onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6121 -0
- onnxruntime/__init__.py +418 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +175 -0
- onnxruntime/backend/backend_rep.py +52 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/build_and_package_info.py +2 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +154 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +18 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +19 -0
- onnxruntime/quantization/base_quantizer.py +529 -0
- onnxruntime/quantization/calibrate.py +1267 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
- onnxruntime/quantization/fusions/__init__.py +4 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
- onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
- onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
- onnxruntime/quantization/neural_compressor/__init__.py +1 -0
- onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
- onnxruntime/quantization/neural_compressor/util.py +80 -0
- onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
- onnxruntime/quantization/onnx_model.py +600 -0
- onnxruntime/quantization/onnx_quantizer.py +1163 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +260 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +172 -0
- onnxruntime/quantization/operators/lstm.py +121 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +172 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1477 -0
- onnxruntime/quantization/quant_utils.py +1051 -0
- onnxruntime/quantization/quantize.py +953 -0
- onnxruntime/quantization/registry.py +110 -0
- onnxruntime/quantization/shape_inference.py +204 -0
- onnxruntime/quantization/static_quantize_runner.py +256 -0
- onnxruntime/quantization/tensor_quant_overrides.py +520 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
- onnxruntime/tools/file_utils.py +47 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +416 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +56 -0
- onnxruntime/tools/ort_format_model/__init__.py +27 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +85 -0
- onnxruntime/tools/ort_format_model/utils.py +61 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/qnn/add_trans_cast.py +292 -0
- onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
- onnxruntime/tools/qnn/preprocess.py +165 -0
- onnxruntime/tools/reduced_build_config_parser.py +203 -0
- onnxruntime/tools/remove_initializer_from_input.py +37 -0
- onnxruntime/tools/symbolic_shape_infer.py +3094 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +942 -0
- onnxruntime/transformers/benchmark_helper.py +643 -0
- onnxruntime/transformers/bert_perf_test.py +629 -0
- onnxruntime/transformers/bert_test_data.py +641 -0
- onnxruntime/transformers/compare_bert_results.py +256 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3605 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +385 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1189 -0
- onnxruntime/transformers/fusion_attention_clip.py +340 -0
- onnxruntime/transformers/fusion_attention_sam2.py +533 -0
- onnxruntime/transformers/fusion_attention_unet.py +1307 -0
- onnxruntime/transformers/fusion_attention_vae.py +300 -0
