onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (322) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6121 -0
  4. onnxruntime/__init__.py +418 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +175 -0
  7. onnxruntime/backend/backend_rep.py +52 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/build_and_package_info.py +2 -0
  13. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  14. onnxruntime/capi/onnxruntime.dll +0 -0
  15. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  16. onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
  17. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  18. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  19. onnxruntime/capi/onnxruntime_validation.py +154 -0
  20. onnxruntime/capi/version_info.py +2 -0
  21. onnxruntime/datasets/__init__.py +18 -0
  22. onnxruntime/datasets/logreg_iris.onnx +0 -0
  23. onnxruntime/datasets/mul_1.onnx +0 -0
  24. onnxruntime/datasets/sigmoid.onnx +13 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  27. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  28. onnxruntime/quantization/__init__.py +19 -0
  29. onnxruntime/quantization/base_quantizer.py +529 -0
  30. onnxruntime/quantization/calibrate.py +1267 -0
  31. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  32. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  33. onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
  34. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  35. onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
  36. onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
  37. onnxruntime/quantization/fusions/__init__.py +4 -0
  38. onnxruntime/quantization/fusions/fusion.py +311 -0
  39. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  40. onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
  41. onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
  42. onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
  43. onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
  44. onnxruntime/quantization/neural_compressor/__init__.py +1 -0
  45. onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
  46. onnxruntime/quantization/neural_compressor/util.py +80 -0
  47. onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
  48. onnxruntime/quantization/onnx_model.py +600 -0
  49. onnxruntime/quantization/onnx_quantizer.py +1163 -0
  50. onnxruntime/quantization/operators/__init__.py +2 -0
  51. onnxruntime/quantization/operators/activation.py +119 -0
  52. onnxruntime/quantization/operators/argmax.py +18 -0
  53. onnxruntime/quantization/operators/attention.py +73 -0
  54. onnxruntime/quantization/operators/base_operator.py +26 -0
  55. onnxruntime/quantization/operators/binary_op.py +72 -0
  56. onnxruntime/quantization/operators/concat.py +62 -0
  57. onnxruntime/quantization/operators/conv.py +260 -0
  58. onnxruntime/quantization/operators/direct_q8.py +78 -0
  59. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  60. onnxruntime/quantization/operators/gather.py +64 -0
  61. onnxruntime/quantization/operators/gavgpool.py +62 -0
  62. onnxruntime/quantization/operators/gemm.py +172 -0
  63. onnxruntime/quantization/operators/lstm.py +121 -0
  64. onnxruntime/quantization/operators/matmul.py +231 -0
  65. onnxruntime/quantization/operators/maxpool.py +34 -0
  66. onnxruntime/quantization/operators/norm.py +40 -0
  67. onnxruntime/quantization/operators/pad.py +172 -0
  68. onnxruntime/quantization/operators/pooling.py +67 -0
  69. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  70. onnxruntime/quantization/operators/resize.py +34 -0
  71. onnxruntime/quantization/operators/softmax.py +74 -0
  72. onnxruntime/quantization/operators/split.py +63 -0
  73. onnxruntime/quantization/operators/where.py +87 -0
  74. onnxruntime/quantization/preprocess.py +141 -0
  75. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  76. onnxruntime/quantization/qdq_quantizer.py +1477 -0
  77. onnxruntime/quantization/quant_utils.py +1051 -0
  78. onnxruntime/quantization/quantize.py +953 -0
  79. onnxruntime/quantization/registry.py +110 -0
  80. onnxruntime/quantization/shape_inference.py +204 -0
  81. onnxruntime/quantization/static_quantize_runner.py +256 -0
  82. onnxruntime/quantization/tensor_quant_overrides.py +520 -0
  83. onnxruntime/tools/__init__.py +10 -0
  84. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  85. onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
  86. onnxruntime/tools/file_utils.py +47 -0
  87. onnxruntime/tools/logger.py +11 -0
  88. onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
  89. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  90. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
  91. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  92. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  93. onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
  94. onnxruntime/tools/offline_tuning.py +169 -0
  95. onnxruntime/tools/onnx_model_utils.py +416 -0
  96. onnxruntime/tools/onnx_randomizer.py +85 -0
  97. onnxruntime/tools/onnxruntime_test.py +164 -0
  98. onnxruntime/tools/optimize_onnx_model.py +56 -0
  99. onnxruntime/tools/ort_format_model/__init__.py +27 -0
  100. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  140. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  141. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  142. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  143. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  144. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  145. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  146. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  147. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  148. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  149. onnxruntime/tools/ort_format_model/types.py +85 -0
