart.cudaProfilerStop()
260
+
261
+ if is_cuda and config.enable_torch_profile:
262
+ with torch.profiler.profile(
263
+ activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
264
+ record_shapes=True,
265
+ ) as prof:
266
+ print("Start torch profiling on decoder ...")
267
+ with torch.profiler.record_function("decoder"):
268
+ sam2_decoder(*torch_inputs)
269
+ print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
270
+ prof.export_chrome_trace("torch_image_decoder.json")
271
+
272
+ if config.repeats == 0:
273
+ return
274
+
275
+ print(f"Start {config.repeats} runs of performance tests...")
276
+ start = time.time()
277
+ for _ in range(config.repeats):
278
+ _masks, _iou_predictions, _low_res_masks = sam2_decoder(*torch_inputs)
279
+ if is_cuda:
280
+ torch.cuda.synchronize()
281
+
282
+ end = time.time()
283
+ return (end - start) / config.repeats
284
+
285
+
286
+ def run_test(
287
+ args: argparse.Namespace,
288
+ csv_writer: csv.DictWriter | None = None,
289
+ ):
290
+ use_gpu: bool = args.use_gpu
291
+ enable_cuda_graph: bool = args.use_cuda_graph
292
+ repeats: int = args.repeats
293
+
294
+ if use_gpu:
295
+ device_id = torch.cuda.current_device()
296
+ device = torch.device("cuda", device_id)
297
+ provider = "CUDAExecutionProvider"
298
+ else:
299
+ device_id = 0
300
+ device = torch.device("cpu")
301
+ enable_cuda_graph = False
302
+ provider = "CPUExecutionProvider"
303
+
304
+ dtypes = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}
305
+ config = TestConfig(
306
+ model_type=args.model_type,
307
+ onnx_path=args.onnx_path,
308
+ sam2_dir=args.sam2_dir,
309
+ component=args.component,
310
+ provider=provider,
311
+ batch_size=args.batch_size,
312
+ height=args.height,
313
+ width=args.width,
314
+ device=device,
315
+ use_tf32=True,
316
+ enable_cuda_graph=enable_cuda_graph,
317
+ dtype=dtypes[args.dtype],
318
+ prefer_nhwc=args.prefer_nhwc,
319
+ repeats=args.repeats,
320
+ warm_up=args.warm_up,
321
+ enable_nvtx_profile=args.enable_nvtx_profile,
322
+ enable_ort_profile=args.enable_ort_profile,
323
+ enable_torch_profile=args.enable_torch_profile,
324
+ torch_compile_mode=args.torch_compile_mode,
325
+ verbose=False,
326
+ )
327
+
328
+ if args.engine == "ort":
329
+ sess_options = SessionOptions()
330
+ sess_options.intra_op_num_threads = args.intra_op_num_threads
331
+ if config.enable_ort_profile:
332
+ sess_options.enable_profiling = True
333
+ sess_options.log_severity_level = 4
334
+ sess_options.log_verbosity_level = 0
335
+
336
+ session = create_session(config, sess_options)
337
+ input_dict = config.random_inputs()
338
+
339
+ # warm up session
340
+ try:
341
+ for _ in range(config.warm_up):
342
+ _ = measure_latency(session, input_dict)
343
+ except Exception as e:
344
+ print(f"Failed to run {config=}. Exception: {e}")
345
+ return
346
+
347
+ if config.enable_nvtx_profile:
348
+ import nvtx # noqa: PLC0415
349
+ from cuda import cudart # noqa: PLC0415
350
+
351
+ cudart.cudaProfilerStart()
352
+ with nvtx.annotate("one_run"):
353
+ _ = session.infer(input_dict)
354