- onnxruntime/transformers/fusion_bart_attention.py +435 -0
- onnxruntime/transformers/fusion_base.py +141 -0
- onnxruntime/transformers/fusion_bias_add.py +57 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
- onnxruntime/transformers/fusion_conformer_attention.py +222 -0
- onnxruntime/transformers/fusion_constant_fold.py +144 -0
- onnxruntime/transformers/fusion_embedlayer.py +810 -0
- onnxruntime/transformers/fusion_fastgelu.py +492 -0
- onnxruntime/transformers/fusion_gelu.py +258 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +180 -0
- onnxruntime/transformers/fusion_layernorm.py +489 -0
- onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +420 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
- onnxruntime/transformers/fusion_shape.py +109 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +167 -0
- onnxruntime/transformers/fusion_utils.py +321 -0
- onnxruntime/transformers/huggingface_models.py +74 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +487 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +230 -0
- onnxruntime/transformers/metrics.py +163 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +700 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
- onnxruntime/transformers/models/llama/llama_parity.py +343 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
- onnxruntime/transformers/models/t5/t5_helper.py +302 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +585 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
- onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
- onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
- onnxruntime/transformers/onnx_exporter.py +719 -0
- onnxruntime/transformers/onnx_model.py +1636 -0
- onnxruntime/transformers/onnx_model_bart.py +141 -0
- onnxruntime/transformers/onnx_model_bert.py +488 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
- onnxruntime/transformers/onnx_model_clip.py +42 -0
- onnxruntime/transformers/onnx_model_conformer.py +32 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_mmdit.py +112 -0
- onnxruntime/transformers/onnx_model_phi.py +929 -0
- onnxruntime/transformers/onnx_model_sam2.py +137 -0
- onnxruntime/transformers/onnx_model_t5.py +985 -0
- onnxruntime/transformers/onnx_model_tnlr.py +226 -0
- onnxruntime/transformers/onnx_model_unet.py +258 -0
- onnxruntime/transformers/onnx_model_vae.py +42 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +620 -0
- onnxruntime/transformers/past_helper.py +149 -0
- onnxruntime/transformers/profile_result_processor.py +358 -0
- onnxruntime/transformers/profiler.py +434 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +121 -0
- onnxruntime/transformers/shape_optimizer.py +400 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
- onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
- onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,929 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
|
|
6
|
+
from logging import getLogger
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
from dynamo_onnx_helper import DynamoOnnxHelper
|
|
10
|
+
from fusion_base import Fusion
|
|
11
|
+
from fusion_options import AttentionOpType, FusionOptions
|
|
12
|
+
