onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6121 -0
- onnxruntime/__init__.py +418 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +175 -0
- onnxruntime/backend/backend_rep.py +52 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/build_and_package_info.py +2 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +154 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +18 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +19 -0
- onnxruntime/quantization/base_quantizer.py +529 -0
- onnxruntime/quantization/calibrate.py +1267 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
- onnxruntime/quantization/fusions/__init__.py +4 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
- onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
- onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
- onnxruntime/quantization/neural_compressor/__init__.py +1 -0
- onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
- onnxruntime/quantization/neural_compressor/util.py +80 -0
- onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
- onnxruntime/quantization/onnx_model.py +600 -0
- onnxruntime/quantization/onnx_quantizer.py +1163 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +260 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +172 -0
- onnxruntime/quantization/operators/lstm.py +121 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +172 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1477 -0
- onnxruntime/quantization/quant_utils.py +1051 -0
- onnxruntime/quantization/quantize.py +953 -0
- onnxruntime/quantization/registry.py +110 -0
- onnxruntime/quantization/shape_inference.py +204 -0
- onnxruntime/quantization/static_quantize_runner.py +256 -0
- onnxruntime/quantization/tensor_quant_overrides.py +520 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
- onnxruntime/tools/file_utils.py +47 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +416 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +56 -0
- onnxruntime/tools/ort_format_model/__init__.py +27 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +85 -0
- onnxruntime/tools/ort_format_model/utils.py +61 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/qnn/add_trans_cast.py +292 -0
- onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
- onnxruntime/tools/qnn/preprocess.py +165 -0
- onnxruntime/tools/reduced_build_config_parser.py +203 -0
- onnxruntime/tools/remove_initializer_from_input.py +37 -0
- onnxruntime/tools/symbolic_shape_infer.py +3094 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +942 -0
- onnxruntime/transformers/benchmark_helper.py +643 -0
- onnxruntime/transformers/bert_perf_test.py +629 -0
- onnxruntime/transformers/bert_test_data.py +641 -0
- onnxruntime/transformers/compare_bert_results.py +256 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3605 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +385 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1189 -0
- onnxruntime/transformers/fusion_attention_clip.py +340 -0
- onnxruntime/transformers/fusion_attention_sam2.py +533 -0
- onnxruntime/transformers/fusion_attention_unet.py +1307 -0
- onnxruntime/transformers/fusion_attention_vae.py +300 -0
- onnxruntime/transformers/fusion_bart_attention.py +435 -0
- onnxruntime/transformers/fusion_base.py +141 -0
- onnxruntime/transformers/fusion_bias_add.py +57 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
- onnxruntime/transformers/fusion_conformer_attention.py +222 -0
- onnxruntime/transformers/fusion_constant_fold.py +144 -0