  150. onnxruntime/tools/ort_format_model/utils.py +61 -0
  151. onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
  152. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  153. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  154. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  155. onnxruntime/tools/qnn/add_trans_cast.py +292 -0
  156. onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
  157. onnxruntime/tools/qnn/preprocess.py +165 -0
  158. onnxruntime/tools/reduced_build_config_parser.py +203 -0
  159. onnxruntime/tools/remove_initializer_from_input.py +37 -0
  160. onnxruntime/tools/symbolic_shape_infer.py +3094 -0
  161. onnxruntime/tools/update_onnx_opset.py +31 -0
  162. onnxruntime/transformers/__init__.py +8 -0
  163. onnxruntime/transformers/affinity_helper.py +40 -0
  164. onnxruntime/transformers/benchmark.py +942 -0
  165. onnxruntime/transformers/benchmark_helper.py +643 -0
  166. onnxruntime/transformers/bert_perf_test.py +629 -0
  167. onnxruntime/transformers/bert_test_data.py +641 -0
  168. onnxruntime/transformers/compare_bert_results.py +256 -0
  169. onnxruntime/transformers/constants.py +47 -0
  170. onnxruntime/transformers/convert_generation.py +3605 -0
  171. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  172. onnxruntime/transformers/convert_to_packing_mode.py +385 -0
  173. onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
  174. onnxruntime/transformers/float16.py +501 -0
  175. onnxruntime/transformers/fusion_attention.py +1189 -0
  176. onnxruntime/transformers/fusion_attention_clip.py +340 -0
  177. onnxruntime/transformers/fusion_attention_sam2.py +533 -0
  178. onnxruntime/transformers/fusion_attention_unet.py +1307 -0
  179. onnxruntime/transformers/fusion_attention_vae.py +300 -0
  180. onnxruntime/transformers/fusion_bart_attention.py +435 -0
  181. onnxruntime/transformers/fusion_base.py +141 -0
  182. onnxruntime/transformers/fusion_bias_add.py +57 -0
  183. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  184. onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
  185. onnxruntime/transformers/fusion_conformer_attention.py +222 -0
  186. onnxruntime/transformers/fusion_constant_fold.py +144 -0
  187. onnxruntime/transformers/fusion_embedlayer.py +810 -0
  188. onnxruntime/transformers/fusion_fastgelu.py +492 -0
  189. onnxruntime/transformers/fusion_gelu.py +258 -0
  190. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  191. onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
  192. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  193. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  194. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  195. onnxruntime/transformers/fusion_group_norm.py +180 -0
  196. onnxruntime/transformers/fusion_layernorm.py +489 -0
  197. onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
  198. onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
  199. onnxruntime/transformers/fusion_options.py +340 -0
  200. onnxruntime/transformers/fusion_qordered_attention.py +420 -0
  201. onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
  202. onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
  203. onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
  204. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  205. onnxruntime/transformers/fusion_reshape.py +173 -0
  206. onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
  207. onnxruntime/transformers/fusion_shape.py +109 -0
  208. onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
  209. onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
  210. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  211. onnxruntime/transformers/fusion_transpose.py +167 -0
  212. onnxruntime/transformers/fusion_utils.py +321 -0
  213. onnxruntime/transformers/huggingface_models.py +74 -0
  214. onnxruntime/transformers/import_utils.py +20 -0
  215. onnxruntime/transformers/io_binding_helper.py +487 -0
  216. onnxruntime/transformers/large_model_exporter.py +395 -0
  217. onnxruntime/transformers/machine_info.py +230 -0
  218. onnxruntime/transformers/metrics.py +163 -0
  219. onnxruntime/transformers/models/bart/__init__.py +12 -0
  220. onnxruntime/transformers/models/bart/export.py +98 -0
  221. onnxruntime/transformers/models/bert/__init__.py +12 -0
  222. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  223. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  224. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  225. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
  226. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
  227. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  228. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  229. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  230. onnxruntime/transformers/models/llama/__init__.py +12 -0
  231. onnxruntime/transformers/models/llama/benchmark.py +700 -0
  232. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  233. onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
  234. onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
  235. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  236. onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
  237. onnxruntime/transformers/models/llama/llama_parity.py +343 -0