from fusion_skiplayernorm import FusionBiasSkipLayerNormalization, FusionSkipLayerNormalization
|
|
13
|
+
from fusion_utils import NumpyHelper
|
|
14
|
+
from onnx import ModelProto, NodeProto, TensorProto, helper, numpy_helper
|
|
15
|
+
from onnx_model import OnnxModel
|
|
16
|
+
|
|
17
|
+
logger = getLogger(__name__)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class ProcessGemmWFunc:
|
|
21
|
+
def __call__(self, x):
|
|
22
|
+
return np.transpose(x, (1, 0))
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class ProcessMatMulQFunc:
|
|
26
|
+
def __call__(self, x):
|
|
27
|
+
return np.transpose(np.split(x, 3, 0)[0], (1, 0))
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class ProcessMatMulKFunc:
|
|
31
|
+
def __call__(self, x):
|
|
32
|
+
return np.transpose(np.split(x, 3, 0)[1], (1, 0))
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class ProcessMatMulVFunc:
|
|
36
|
+
def __call__(self, x):
|
|
37
|
+
return np.transpose(np.split(x, 3, 0)[2], (1, 0))
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class ProcessBiasQFunc:
|
|
41
|
+
def __call__(self, x):
|
|
42
|
+
x = np.split(x, 3, -1)[0]
|
|
43
|
+
return x
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class ProcessBiasKFunc:
|
|
47
|
+
def __call__(self, x):
|
|
48
|
+
x = np.split(x, 3, -1)[1]
|
|
49
|
+
return x
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class ProcessBiasVFunc:
|
|
53
|
+
def __call__(self, x):
|
|
54
|
+
x = np.split(x, 3, -1)[2]
|
|
55
|
+
return x
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class ProcessRotCacheFunc:
|
|
59
|
+
def __call__(self, x):
|
|
60
|
+
# half rotary embedding
|
|
61
|
+
assert len(x.shape) == 2
|
|
62
|
+
if x.shape[1] == 32:
|
|
63
|
+
return x[:, 0:16]
|
|
64
|
+
return x
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
# TODO: move to a separate file
|
|
68
|
+
class Fission(Fusion):
|
|
69
|
+
def __init__(
|
|
70
|
+
self,
|
|
71
|
+
model: OnnxModel,
|
|
72
|
+
nodes_to_find: list[str],
|
|
73
|
+
):
|
|
74
|
+
super().__init__(model, "DONOTUSE", nodes_to_find)
|
|
75
|
+
|
|
76
|
+
def set_attention_op_type(self, attn_op_type: AttentionOpType):
|
|
77
|
+
self.attn_op_type = attn_op_type
|
|
78
|
+
|
|
79
|
+
def get_uname(self, layer_id, name):
|
|
80
|
+
return name + "_" + str(layer_id)
|
|
81
|
+
|
|
82
|
+
def get_edge_by_name(self, edges, name):
|
|
83
|
+
for edge in edges:
|
|
84
|
+
if edge == name or edge.endswith(name) or edge.startswith(name):
|
|
85
|
+
return edge
|
|
86
|
+
raise ValueError(f"Edge {name} not found")
|
|
87
|
+
|
|
88
|
+
def get_input_by_name(self, node, name):
|
|
89
|
+
return self.get_edge_by_name(node.input, name)
|
|
90
|
+
|
|
91
|
+
def get_output_by_name(self, node, name):
|
|
92
|
+
return self.get_edge_by_name(node.output, name)
|
|
93
|
+
|
|
94
|
+
def process_initializer(self, initializer_name, functor, custom_name=None):
|
|
95
|
+
i = self.model.get_initializer(initializer_name)
|
|
96
|
+
i_np_array = NumpyHelper.to_array(i)
|
|
97
|
+
processed_i_np_array = functor(i_np_array)
|
|
98
|
+
new_tensor = helper.make_tensor(
|
|
99
|
+
initializer_name + "_processed" if custom_name is None else custom_name,
|
|
100
|
+
data_type=TensorProto.FLOAT,
|
|
101