- onnxruntime/transformers/fusion_embedlayer.py +810 -0
- onnxruntime/transformers/fusion_fastgelu.py +492 -0
- onnxruntime/transformers/fusion_gelu.py +258 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +180 -0
- onnxruntime/transformers/fusion_layernorm.py +489 -0
- onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +420 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
- onnxruntime/transformers/fusion_shape.py +109 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +167 -0
- onnxruntime/transformers/fusion_utils.py +321 -0
- onnxruntime/transformers/huggingface_models.py +74 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +487 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +230 -0
- onnxruntime/transformers/metrics.py +163 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +700 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
- onnxruntime/transformers/models/llama/llama_parity.py +343 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
- onnxruntime/transformers/models/t5/t5_helper.py +302 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +585 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
- onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
- onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
- onnxruntime/transformers/onnx_exporter.py +719 -0
- onnxruntime/transformers/onnx_model.py +1636 -0
- onnxruntime/transformers/onnx_model_bart.py +141 -0
- onnxruntime/transformers/onnx_model_bert.py +488 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
- onnxruntime/transformers/onnx_model_clip.py +42 -0
- onnxruntime/transformers/onnx_model_conformer.py +32 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_mmdit.py +112 -0
- onnxruntime/transformers/onnx_model_phi.py +929 -0
- onnxruntime/transformers/onnx_model_sam2.py +137 -0
- onnxruntime/transformers/onnx_model_t5.py +985 -0
- onnxruntime/transformers/onnx_model_tnlr.py +226 -0
- onnxruntime/transformers/onnx_model_unet.py +258 -0
- onnxruntime/transformers/onnx_model_vae.py +42 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +620 -0
- onnxruntime/transformers/past_helper.py +149 -0
- onnxruntime/transformers/profile_result_processor.py +358 -0
- onnxruntime/transformers/profiler.py +434 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +121 -0
- onnxruntime/transformers/shape_optimizer.py +400 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
- onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
- onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,426 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
|
|
6
|
+
import gc
|
|
7
|
+
import importlib.util
|
|
8
|
+
import time
|
|
9
|
+
from statistics import mean
|
|
10
|
+
|
|
11
|
+
import torch
|
|
12
|
+
from demo_utils import PipelineInfo
|
|
13
|
+
from diffusers import (
|
|
14
|
+
AutoencoderKL,
|
|
15
|
+
ControlNetModel,
|
|
16
|
+
DiffusionPipeline,
|
|
17
|
+
EulerAncestralDiscreteScheduler,
|
|
18
|
+
StableDiffusionXLControlNetPipeline,
|
|
19
|
+
)
|
|
20
|
+
from engine_builder import EngineType, get_engine_paths
|
|
21
|
+
from pipeline_stable_diffusion import StableDiffusionPipeline
|
|
22
|
+
|
|
23
|
+
"""
|
|
24
|
+
Benchmark script for SDXL-Turbo with control net for engines like PyTorch or Stable Fast.
|
|
25
|
+
|
|
26
|
+
Setup for Stable Fast (see https://github.com/chengzeyi/stable-fast/blob/main/README.md for more info):
|
|
27
|
+
git clone https://github.com/chengzeyi/stable-fast.git
|
|
28
|
+
cd stable-fast
|
|
29
|
+