  238. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  239. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  240. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  241. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  242. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  243. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  244. onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
  245. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  246. onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
  247. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  248. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  249. onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
  250. onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
  251. onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
  252. onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
  253. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  254. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  255. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  256. onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
  257. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
  258. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  259. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  260. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
  261. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  262. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
  263. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
  264. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  265. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
  266. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
  267. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
  268. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
  269. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  270. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  271. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  272. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
  273. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  274. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  275. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  276. onnxruntime/transformers/models/t5/__init__.py +12 -0
  277. onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
  278. onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
  279. onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
  280. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
  281. onnxruntime/transformers/models/t5/t5_helper.py +302 -0
  282. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  283. onnxruntime/transformers/models/whisper/benchmark.py +585 -0
  284. onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
  285. onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
  286. onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
  287. onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
  288. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  289. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
  290. onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
  291. onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
  292. onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
  293. onnxruntime/transformers/onnx_exporter.py +719 -0
  294. onnxruntime/transformers/onnx_model.py +1636 -0
  295. onnxruntime/transformers/onnx_model_bart.py +141 -0
  296. onnxruntime/transformers/onnx_model_bert.py +488 -0
  297. onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
  298. onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
  299. onnxruntime/transformers/onnx_model_clip.py +42 -0
  300. onnxruntime/transformers/onnx_model_conformer.py +32 -0
  301. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  302. onnxruntime/transformers/onnx_model_mmdit.py +112 -0
  303. onnxruntime/transformers/onnx_model_phi.py +929 -0
  304. onnxruntime/transformers/onnx_model_sam2.py +137 -0
  305. onnxruntime/transformers/onnx_model_t5.py +985 -0
  306. onnxruntime/transformers/onnx_model_tnlr.py +226 -0
  307. onnxruntime/transformers/onnx_model_unet.py +258 -0
  308. onnxruntime/transformers/onnx_model_vae.py +42 -0
  309. onnxruntime/transformers/onnx_utils.py +55 -0
  310. onnxruntime/transformers/optimizer.py +620 -0
  311. onnxruntime/transformers/past_helper.py +149 -0
  312. onnxruntime/transformers/profile_result_processor.py +358 -0
  313. onnxruntime/transformers/profiler.py +434 -0
  314. onnxruntime/transformers/quantize_helper.py +76 -0
  315. onnxruntime/transformers/shape_infer_helper.py +121 -0
  316. onnxruntime/transformers/shape_optimizer.py +400 -0
  317. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  318. onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
  319. onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
  320. onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
  321. onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
  322. onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,426 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+
6
+ import gc
7
+ import importlib.util
8
+ import time
9
+ from statistics import mean
10
+
11
+ import torch
12
+ from demo_utils import PipelineInfo
13
+ from diffusers import (
14
+ AutoencoderKL,
15
+ ControlNetModel,
16
+ DiffusionPipeline,
17
+ EulerAncestralDiscreteScheduler,
18
+ StableDiffusionXLControlNetPipeline,
19
+ )
20
+ from engine_builder import EngineType, get_engine_paths
21
+ from pipeline_stable_diffusion import StableDiffusionPipeline
22
+
23
+ """
24
+ Benchmark script for SDXL-Turbo with control net for engines like PyTorch or Stable Fast.