|
+
dims=processed_i_np_array.shape,
|
|
102
|
+
vals=processed_i_np_array.flatten().tobytes(),
|
|
103
|
+
raw=True,
|
|
104
|
+
)
|
|
105
|
+
self.model.add_initializer(new_tensor, self.this_graph_name)
|
|
106
|
+
return new_tensor.name
|
|
107
|
+
|
|
108
|
+
def add_fp32_value_info(self, name):
|
|
109
|
+
new_value_info = self.model.graph().value_info.add()
|
|
110
|
+
new_value_info.name = name
|
|
111
|
+
new_value_info.type.tensor_type.elem_type = TensorProto.FLOAT
|
|
112
|
+
|
|
113
|
+
def add_int64_value_info(self, name):
|
|
114
|
+
new_value_info = self.model.graph().value_info.add()
|
|
115
|
+
new_value_info.name = name
|
|
116
|
+
new_value_info.type.tensor_type.elem_type = TensorProto.INT64
|
|
117
|
+
|
|
118
|
+
def replace_fp32_value_info(self, name, shape):
|
|
119
|
+
for value_info in self.model.graph().value_info:
|
|
120
|
+
if value_info.name == name:
|
|
121
|
+
self.model.graph().value_info.remove(value_info)
|
|
122
|
+
break
|
|
123
|
+
new_value_info = helper.make_tensor_value_info(
|
|
124
|
+
name,
|
|
125
|
+
elem_type=TensorProto.FLOAT,
|
|
126
|
+
shape=shape,
|
|
127
|
+
)
|
|
128
|
+
self.model.graph().value_info.extend([new_value_info])
|
|
129
|
+
|
|
130
|
+
def set_unique_name_and_add_nodes(
|
|
131
|
+
self, subgraph_nodes: list[NodeProto], layer_id: int, layer_known_edges_names: list[str]
|
|
132
|
+
):
|
|
133
|
+
for new_node in subgraph_nodes:
|
|
134
|
+
for i, name in enumerate(new_node.input):
|
|
135
|
+
if name == "":
|
|
136
|
+
continue
|
|
137
|
+
elif name not in layer_known_edges_names:
|
|
138
|
+
new_node.input[i] = self.get_uname(layer_id, name)
|
|
139
|
+
self.add_fp32_value_info(new_node.input[i])
|
|
140
|
+
for i, name in enumerate(new_node.output):
|
|
141
|
+
if name == "":
|
|
142
|
+
continue
|
|
143
|
+
elif name not in layer_known_edges_names:
|
|
144
|
+
new_node.output[i] = self.get_uname(layer_id, name)
|
|
145
|
+
self.add_fp32_value_info(new_node.output[i])
|
|
146
|
+
new_node.name = self.get_uname(layer_id, new_node.name)
|
|
147
|
+
self.nodes_to_add.append(new_node)
|
|
148
|
+
self.node_name_to_graph_name[new_node.name] = self.this_graph_name
|
|
149
|
+
|
|
150
|
+
def layernorm(self, inputs: list[str], outputs: list[str], prefix: str = ""):
|
|
151
|
+
assert len(inputs) == 3
|
|
152
|
+
assert len(outputs) == 1
|
|
153
|
+
node = helper.make_node(
|
|
154
|
+
"LayerNormalization",
|
|
155
|
+
inputs=inputs,
|
|
156
|
+
outputs=outputs,
|
|
157
|
+
name=prefix + "_LayerNormalization",
|
|
158
|
+
epsilon=9.999999747378752e-06,
|
|
159
|
+
)
|
|
160
|
+
return [node]
|
|
161
|
+
|
|
162
|
+
def gemm(self, inputs: list[str], outputs: list[str], prefix: str = ""):
|
|
163
|
+
assert len(inputs) == 3
|
|
164
|
+
assert len(outputs) == 1
|
|
165
|
+
matmul = helper.make_node(
|
|
166
|
+
"MatMul",
|
|
167
|
+
inputs=[inputs[0], inputs[1]],
|
|
168
|
+
outputs=[prefix + "matmul_out"],
|
|
169
|
+
name=prefix + "MatMul",
|
|
170
|
+
)
|
|
171
|
+
add = helper.make_node(
|
|
172
|
+
"Add",
|
|
173
|
+
inputs=[prefix + "matmul_out", inputs[2]],
|
|
174
|
+
outputs=outputs,
|
|
175
|
+
name=prefix + "Bias",
|
|
176
|
+
)
|
|
177
|
+
return [matmul, add]
|
|
178
|
+
|
|
179