git submodule update --init
|
|
30
|
+
pip3 install torch torchvision torchaudio ninja
|
|
31
|
+
pip3 install -e '.[dev,xformers,triton,transformers,diffusers]' -v
|
|
32
|
+
sudo apt install libgoogle-perftools-dev
|
|
33
|
+
export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc.so
|
|
34
|
+
"""
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def get_canny_image():
|
|
38
|
+
import cv2 # noqa: PLC0415
|
|
39
|
+
import numpy as np # noqa: PLC0415
|
|
40
|
+
from PIL import Image # noqa: PLC0415
|
|
41
|
+
|
|
42
|
+
# Test Image can be downloaded from https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png
|
|
43
|
+
image = Image.open("input_image_vermeer.png").convert("RGB")
|
|
44
|
+
|
|
45
|
+
image = np.array(image)
|
|
46
|
+
image = cv2.Canny(image, 100, 200)
|
|
47
|
+
image = image[:, :, None]
|
|
48
|
+
image = np.concatenate([image, image, image], axis=2)
|
|
49
|
+
return Image.fromarray(image)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def compile_stable_fast(pipeline, enable_cuda_graph=True):
|
|
53
|
+
from sfast.compilers.stable_diffusion_pipeline_compiler import CompilationConfig, compile # noqa: PLC0415
|
|
54
|
+
|
|
55
|
+
config = CompilationConfig.Default()
|
|
56
|
+
|
|
57
|
+
if importlib.util.find_spec("xformers") is not None:
|
|
58
|
+
config.enable_xformers = True
|
|
59
|
+
|
|
60
|
+
if importlib.util.find_spec("triton") is not None:
|
|
61
|
+
config.enable_triton = True
|
|
62
|
+
|
|
63
|
+
config.enable_cuda_graph = enable_cuda_graph
|
|
64
|
+
|
|
65
|
+
pipeline = compile(pipeline, config)
|
|
66
|
+
return pipeline
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def compile_torch(pipeline, use_nhwc=False):
|
|
70
|
+
if use_nhwc:
|
|
71
|
+
pipeline.unet.to(memory_format=torch.channels_last)
|
|
72
|
+
|
|
73
|
+
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
|
|
74
|
+
|
|
75
|
+
if hasattr(pipeline, "controlnet"):
|
|
76
|
+
if use_nhwc:
|
|
77
|
+
pipeline.controlnet.to(memory_format=torch.channels_last)
|
|
78
|
+
pipeline.controlnet = torch.compile(pipeline.controlnet, mode="reduce-overhead", fullgraph=True)
|
|
79
|
+
return pipeline
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def load_pipeline(name, engine, use_control_net=False, use_nhwc=False, enable_cuda_graph=True):
|
|
83
|
+
gc.collect()
|
|
84
|
+
torch.cuda.empty_cache()
|
|
85
|
+
before_memory = torch.cuda.memory_allocated()
|
|
86
|
+
|
|
87
|
+
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(name, subfolder="scheduler")
|
|
88
|
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
|
89
|
+
|
|
90
|
+
if use_control_net:
|
|
91
|
+
assert "xl" in name
|
|
92
|
+
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16)
|
|
93
|
+
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
94
|
+
name,
|
|
95
|
+
controlnet=controlnet,
|
|
96
|
+
vae=vae,
|
|
97
|
+
scheduler=scheduler,
|
|
98
|
+
variant="fp16",
|
|
99
|
+
use_safetensors=True,
|
|
100
|
+
torch_dtype=torch.float16,
|
|
101
|
+
).to("cuda")
|
|
102
|
+
else:
|
|
103
|
+
pipeline = DiffusionPipeline.from_pretrained(
|
|
104
|
+
name,
|
|
105
|
+
vae=vae,
|
|
106
|
+
scheduler=scheduler,
|
|
107
|
+
variant="fp16",
|
|
108
|
+
use_safetensors=True,
|
|
109
|
+
torch_dtype=torch.float16,
|
|
110
|
+
).to("cuda")
|
|
111
|
+
pipeline.safety_checker = None
|
|
112
|
+
|
|
113
|
+
gc.collect()
|
|
114
|
+
after_memory = torch.cuda.memory_allocated()
|
|
115
|
+
print(f"Loaded model with {after_memory - before_memory} bytes allocated")
|
|
116
|
+