+ cudart.cudaProfilerStop()
355
+
356
+ if config.enable_ort_profile:
357
+ session.ort_session.end_profiling()
358
+
359
+ if repeats == 0:
360
+ return
361
+
362
+ latency_list = []
363
+ for _ in range(repeats):
364
+ latency = measure_latency(session, input_dict)
365
+ latency_list.append(latency)
366
+ average_latency = statistics.mean(latency_list)
367
+
368
+ del session
369
+ else: # torch
370
+ with torch.no_grad():
371
+ try:
372
+ average_latency = run_torch(config)
373
+ except Exception as e:
374
+ print(f"Failed to run {config=}. Exception: {e}")
375
+ return
376
+
377
+ if repeats == 0:
378
+ return
379
+
380
+ engine = args.engine + ":" + ("cuda" if use_gpu else "cpu")
381
+ row = {
382
+ "model_type": args.model_type,
383
+ "component": args.component,
384
+ "dtype": args.dtype,
385
+ "use_gpu": use_gpu,
386
+ "enable_cuda_graph": enable_cuda_graph,
387
+ "prefer_nhwc": config.prefer_nhwc,
388
+ "use_tf32": config.use_tf32,
389
+ "batch_size": args.batch_size,
390
+ "height": args.height,
391
+ "width": args.width,
392
+ "multi_mask_output": args.multimask_output,
393
+ "num_labels": config.num_labels,
394
+ "num_points": config.num_points,
395
+ "num_masks": config.num_masks,
396
+ "intra_op_num_threads": args.intra_op_num_threads,
397
+ "warm_up": config.warm_up,
398
+ "repeats": repeats,
399
+ "enable_nvtx_profile": args.enable_nvtx_profile,
400
+ "torch_compile_mode": args.torch_compile_mode,
401
+ "engine": engine,
402
+ "average_latency": average_latency,
403
+ }
404
+
405
+ if csv_writer is not None:
406
+ csv_writer.writerow(row)
407
+
408
+ print(f"{vars(config)}")
409
+ print(f"{row}")
410
+
411
+
412
+ def run_perf_test(args):
413
+ features = "gpu" if args.use_gpu else "cpu"
414
+ csv_filename = "benchmark_sam_{}_{}_{}.csv".format(
415
+ features,
416
+ args.engine,
417
+ datetime.now().strftime("%Y%m%d-%H%M%S"),
418
+ )
419
+ with open(csv_filename, mode="a", newline="") as csv_file:
420
+ column_names = [
421
+ "model_type",
422
+ "component",
423
+ "dtype",
424
+ "use_gpu",
425
+ "enable_cuda_graph",
426
+ "prefer_nhwc",
427
+ "use_tf32",
428
+ "batch_size",
429
+ "height",
430
+ "width",
431
+ "multi_mask_output",
432
+ "num_labels",
433
+ "num_points",
434
+ "num_masks",
435
+ "intra_op_num_threads",
436
+ "warm_up",
437
+ "repeats",
438
+ "enable_nvtx_profile",
439
+ "torch_compile_mode",
440
+ "engine",
441
+ "average_latency",
442
+ ]
443
+ csv_writer = csv.DictWriter(csv_file, fieldnames=column_names)
444
+ csv_writer.writeheader()
445
+
446
+ run_test(args, csv_writer)
447
+
448
+
449
+ def _parse_arguments():
450
+ parser = argparse.ArgumentParser(description="Benchmark SMA2 for ONNX Runtime and PyTorch.")
451
+
452
+ parser.add_argument(
453
+ "--component",
454
+ required=False,
455
+ choices=["image_encoder", "image_decoder"],
456
+ default="image_encoder",
457
+ help="component to benchmark. Choices are image_encoder and image_decoder.",
458
+ )
459
+
460
+ parser.add_argument(
461
+ "--dtype", required=False, choices=["fp32", "fp16", "bf16"], default="fp32", help="Data type for inference."