|
+
def rotary(self, inputs: list[str], outputs: list[str], prefix: str = "", rot_dim=32, num_heads=32):
|
|
180
|
+
assert len(inputs) == 4
|
|
181
|
+
assert len(outputs) == 1
|
|
182
|
+
node = helper.make_node(
|
|
183
|
+
"RotaryEmbedding",
|
|
184
|
+
inputs=inputs,
|
|
185
|
+
outputs=outputs,
|
|
186
|
+
name=prefix + "RotaryEmbedding",
|
|
187
|
+
domain="com.microsoft",
|
|
188
|
+
rotary_embedding_dim=rot_dim,
|
|
189
|
+
num_heads=num_heads,
|
|
190
|
+
)
|
|
191
|
+
return [node]
|
|
192
|
+
|
|
193
|
+
def fastgelu(self, inputs: list[str], outputs: list[str], prefix: str = ""):
|
|
194
|
+
assert len(inputs) == 1
|
|
195
|
+
assert len(outputs) == 1
|
|
196
|
+
node = helper.make_node(
|
|
197
|
+
"FastGelu",
|
|
198
|
+
inputs=inputs,
|
|
199
|
+
outputs=outputs,
|
|
200
|
+
name=prefix + "FastGelu",
|
|
201
|
+
domain="com.microsoft",
|
|
202
|
+
)
|
|
203
|
+
return [node]
|
|
204
|
+
|
|
205
|
+
def add(self, inputs: list[str], outputs: list[str], prefix: str = ""):
|
|
206
|
+
assert len(inputs) == 2
|
|
207
|
+
assert len(outputs) == 1
|
|
208
|
+
node = helper.make_node(
|
|
209
|
+
"Add",
|
|
210
|
+
inputs=inputs,
|
|
211
|
+
outputs=outputs,
|
|
212
|
+
name=prefix + "Add",
|
|
213
|
+
)
|
|
214
|
+
return [node]
|
|
215
|
+
|
|
216
|
+
def mha(self, inputs: list[str], outputs: list[str], prefix: str = "", num_heads=32):
|
|
217
|
+
assert len(inputs) == 8
|
|
218
|
+
assert len(outputs) == 3
|
|
219
|
+
node = helper.make_node(
|
|
220
|
+
"MultiHeadAttention",
|
|
221
|
+
inputs=inputs,
|
|
222
|
+
outputs=outputs,
|
|
223
|
+
name=prefix + "MultiHeadAttention",
|
|
224
|
+
domain="com.microsoft",
|
|
225
|
+
num_heads=num_heads,
|
|
226
|
+
unidirectional=1,
|
|
227
|
+
)
|
|
228
|
+
return [node]
|
|
229
|
+
|
|
230
|
+
def gqa(self, inputs: list[str], outputs: list[str], prefix: str = "", num_heads=32):
|
|
231
|
+
assert len(inputs) == 7
|
|
232
|
+
assert len(outputs) == 3
|
|
233
|
+
node = helper.make_node(
|
|
234
|
+
"GroupQueryAttention",
|
|
235
|
+
inputs=inputs,
|
|
236
|
+
outputs=outputs,
|
|
237
|
+
name=prefix + "GroupQueryAttention",
|
|
238
|
+
domain="com.microsoft",
|
|
239
|
+
num_heads=num_heads,
|
|
240
|
+
kv_num_heads=num_heads,
|
|
241
|
+
)
|
|
242
|
+
return [node]
|
|
243
|
+
|
|
244
|
+
def attention(self, inputs: list[str], outputs: list[str], prefix: str = "", num_heads=32):
|
|
245
|
+
assert len(inputs) == 5
|
|
246
|
+
assert len(outputs) == 2
|
|
247
|
+
node = helper.make_node(
|
|
248
|
+
"Attention",
|
|
249
|
+
inputs=inputs,
|
|
250
|
+
outputs=outputs,
|
|
251
|
+
name=prefix + "Attention",
|
|
252
|
+
domain="com.microsoft",
|
|
253
|
+
num_heads=num_heads,
|
|
254
|
+
unidirectional=1,
|
|
255
|
+
do_rotary=1,
|
|
256
|
+
rotary_embedding_dim=32,
|
|
257
|
+
)
|
|
258
|
+
return [node]
|
|
259
|
+
|
|
260
|
+
def paged_attn(
|
|
261
|
+
self,
|
|
262
|
+
inputs: list[str],
|
|
263
|
+
outputs: list[str],
|
|
264
|
+
prefix: str = "",
|
|
265
|
+
num_heads=32,
|
|
266
|
+
head_size=80,
|
|
267
|
+
scale=0.11180339753627777,
|
|
268
|
+
):
|
|
269
|
+
assert len(inputs) == 6
|
|
270
|
+
assert len(outputs) == 1
|
|
271
|
+
node = helper.make_node(
|
|
272
|
+
"PagedAttention",
|
|