|
|
117
|
+
if engine == "stable_fast":
|
|
118
|
+
pipeline = compile_stable_fast(pipeline, enable_cuda_graph=enable_cuda_graph)
|
|
119
|
+
elif engine == "torch":
|
|
120
|
+
pipeline = compile_torch(pipeline, use_nhwc=use_nhwc)
|
|
121
|
+
|
|
122
|
+
pipeline.set_progress_bar_config(disable=True)
|
|
123
|
+
return pipeline
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def get_prompt():
|
|
127
|
+
return "little cute gremlin wearing a jacket, cinematic, vivid colors, intricate masterpiece, golden ratio, highly detailed"
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def load_ort_cuda_pipeline(name, engine, use_control_net=False, enable_cuda_graph=True, work_dir="."):
|
|
131
|
+
version = PipelineInfo.supported_models()[name]
|
|
132
|
+
guidance_scale = 0.0
|
|
133
|
+
pipeline_info = PipelineInfo(
|
|
134
|
+
version,
|
|
135
|
+
use_vae=True,
|
|
136
|
+
use_fp16_vae=True,
|
|
137
|
+
do_classifier_free_guidance=(guidance_scale > 1.0),
|
|
138
|
+
controlnet=["canny"] if use_control_net else [],
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
engine_type = EngineType.ORT_CUDA if engine == "ort_cuda" else EngineType.ORT_TRT
|
|
142
|
+
onnx_dir, engine_dir, output_dir, framework_model_dir, _ = get_engine_paths(
|
|
143
|
+
work_dir=work_dir, pipeline_info=pipeline_info, engine_type=engine_type
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
pipeline = StableDiffusionPipeline(
|
|
147
|
+
pipeline_info,
|
|
148
|
+
scheduler="EulerA",
|
|
149
|
+
max_batch_size=32,
|
|
150
|
+
use_cuda_graph=enable_cuda_graph,
|
|
151
|
+
framework_model_dir=framework_model_dir,
|
|
152
|
+
output_dir=output_dir,
|
|
153
|
+
engine_type=engine_type,
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
pipeline.backend.build_engines(
|
|
157
|
+
engine_dir=engine_dir,
|
|
158
|
+
framework_model_dir=framework_model_dir,
|
|
159
|
+
onnx_dir=onnx_dir,
|
|
160
|
+
device_id=torch.cuda.current_device(),
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
return pipeline
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
def test_ort_cuda(
|
|
167
|
+
pipeline,
|
|
168
|
+
batch_size=1,
|
|
169
|
+
steps=4,
|
|
170
|
+
control_image=None,
|
|
171
|
+
warmup_runs=3,
|
|
172
|
+
test_runs=10,
|
|
173
|
+
seed=123,
|
|
174
|
+
verbose=False,
|
|
175
|
+
image_height=512,
|
|
176
|
+
image_width=512,
|
|
177
|
+
):
|
|
178
|
+
if batch_size > 4 and pipeline.pipeline_info.version == "xl-1.0":
|
|
179
|
+
pipeline.backend.enable_vae_slicing()
|
|
180
|
+
|
|
181
|
+
pipeline.load_resources(image_height, image_width, batch_size)
|
|
182
|
+
|
|
183
|
+
warmup_prompt = "warm up"
|
|
184
|
+
for _ in range(warmup_runs):
|
|
185
|
+
images, _ = pipeline.run(
|
|
186
|
+
[warmup_prompt] * batch_size,
|
|
187
|
+
[""] * batch_size,
|
|
188
|
+
image_height=image_height,
|
|
189
|
+
image_width=image_width,
|
|
190
|
+
denoising_steps=steps,
|
|
191
|
+
guidance=0.0,
|
|
192
|
+
seed=seed,
|
|
193
|
+
controlnet_images=[control_image],
|
|
194
|
+
controlnet_scales=torch.FloatTensor([0.5]),
|
|
195
|
+
output_type="image",
|
|
196
|
+
)
|
|
197
|
+
assert len(images) == batch_size
|
|
198
|
+
|
|
199
|
+
generator = torch.Generator(device="cuda")
|
|
200
|
+
generator.manual_seed(seed)
|
|
201
|
+
|
|
202
|
+
prompt = get_prompt()
|
|
203
|
+
|
|
204
|
+
latency_list = []
|
|
205
|
+
images = None
|
|
206
|
+
for _ in range(test_runs):
|
|
207
|
+
torch.cuda.synchronize()
|
|
208
|
+
start_time = time.perf_counter()
|
|
209
|
+
images, _ = pipeline.run(