25
+
26
+ Setup for Stable Fast (see https://github.com/chengzeyi/stable-fast/blob/main/README.md for more info):
27
+ git clone https://github.com/chengzeyi/stable-fast.git
28
+ cd stable-fast
29
+ git submodule update --init
30
+ pip3 install torch torchvision torchaudio ninja
31
+ pip3 install -e '.[dev,xformers,triton,transformers,diffusers]' -v
32
+ sudo apt install libgoogle-perftools-dev
33
+ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc.so
34
+ """
35
+
36
+
37
+ def get_canny_image():
38
+ import cv2 # noqa: PLC0415
39
+ import numpy as np # noqa: PLC0415
40
+ from PIL import Image # noqa: PLC0415
41
+
42
+ # Test Image can be downloaded from https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png
43
+ image = Image.open("input_image_vermeer.png").convert("RGB")
44
+
45
+ image = np.array(image)
46
+ image = cv2.Canny(image, 100, 200)
47
+ image = image[:, :, None]
48
+ image = np.concatenate([image, image, image], axis=2)
49
+ return Image.fromarray(image)
50
+
51
+
52
+ def compile_stable_fast(pipeline, enable_cuda_graph=True):
53
+ from sfast.compilers.stable_diffusion_pipeline_compiler import CompilationConfig, compile # noqa: PLC0415
54
+
55
+ config = CompilationConfig.Default()
56
+
57
+ if importlib.util.find_spec("xformers") is not None:
58
+ config.enable_xformers = True
59
+
60
+ if importlib.util.find_spec("triton") is not None:
61
+ config.enable_triton = True
62
+
63
+ config.enable_cuda_graph = enable_cuda_graph
64
+
65
+ pipeline = compile(pipeline, config)
66
+ return pipeline
67
+
68
+
69
+ def compile_torch(pipeline, use_nhwc=False):
70
+ if use_nhwc:
71
+ pipeline.unet.to(memory_format=torch.channels_last)
72
+
73
+ pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
74
+
75
+ if hasattr(pipeline, "controlnet"):
76
+ if use_nhwc:
77
+ pipeline.controlnet.to(memory_format=torch.channels_last)
78
+ pipeline.controlnet = torch.compile(pipeline.controlnet, mode="reduce-overhead", fullgraph=True)
79
+ return pipeline
80
+
81
+
82
+ def load_pipeline(name, engine, use_control_net=False, use_nhwc=False, enable_cuda_graph=True):
83
+ gc.collect()
84
+ torch.cuda.empty_cache()
85
+ before_memory = torch.cuda.memory_allocated()
86
+
87
+ scheduler = EulerAncestralDiscreteScheduler.from_pretrained(name, subfolder="scheduler")
88
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
89
+
90
+ if use_control_net:
91
+ assert "xl" in name
92
+ controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16)
93
+ pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
94
+ name,
95
+ controlnet=controlnet,
96
+ vae=vae,
97
+ scheduler=scheduler,
98
+ variant="fp16",
99
+ use_safetensors=True,
100
+ torch_dtype=torch.float16,
101
+ ).to("cuda")
102
+ else:
103
+ pipeline = DiffusionPipeline.from_pretrained(
104
+ name,
105
+ vae=vae,
106
+ scheduler=scheduler,
107
+ variant="fp16",
108
+ use_safetensors=True,
109
+ torch_dtype=torch.float16,
110
+ ).to("cuda")
111
+ pipeline.safety_checker = None
112
+
113
+ gc.collect()
114
+ after_memory = torch.cuda.memory_allocated()
115
+ print(f"Loaded model with {after_memory - before_memory} bytes allocated")
116
+
117
+ if engine == "stable_fast":
118
+ pipeline = compile_stable_fast(pipeline, enable_cuda_graph=enable_cuda_graph)
119
+ elif engine == "torch":
120
+ pipeline = compile_torch(pipeline, use_nhwc=use_nhwc)
121
+
122
+ pipeline.set_progress_bar_config(disable=True)
123
+ return pipeline
124
+
125
+
126
+ def get_prompt():
127
+ return "little cute gremlin wearing a jacket, cinematic, vivid colors, intricate masterpiece, golden ratio, highly detailed"
128
+
129
+
130
+ def load_ort_cuda_pipeline(name, engine, use_control_net=False, enable_cuda_graph=True, work_dir="."):