273
|
+
inputs=inputs,
|
|
274
|
+
outputs=outputs,
|
|
275
|
+
name=prefix + "PagedAttention",
|
|
276
|
+
domain="vllm.ort.ext",
|
|
277
|
+
num_heads=num_heads,
|
|
278
|
+
num_kv_heads=num_heads,
|
|
279
|
+
head_size=head_size,
|
|
280
|
+
scale=scale,
|
|
281
|
+
)
|
|
282
|
+
return [node]
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
class Phi2PreProcessor(DynamoOnnxHelper):
|
|
286
|
+
def __init__(self, model: ModelProto, num_heads: int, hidden_size: int):
|
|
287
|
+
super().__init__(model)
|
|
288
|
+
self.num_hidden_layers = 32
|
|
289
|
+
self.num_attention_heads = num_heads
|
|
290
|
+
self.hidden_size = hidden_size
|
|
291
|
+
|
|
292
|
+
self.func_name = "modeling_phi_PhiModel_model_1"
|
|
293
|
+
|
|
294
|
+
def get_phi2_edge_dict(self) -> dict:
|
|
295
|
+
edge_dict = {}
|
|
296
|
+
edge_dict["lm_head_1"] = "logits"
|
|
297
|
+
edge_dict["l_input_ids_"] = "input_ids"
|
|
298
|
+
edge_dict["key_states"] = "past_key_0"
|
|
299
|
+
edge_dict["value_states"] = "past_value_0"
|
|
300
|
+
for i in range(1, self.num_hidden_layers, 1):
|
|
301
|
+
edge_dict[f"key_states_{i}"] = f"past_key_{i}"
|
|
302
|
+
edge_dict[f"value_states_{i}"] = f"past_value_{i}"
|
|
303
|
+
edge_dict[f"model_layers_{i}_1"] = f"present_key_{i}"
|
|
304
|
+
edge_dict[f"model_layers_{i}_1_1"] = f"present_value_{i}"
|
|
305
|
+
|
|
306
|
+
outputs = [o.name for o in self.model.graph.output]
|
|
307
|
+
if "model_layers_0_1_1" in outputs and "model_layers_0_1_2" in outputs:
|
|
308
|
+
edge_dict["model_layers_0_1_1"] = "present_key_0"
|
|
309
|
+
edge_dict["model_layers_0_1_2"] = "present_value_0"
|
|
310
|
+
else:
|
|
311
|
+
assert "model_layers_0_1" in outputs and "model_layers_0_1_1" in outputs
|
|
312
|
+
edge_dict["model_layers_0_1"] = "present_key_0"
|
|
313
|
+
edge_dict["model_layers_0_1_1"] = "present_value_0"
|
|
314
|
+
return edge_dict
|
|
315
|
+
|
|
316
|
+
def simplify_phi2_op_type(self):
|
|
317
|
+
phi2_transformer_layer_name = "modeling_phi_PhiDecoderLayer_model_layers"
|
|
318
|
+
for node in self.model.graph.node:
|
|
319
|
+
index = node.op_type.find(phi2_transformer_layer_name)
|
|
320
|
+
if index != -1:
|
|
321
|
+
node.op_type = node.op_type[index:]
|
|
322
|
+
|
|
323
|
+
def process_graph_io(self, attn_op_type: AttentionOpType):
|
|
324
|
+
self.use_attn = attn_op_type == AttentionOpType.Attention
|
|
325
|
+
self.use_vllm = attn_op_type == AttentionOpType.PagedAttention
|
|
326
|
+
graph = self.model.graph
|
|
327
|
+
new_inputs = []
|
|
328
|
+
for vi in graph.input:
|
|
329
|
+
if "input_ids" in vi.name:
|
|
330
|
+
vi_iid = helper.make_tensor_value_info(
|
|
331
|
+
vi.name,
|
|
332
|
+
elem_type=TensorProto.INT32 if not self.use_vllm else TensorProto.INT64,
|
|
333
|
+
shape=["batch_size", "seq_len"],
|
|
334
|
+
)
|
|
335
|
+
vi_step = helper.make_tensor_value_info(
|
|
336
|
+
"step",
|
|
337
|
+
elem_type=TensorProto.INT64,
|
|
338
|
+
shape=[1],
|
|
339
|
+
)
|
|
340
|
+
vi_pid = helper.make_tensor_value_info(
|
|
341
|
+
"position_ids",
|
|
342
|
+
elem_type=TensorProto.INT64,
|
|
343
|
+
shape=["batch_size", "seq_len"],
|
|
344
|
+
)
|
|
345
|
+
vi_mask = helper.make_tensor_value_info(
|
|
346
|
+
"attention_mask",
|
|