|
|
210
|
+
[prompt] * batch_size,
|
|
211
|
+
[""] * batch_size,
|
|
212
|
+
image_height=image_height,
|
|
213
|
+
image_width=image_width,
|
|
214
|
+
denoising_steps=steps,
|
|
215
|
+
guidance=0.0,
|
|
216
|
+
seed=seed,
|
|
217
|
+
controlnet_images=[control_image],
|
|
218
|
+
controlnet_scales=torch.FloatTensor([0.5]),
|
|
219
|
+
output_type="pil",
|
|
220
|
+
)
|
|
221
|
+
torch.cuda.synchronize()
|
|
222
|
+
seconds = time.perf_counter() - start_time
|
|
223
|
+
latency_list.append(seconds)
|
|
224
|
+
|
|
225
|
+
if verbose:
|
|
226
|
+
print(latency_list)
|
|
227
|
+
|
|
228
|
+
return images, latency_list
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
def test(pipeline, batch_size=1, steps=4, control_image=None, warmup_runs=3, test_runs=10, seed=123, verbose=False):
|
|
232
|
+
control_net_args = {}
|
|
233
|
+
if hasattr(pipeline, "controlnet"):
|
|
234
|
+
control_net_args = {
|
|
235
|
+
"image": control_image,
|
|
236
|
+
"controlnet_conditioning_scale": 0.5,
|
|
237
|
+
}
|
|
238
|
+
|
|
239
|
+
warmup_prompt = "warm up"
|
|
240
|
+
for _ in range(warmup_runs):
|
|
241
|
+
images = pipeline(
|
|
242
|
+
prompt=warmup_prompt,
|
|
243
|
+
num_inference_steps=steps,
|
|
244
|
+
num_images_per_prompt=batch_size,
|
|
245
|
+
guidance_scale=0.0,
|
|
246
|
+
**control_net_args,
|
|
247
|
+
).images
|
|
248
|
+
assert len(images) == batch_size
|
|
249
|
+
|
|
250
|
+
generator = torch.Generator(device="cuda")
|
|
251
|
+
generator.manual_seed(seed)
|
|
252
|
+
|
|
253
|
+
prompt = get_prompt()
|
|
254
|
+
|
|
255
|
+
latency_list = []
|
|
256
|
+
images = None
|
|
257
|
+
for _ in range(test_runs):
|
|
258
|
+
torch.cuda.synchronize()
|
|
259
|
+
start_time = time.perf_counter()
|
|
260
|
+
images = pipeline(
|
|
261
|
+
prompt=prompt,
|
|
262
|
+
num_inference_steps=steps,
|
|
263
|
+
num_images_per_prompt=batch_size,
|
|
264
|
+
guidance_scale=0.0,
|
|
265
|
+
generator=generator,
|
|
266
|
+
**control_net_args,
|
|
267
|
+
).images
|
|
268
|
+
torch.cuda.synchronize()
|
|
269
|
+
seconds = time.perf_counter() - start_time
|
|
270
|
+
latency_list.append(seconds)
|
|
271
|
+
|
|
272
|
+
if verbose:
|
|
273
|
+
print(latency_list)
|
|
274
|
+
|
|
275
|
+
return images, latency_list
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
def arguments():
|
|
279
|
+
import argparse # noqa: PLC0415
|
|
280
|
+
|
|
281
|
+
parser = argparse.ArgumentParser(description="Benchmark Stable Diffusion pipeline (optional control net for SDXL)")
|
|
282
|
+
parser.add_argument(
|
|
283
|
+
"--engine",
|
|
284
|
+
type=str,
|
|
285
|
+
default="torch",
|
|
286
|
+
choices=["torch", "stable_fast", "ort_cuda", "ort_trt"],
|
|
287
|
+
help="Backend engine: torch, stable_fast or ort_cuda",
|
|
288
|
+
)
|
|
289
|
+
|
|
290
|
+
parser.add_argument(
|
|
291
|
+
"--name",
|
|
292
|
+
type=str,
|
|
293
|
+
choices=list(PipelineInfo.supported_models().keys()),
|
|
294
|
+
default="stabilityai/sdxl-turbo",
|
|
295
|
+
help="Stable diffusion model name. Default is stabilityai/sdxl-turbo",
|
|
296
|
+
)
|
|
297
|
+
|
|
298
|
+
parser.add_argument(
|
|
299
|
+
"--work-dir",
|
|
300
|
+
type=str,
|
|
301
|
+
default=".",
|
|
302
|
+
help="working directory for ort_cuda or ort_trt",
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
parser.add_argument(
|
|
306
|
+
"--use_control_net",
|
|
307
|
+
action="store_true",
|
|
308
|
+
help="Use control net diffusers/controlnet-canny-sdxl-1.0",
|
|
309
|
+
)
|
|
310
|
+
|
|
311
|
+
parser.add_argument(
|
|
312
|
+