131
+ version = PipelineInfo.supported_models()[name]
132
+ guidance_scale = 0.0
133
+ pipeline_info = PipelineInfo(
134
+ version,
135
+ use_vae=True,
136
+ use_fp16_vae=True,
137
+ do_classifier_free_guidance=(guidance_scale > 1.0),
138
+ controlnet=["canny"] if use_control_net else [],
139
+ )
140
+
141
+ engine_type = EngineType.ORT_CUDA if engine == "ort_cuda" else EngineType.ORT_TRT
142
+ onnx_dir, engine_dir, output_dir, framework_model_dir, _ = get_engine_paths(
143
+ work_dir=work_dir, pipeline_info=pipeline_info, engine_type=engine_type
144
+ )
145
+
146
+ pipeline = StableDiffusionPipeline(
147
+ pipeline_info,
148
+ scheduler="EulerA",
149
+ max_batch_size=32,
150
+ use_cuda_graph=enable_cuda_graph,
151
+ framework_model_dir=framework_model_dir,
152
+ output_dir=output_dir,
153
+ engine_type=engine_type,
154
+ )
155
+
156
+ pipeline.backend.build_engines(
157
+ engine_dir=engine_dir,
158
+ framework_model_dir=framework_model_dir,
159
+ onnx_dir=onnx_dir,
160
+ device_id=torch.cuda.current_device(),
161
+ )
162
+
163
+ return pipeline
164
+
165
+
166
+ def test_ort_cuda(
167
+ pipeline,
168
+ batch_size=1,
169
+ steps=4,
170
+ control_image=None,
171
+ warmup_runs=3,
172
+ test_runs=10,
173
+ seed=123,
174
+ verbose=False,
175
+ image_height=512,
176
+ image_width=512,
177
+ ):
178
+ if batch_size > 4 and pipeline.pipeline_info.version == "xl-1.0":
179
+ pipeline.backend.enable_vae_slicing()
180
+
181
+ pipeline.load_resources(image_height, image_width, batch_size)
182
+
183
+ warmup_prompt = "warm up"
184
+ for _ in range(warmup_runs):
185
+ images, _ = pipeline.run(
186
+ [warmup_prompt] * batch_size,
187
+ [""] * batch_size,
188
+ image_height=image_height,
189
+ image_width=image_width,
190
+ denoising_steps=steps,
191
+ guidance=0.0,
192
+ seed=seed,
193
+ controlnet_images=[control_image],
194
+ controlnet_scales=torch.FloatTensor([0.5]),
195
+ output_type="image",
196
+ )
197
+ assert len(images) == batch_size
198
+
199
+ generator = torch.Generator(device="cuda")
200
+ generator.manual_seed(seed)
201
+
202
+ prompt = get_prompt()
203
+
204
+ latency_list = []
205
+ images = None
206
+ for _ in range(test_runs):
207
+ torch.cuda.synchronize()
208
+ start_time = time.perf_counter()
209
+ images, _ = pipeline.run(
210
+ [prompt] * batch_size,
211
+ [""] * batch_size,
212
+ image_height=image_height,
213
+ image_width=image_width,
214
+ denoising_steps=steps,
215
+ guidance=0.0,
216
+ seed=seed,
217
+ controlnet_images=[control_image],
218
+ controlnet_scales=torch.FloatTensor([0.5]),
219
+ output_type="pil",
220
+ )
221
+ torch.cuda.synchronize()
222
+ seconds = time.perf_counter() - start_time
223
+ latency_list.append(seconds)
224
+
225
+ if verbose:
226
+ print(latency_list)
227
+
228
+ return images, latency_list
229
+
230
+
231
+ def test(pipeline, batch_size=1, steps=4, control_image=None, warmup_runs=3, test_runs=10, seed=123, verbose=False):
232
+ control_net_args = {}
233
+ if hasattr(pipeline, "controlnet"):
234
+ control_net_args = {
235
+ "image": control_image,
236
+ "controlnet_conditioning_scale": 0.5,
237
+ }
238
+
239
+ warmup_prompt = "warm up"
240
+ for _ in range(warmup_runs):
241
+ images = pipeline(
242
+ prompt=warmup_prompt,
243
+ num_inference_steps=steps,
244
+ num_images_per_prompt=batch_size,
245
+ guidance_scale=0.0,
246
+ **control_net_args,
247
+ ).images
248
+ assert len(images) == batch_size
249
+
250
+ generator = torch.Generator(device="cuda")
251
+ generator.manual_seed(seed)
252
+
253
+ prompt = get_prompt()
254
+
255
+ latency_list = []
256
+ images = None
257
+ for _ in range(test_runs):
258
+ torch.cuda.synchronize()
259
+ start_time = time.perf_counter()
260
+ images = pipeline(