462
+ )
463
+
464
+ parser.add_argument(
465
+ "--use_gpu",
466
+ required=False,
467
+ action="store_true",
468
+ help="Use GPU for inference.",
469
+ )
470
+ parser.set_defaults(use_gpu=False)
471
+
472
+ parser.add_argument(
473
+ "--use_cuda_graph",
474
+ required=False,
475
+ action="store_true",
476
+ help="Use cuda graph in onnxruntime.",
477
+ )
478
+ parser.set_defaults(use_cuda_graph=False)
479
+
480
+ parser.add_argument(
481
+ "--intra_op_num_threads",
482
+ required=False,
483
+ type=int,
484
+ choices=[0, 1, 2, 4, 8, 16],
485
+ default=0,
486
+ help="intra_op_num_threads for onnxruntime. ",
487
+ )
488
+
489
+ parser.add_argument(
490
+ "--batch_size",
491
+ required=False,
492
+ type=int,
493
+ default=1,
494
+ help="batch size",
495
+ )
496
+
497
+ parser.add_argument(
498
+ "--height",
499
+ required=False,
500
+ type=int,
501
+ default=1024,
502
+ help="image height",
503
+ )
504
+
505
+ parser.add_argument(
506
+ "--width",
507
+ required=False,
508
+ type=int,
509
+ default=1024,
510
+ help="image width",
511
+ )
512
+
513
+ parser.add_argument(
514
+ "--repeats",
515
+ required=False,
516
+ type=int,
517
+ default=1000,
518
+ help="number of repeats for performance test. Default is 1000.",
519
+ )
520
+
521
+ parser.add_argument(
522
+ "--warm_up",
523
+ required=False,
524
+ type=int,
525
+ default=5,
526
+ help="number of runs for warm up. Default is 5.",
527
+ )
528
+
529
+ parser.add_argument(
530
+ "--engine",
531
+ required=False,
532
+ type=str,
533
+ default="ort",
534
+ choices=["ort", "torch"],
535
+ help="engine for inference",
536
+ )
537
+
538
+ parser.add_argument(
539
+ "--multimask_output",
540
+ required=False,
541
+ default=False,
542
+ action="store_true",
543
+ help="Export mask_decoder or image_decoder with multimask_output",
544
+ )
545
+
546
+ parser.add_argument(
547
+ "--prefer_nhwc",
548
+ required=False,
549
+ default=False,
550
+ action="store_true",
551
+ help="Use prefer_nhwc=1 provider option for CUDAExecutionProvider",
552
+ )
553
+
554
+ parser.add_argument(
555
+ "--enable_nvtx_profile",
556
+ required=False,
557
+ default=False,
558
+ action="store_true",
559
+ help="Enable nvtx profiling. It will add an extra run for profiling before performance test.",
560
+ )
561
+
562
+ parser.add_argument(
563
+ "--enable_ort_profile",
564
+ required=False,
565
+ default=False,
566
+ action="store_true",
567
+ help="Enable ORT profiling.",
568
+ )
569
+
570
+ parser.add_argument(
571
+ "--enable_torch_profile",
572
+ required=False,
573
+ default=False,
574
+ action="store_true",
575
+ help="Enable PyTorch profiling. It will add an extra run for profiling before performance test.",
576
+ )
577
+
578
+ parser.add_argument(
579
+ "--model_type",
580
+ required=False,
581
+ type=str,
582
+ default="sam2_hiera_large",
583
+ choices=["sam2_hiera_tiny", "sam2_hiera_small", "sam2_hiera_large", "sam2_hiera_base_plus"],
584
+ help="sam2 model name",
585
+ )
586
+
587
+ parser.add_argument(
588
+ "--sam2_dir",
589
+ required=False,
590
+ type=str,
591
+ default="./segment-anything-2",
592
+ help="The directory of segment-anything-2 git root directory",
593
+ )
594
+
595
+ parser.add_argument(
596
+ "--onnx_path",
597
+ required=False,
598
+ type=str,
599
+ default="./sam2_onnx_models/sam2_hiera_large_image_encoder.onnx",
600
+ help="path of onnx model",
601
+ )
602
+
603
+ parser.add_argument(
604
+ "--torch_compile_mode",
605
+ required=False,
606
+ type=str,
607
+ default=None,
608
+ choices=["reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs", "none"],
609
+ help="torch compile mode. none will disable torch compile.",
610
+ )
611
+
612
+ args = parser.parse_args()
613
+
614
+ return args
615
+
616
+
617
+ if __name__ == "__main__":
618
+ args = _parse_arguments()
619
+ print(f"arguments:{args}")
620
+
621
+ if args.torch_compile_mode is None:
622
+ # image decoder will fail with compile modes other than "none".
623
+ args.torch_compile_mode = "max-autotune" if args.component == "image_encoder" else "none"
624
+
625
+ if args.use_gpu:
626
+ assert torch.cuda.is_available()
627
+ if args.engine == "ort":
628
+ assert "CUDAExecutionProvider" in get_available_providers()
629
+ args.enable_torch_profile = False
630
+ else:
631
+ # Only support cuda profiling for now.
632
+ assert not args.enable_nvtx_profile
633
+ assert not args.enable_torch_profile
634
+
635
+ if args.enable_nvtx_profile or args.enable_torch_profile:
636
+ run_test(args)
637
+ else:
638
+ run_perf_test(args)