"--batch_size",
|
|
313
|
+
type=int,
|
|
314
|
+
default=1,
|
|
315
|
+
help="Batch size",
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
parser.add_argument(
|
|
319
|
+
"--steps",
|
|
320
|
+
type=int,
|
|
321
|
+
default=1,
|
|
322
|
+
help="Denoising steps",
|
|
323
|
+
)
|
|
324
|
+
|
|
325
|
+
parser.add_argument(
|
|
326
|
+
"--warmup_runs",
|
|
327
|
+
type=int,
|
|
328
|
+
default=3,
|
|
329
|
+
help="Number of warmup runs before measurement",
|
|
330
|
+
)
|
|
331
|
+
|
|
332
|
+
parser.add_argument(
|
|
333
|
+
"--use_nhwc",
|
|
334
|
+
action="store_true",
|
|
335
|
+
help="use channel last format for torch compile",
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
parser.add_argument(
|
|
339
|
+
"--enable_cuda_graph",
|
|
340
|
+
action="store_true",
|
|
341
|
+
help="enable cuda graph for stable fast",
|
|
342
|
+
)
|
|
343
|
+
|
|
344
|
+
parser.add_argument(
|
|
345
|
+
"--verbose",
|
|
346
|
+
action="store_true",
|
|
347
|
+
help="print more information",
|
|
348
|
+
)
|
|
349
|
+
|
|
350
|
+
args = parser.parse_args()
|
|
351
|
+
return args
|
|
352
|
+
|
|
353
|
+
|
|
354
|
+
def main():
|
|
355
|
+
args = arguments()
|
|
356
|
+
|
|
357
|
+
with torch.no_grad():
|
|
358
|
+
if args.engine == "ort_cuda":
|
|
359
|
+
pipeline = load_ort_cuda_pipeline(
|
|
360
|
+
args.name,
|
|
361
|
+
args.engine,
|
|
362
|
+
use_control_net=args.use_control_net,
|
|
363
|
+
enable_cuda_graph=args.enable_cuda_graph,
|
|
364
|
+
work_dir=args.work_dir,
|
|
365
|
+
)
|
|
366
|
+
else:
|
|
367
|
+
pipeline = load_pipeline(
|
|
368
|
+
args.name,
|
|
369
|
+
args.engine,
|
|
370
|
+
use_control_net=args.use_control_net,
|
|
371
|
+
use_nhwc=args.use_nhwc,
|
|
372
|
+
enable_cuda_graph=args.enable_cuda_graph,
|
|
373
|
+
)
|
|
374
|
+
|
|
375
|
+
canny_image = get_canny_image()
|
|
376
|
+
|
|
377
|
+
if args.engine == "ort_cuda":
|
|
378
|
+
images, latency_list = test_ort_cuda(
|
|
379
|
+
pipeline,
|
|
380
|
+
args.batch_size,
|
|
381
|
+
args.steps,
|
|
382
|
+
control_image=canny_image,
|
|
383
|
+
warmup_runs=args.warmup_runs,
|
|
384
|
+
verbose=args.verbose,
|
|
385
|
+
)
|
|
386
|
+
elif args.engine == "stable_fast":
|
|
387
|
+
from sfast.utils.compute_precision import low_compute_precision # noqa: PLC0415
|
|
388
|
+
|
|
389
|
+
with low_compute_precision():
|
|
390
|
+
images, latency_list = test(
|
|
391
|
+
pipeline,
|
|
392
|
+
args.batch_size,
|
|
393
|
+
args.steps,
|
|
394
|
+
control_image=canny_image,
|
|
395
|
+
warmup_runs=args.warmup_runs,
|
|
396
|
+
verbose=args.verbose,
|
|
397
|
+
)
|
|
398
|
+
else:
|
|
399
|
+
images, latency_list = test(
|
|
400
|
+
pipeline,
|
|
401
|
+
args.batch_size,
|
|
402
|
+
args.steps,
|
|
403
|
+
control_image=canny_image,
|
|
404
|
+
warmup_runs=args.warmup_runs,
|
|
405
|
+
verbose=args.verbose,
|
|
406
|
+
)
|
|
407
|
+
|
|
408
|
+
# Save the first output image to inspect the result.
|
|
409
|
+
if images:
|
|
410
|
+
images[0].save(
|
|
411
|
+
f"{args.engine}_{args.name.replace('/', '_')}_{args.batch_size}_{args.steps}_c{int(args.use_control_net)}.png"
|
|
412
|
+
)
|
|
413
|
+
|
|
414
|
+
result = {
|
|
415
|
+
"engine": args.engine,
|
|
416
|
+
"batch_size": args.batch_size,
|
|
417
|
+
"steps": args.steps,
|
|
418
|
+
"control_net": args.use_control_net,
|
|
419
|
+
"nhwc": args.use_nhwc,
|
|
420
|
+
"enable_cuda_graph": args.enable_cuda_graph,
|
|
421
|
+
"average_latency_in_ms": mean(latency_list) * 1000,
|
|
422
|
+
}
|
|
423
|
+
print(result)
|
|
424
|
+
|
|
425
|
+
|
|
426
|
+
main()