261
+ prompt=prompt,
262
+ num_inference_steps=steps,
263
+ num_images_per_prompt=batch_size,
264
+ guidance_scale=0.0,
265
+ generator=generator,
266
+ **control_net_args,
267
+ ).images
268
+ torch.cuda.synchronize()
269
+ seconds = time.perf_counter() - start_time
270
+ latency_list.append(seconds)
271
+
272
+ if verbose:
273
+ print(latency_list)
274
+
275
+ return images, latency_list
276
+
277
+
278
+ def arguments():
279
+ import argparse # noqa: PLC0415
280
+
281
+ parser = argparse.ArgumentParser(description="Benchmark Stable Diffusion pipeline (optional control net for SDXL)")
282
+ parser.add_argument(
283
+ "--engine",
284
+ type=str,
285
+ default="torch",
286
+ choices=["torch", "stable_fast", "ort_cuda", "ort_trt"],
287
+ help="Backend engine: torch, stable_fast or ort_cuda",
288
+ )
289
+
290
+ parser.add_argument(
291
+ "--name",
292
+ type=str,
293
+ choices=list(PipelineInfo.supported_models().keys()),
294
+ default="stabilityai/sdxl-turbo",
295
+ help="Stable diffusion model name. Default is stabilityai/sdxl-turbo",
296
+ )
297
+
298
+ parser.add_argument(
299
+ "--work-dir",
300
+ type=str,
301
+ default=".",
302
+ help="working directory for ort_cuda or ort_trt",
303
+ )
304
+
305
+ parser.add_argument(
306
+ "--use_control_net",
307
+ action="store_true",
308
+ help="Use control net diffusers/controlnet-canny-sdxl-1.0",
309
+ )
310
+
311
+ parser.add_argument(
312
+ "--batch_size",
313
+ type=int,
314
+ default=1,
315
+ help="Batch size",
316
+ )
317
+
318
+ parser.add_argument(
319
+ "--steps",
320
+ type=int,
321
+ default=1,
322
+ help="Denoising steps",
323
+ )
324
+
325
+ parser.add_argument(
326
+ "--warmup_runs",
327
+ type=int,
328
+ default=3,
329
+ help="Number of warmup runs before measurement",
330
+ )
331
+
332
+ parser.add_argument(
333
+ "--use_nhwc",
334
+ action="store_true",
335
+ help="use channel last format for torch compile",
336
+ )
337
+
338
+ parser.add_argument(
339
+ "--enable_cuda_graph",
340
+ action="store_true",
341
+ help="enable cuda graph for stable fast",
342
+ )
343
+
344
+ parser.add_argument(
345
+ "--verbose",
346
+ action="store_true",
347
+ help="print more information",
348
+ )
349
+
350
+ args = parser.parse_args()
351
+ return args
352
+
353
+
354
+ def main():
355
+ args = arguments()
356
+
357
+ with torch.no_grad():
358
+ if args.engine == "ort_cuda":
359
+ pipeline = load_ort_cuda_pipeline(
360
+ args.name,
361
+ args.engine,
362
+ use_control_net=args.use_control_net,
363
+ enable_cuda_graph=args.enable_cuda_graph,
364
+ work_dir=args.work_dir,
365
+ )
366
+ else:
367
+ pipeline = load_pipeline(
368
+ args.name,
369
+ args.engine,
370
+ use_control_net=args.use_control_net,
371
+ use_nhwc=args.use_nhwc,
372
+ enable_cuda_graph=args.enable_cuda_graph,
373
+ )
374
+
375
+ canny_image = get_canny_image()
376
+
377
+ if args.engine == "ort_cuda":
378
+ images, latency_list = test_ort_cuda(
379
+ pipeline,
380
+ args.batch_size,
381
+ args.steps,
382
+ control_image=canny_image,
383
+ warmup_runs=args.warmup_runs,
384
+ verbose=args.verbose,
385
+ )
386
+ elif args.engine == "stable_fast":
387
+ from sfast.utils.compute_precision import low_compute_precision # noqa: PLC0415
388
+
389
+ with low_compute_precision():
390
+ images, latency_list = test(
391
+ pipeline,
392
+ args.batch_size,
393
+ args.steps,
394
+ control_image=canny_image,
395
+ warmup_runs=args.warmup_runs,
396
+ verbose=args.verbose,
397
+ )
398
+ else:
399
+ images, latency_list = test(
400
+ pipeline,
401
+ args.batch_size,
402
+ args.steps,
403
+ control_image=canny_image,
404
+ warmup_runs=args.warmup_runs,
405
+ verbose=args.verbose,
406
+ )
407
+
408
+ # Save the first output image to inspect the result.