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
# Modified from TensorRT demo diffusion, which has the following license:
|
|
6
|
+
#
|
|
7
|
+
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
8
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
9
|
+
#
|
|
10
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
11
|
+
# you may not use this file except in compliance with the License.
|
|
12
|
+
# You may obtain a copy of the License at
|
|
13
|
+
#
|
|
14
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
15
|
+
#
|
|
16
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
17
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
18
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
19
|
+
# See the License for the specific language governing permissions and
|
|
20
|
+
# limitations under the License.
|
|
21
|
+
# --------------------------------------------------------------------------
|
|
22
|
+
|
|
23
|
+
import logging
|
|
24
|
+
|
|
25
|
+
from cuda import cudart
|
|
26
|
+
from demo_utils import (
|
|
27
|
+
add_controlnet_arguments,
|
|
28
|
+
arg_parser,
|
|
29
|
+
get_metadata,
|
|
30
|
+
load_pipelines,
|
|
31
|
+
parse_arguments,
|
|
32
|
+
process_controlnet_arguments,
|
|
33
|
+
repeat_prompt,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def main(args):
|
|
38
|
+
controlnet_images, controlnet_scale = process_controlnet_arguments(args)
|
|
39
|
+
|
|
40
|
+
pipeline, refiner = load_pipelines(args)
|
|
41
|
+
assert refiner is None
|
|
42
|
+
|
|
43
|
+
prompt, negative_prompt = repeat_prompt(args)
|
|
44
|
+
batch_size = len(prompt)
|
|
45
|
+
pipeline.load_resources(args.height, args.width, batch_size)
|
|
46
|
+
|
|
47
|
+
def run_inference(warmup=False):
|
|
48
|
+
return pipeline.run(
|
|
49
|
+
prompt,
|
|
50
|
+
negative_prompt,
|
|
51
|
+
args.height,
|
|
52
|
+
args.width,
|
|
53
|
+
denoising_steps=args.denoising_steps,
|
|
54
|
+
guidance=args.guidance,
|
|
55
|
+
seed=args.seed,
|
|
56
|
+
controlnet_images=controlnet_images,
|
|
57
|
+
controlnet_scales=controlnet_scale,
|
|
58
|
+
show_latency=not warmup,
|
|
59
|
+
output_type="pil",
|
|
60
|
+
deterministic=args.deterministic,
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
if not args.disable_cuda_graph:
|
|
64
|
+
# inference once to get cuda graph
|
|
65
|
+
_, _ = run_inference(warmup=True)
|
|
66
|
+
|
|
67
|
+
print("[I] Warming up ..")
|
|
68
|
+
for _ in range(args.num_warmup_runs):
|
|
69
|
+
_, _ = run_inference(warmup=True)
|
|
70
|
+
|
|
71
|
+
print("[I] Running StableDiffusion pipeline")
|
|
72
|
+
if args.nvtx_profile:
|
|
73
|
+
cudart.cudaProfilerStart()
|
|
74
|
+
images, perf_data = run_inference(warmup=False)
|
|
75
|
+
if args.nvtx_profile:
|
|
76
|
+
cudart.cudaProfilerStop()
|
|
77
|
+
|
|
78
|
+
metadata = get_metadata(args, False)
|
|
79
|
+
metadata.update(pipeline.metadata())
|
|
80
|
+
if perf_data:
|
|
81
|
+
metadata.update(perf_data)
|
|
82
|
+
metadata["images"] = len(images)
|
|
83
|
+
print(metadata)
|
|
84
|
+
pipeline.save_images(images, prompt, negative_prompt, metadata)
|
|
85
|
+
|
|
86
|
+
pipeline.teardown()
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
if __name__ == "__main__":
|
|
90
|
+
logging.basicConfig(format="%(funcName)20s: %(message)s", level=logging.INFO)
|
|
91
|
+
|
|
92
|
+
parser = arg_parser("Options for Stable Diffusion Demo")
|
|
93
|
+
add_controlnet_arguments(parser)
|
|
94
|
+
args = parse_arguments(is_xl=False, parser=parser)
|
|
95
|
+
|
|
96
|
+
if args.user_compute_stream:
|
|
97
|
+
import torch
|
|
98
|
+
|
|
99
|
+
s = torch.cuda.Stream()
|
|
100
|
+
with torch.cuda.stream(s):
|
|
101
|
+
main(args)
|
|
102
|
+
else:
|
|
103
|
+
main(args)
|