409
+ if images:
410
+ images[0].save(
411
+ f"{args.engine}_{args.name.replace('/', '_')}_{args.batch_size}_{args.steps}_c{int(args.use_control_net)}.png"
412
+ )
413
+
414
+ result = {
415
+ "engine": args.engine,
416
+ "batch_size": args.batch_size,
417
+ "steps": args.steps,
418
+ "control_net": args.use_control_net,
419
+ "nhwc": args.use_nhwc,
420
+ "enable_cuda_graph": args.enable_cuda_graph,
421
+ "average_latency_in_ms": mean(latency_list) * 1000,
422
+ }
423
+ print(result)
424
+
425
+
426
+ main()
@@ -0,0 +1,103 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+ # Modified from TensorRT demo diffusion, which has the following license:
6
+ #
7
+ # SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
8
+ # SPDX-License-Identifier: Apache-2.0
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ # --------------------------------------------------------------------------
22
+
23
+ import logging
24
+
25
+ from cuda import cudart
26
+ from demo_utils import (
27
+ add_controlnet_arguments,
28
+ arg_parser,
29
+ get_metadata,
30
+ load_pipelines,
31
+ parse_arguments,
32
+ process_controlnet_arguments,
33
+ repeat_prompt,
34
+ )
35
+
36
+
37
+ def main(args):
38
+ controlnet_images, controlnet_scale = process_controlnet_arguments(args)
39
+
40
+ pipeline, refiner = load_pipelines(args)
41
+ assert refiner is None
42
+
43
+ prompt, negative_prompt = repeat_prompt(args)
44
+ batch_size = len(prompt)
45
+ pipeline.load_resources(args.height, args.width, batch_size)
46
+
47
+ def run_inference(warmup=False):
48
+ return pipeline.run(
49
+ prompt,
50
+ negative_prompt,
51
+ args.height,
52
+ args.width,
53
+ denoising_steps=args.denoising_steps,
54
+ guidance=args.guidance,
55
+ seed=args.seed,
56
+ controlnet_images=controlnet_images,
57
+ controlnet_scales=controlnet_scale,
58
+ show_latency=not warmup,
59
+ output_type="pil",
60
+ deterministic=args.deterministic,
61
+ )
62
+
63
+ if not args.disable_cuda_graph:
64
+ # inference once to get cuda graph
65
+ _, _ = run_inference(warmup=True)
66
+
67
+ print("[I] Warming up ..")
68
+ for _ in range(args.num_warmup_runs):
69
+ _, _ = run_inference(warmup=True)
70
+
71
+ print("[I] Running StableDiffusion pipeline")
72
+ if args.nvtx_profile:
73
+ cudart.cudaProfilerStart()
74
+ images, perf_data = run_inference(warmup=False)
75
+ if args.nvtx_profile:
76
+ cudart.cudaProfilerStop()
77
+
78
+ metadata = get_metadata(args, False)
79
+ metadata.update(pipeline.metadata())
80
+ if perf_data:
81
+ metadata.update(perf_data)
82
+ metadata["images"] = len(images)
83
+ print(metadata)
84
+ pipeline.save_images(images, prompt, negative_prompt, metadata)
85
+
86
+ pipeline.teardown()
87
+
88
+
89
+ if __name__ == "__main__":
90
+ logging.basicConfig(format="%(funcName)20s: %(message)s", level=logging.INFO)
91
+
92
+ parser = arg_parser("Options for Stable Diffusion Demo")
93
+ add_controlnet_arguments(parser)
94
+ args = parse_arguments(is_xl=False, parser=parser)
95
+
96
+ if args.user_compute_stream:
97
+ import torch
98
+
99
+ s = torch.cuda.Stream()
100
+ with torch.cuda.stream(s):
101
+ main(args)
102
+ else:
103
+ main(args)