347
|
+
elem_type=TensorProto.INT32,
|
|
348
|
+
shape=["batch_size", "seq_len"],
|
|
349
|
+
)
|
|
350
|
+
vi_meta = helper.make_tensor_value_info(
|
|
351
|
+
"input_metadata",
|
|
352
|
+
elem_type=TensorProto.INT64,
|
|
353
|
+
shape=[1],
|
|
354
|
+
)
|
|
355
|
+
(
|
|
356
|
+
new_inputs.extend([vi_iid, vi_step, vi_mask])
|
|
357
|
+
if not self.use_vllm
|
|
358
|
+
else new_inputs.extend([vi_iid, vi_pid, vi_meta])
|
|
359
|
+
)
|
|
360
|
+
if self.use_attn:
|
|
361
|
+
if "past_key" in vi.name:
|
|
362
|
+
vi_cache = helper.make_tensor_value_info(
|
|
363
|
+
vi.name.replace("past_key", "past"),
|
|
364
|
+
elem_type=vi.type.tensor_type.elem_type,
|
|
365
|
+
shape=[
|
|
366
|
+
2,
|
|
367
|
+
"batch_size",
|
|
368
|
+
self.num_attention_heads,
|
|
369
|
+
"past_seq_len",
|
|
370
|
+
self.hidden_size // self.num_attention_heads,
|
|
371
|
+
],
|
|
372
|
+
)
|
|
373
|
+
new_inputs.extend([vi_cache])
|
|
374
|
+
elif self.use_vllm:
|
|
375
|
+
if "past_key" in vi.name:
|
|
376
|
+
vi_cache = helper.make_tensor_value_info(
|
|
377
|
+
vi.name,
|
|
378
|
+
elem_type=vi.type.tensor_type.elem_type,
|
|
379
|
+
shape=["num_blocks", "num_heads", "head_size_x", "block_size", "block_x"],
|
|
380
|
+
)
|
|
381
|
+
new_inputs.extend([vi_cache])
|
|
382
|
+
if "past_value" in vi.name:
|
|
383
|
+
vi_cache = helper.make_tensor_value_info(
|
|
384
|
+
vi.name,
|
|
385
|
+
elem_type=vi.type.tensor_type.elem_type,
|
|
386
|
+
shape=[
|
|
387
|
+
"num_blocks",
|
|
388
|
+
"num_heads",
|
|
389
|
+
"head_size",
|
|
390
|
+
"block_size",
|
|
391
|
+
],
|
|
392
|
+
)
|
|
393
|
+
new_inputs.extend([vi_cache])
|
|
394
|
+
else:
|
|
395
|
+
if "past_key" in vi.name or "past_value" in vi.name:
|
|
396
|
+
vi_cache = helper.make_tensor_value_info(
|
|
397
|
+
vi.name,
|
|
398
|
+
elem_type=vi.type.tensor_type.elem_type,
|
|
399
|
+
shape=[
|
|
400
|
+
"batch_size",
|
|
401
|
+
self.num_attention_heads,
|
|
402
|
+
"past_seq_len",
|
|
403
|
+
self.hidden_size // self.num_attention_heads,
|
|
404
|
+
],
|
|
405
|
+
)
|
|
406
|
+
new_inputs.extend([vi_cache])
|
|
407
|
+
|
|
408
|
+
graph.ClearField("input")
|
|
409
|
+
graph.input.extend(new_inputs)
|
|
410
|
+
|
|
411
|
+
new_outputs = []
|
|
412
|
+
for i, vi in enumerate(graph.output):
|
|
413
|
+
if i == 0:
|
|
414
|
+
new_outputs.extend([vi])
|
|
415
|
+
else:
|
|
416
|
+
if self.use_attn:
|
|
417
|
+
if "present_key" in vi.name:
|
|
418
|
+
vi_cache = helper.make_tensor_value_info(
|
|
419
|
+
vi.name.replace("present_key", "present"),
|
|
420
|
+
elem_type=vi.type.tensor_type.elem_type,
|
|
421
|
+
shape=[
|
|
422
|
+
2,
|
|
423
|
+
"batch_size",
|
|
424
|
+
self.num_attention_heads,
|
|
425
|
+
"total_seq_len",
|
|
426
|
+
self.hidden_size // self.num_attention_heads,
|
|
427
|
+
],
|
|
428
|
+
)
|
|
429
|
+
new_outputs.extend([vi_cache])
|
|
430
|
+
elif self.use_vllm:
|
|
431
|
+
pass
|
|
432
|
+
else:
|
|
433
|
+
vi_cache = helper.make_tensor_value_info(
|
|
434
|
+
vi.name,
|
|
435
|
+
elem_type=vi.type.tensor_type.elem_type,
|
|
436
|
+
shape=[
|
|
437
|
+
"batch_size",
|
|
438
|
+
self.num_attention_heads,
|
|
439
|
+
"total_seq_len",
|
|
440
|
+
self.hidden_size // self.num_attention_heads,
|
|
441
|
+
],
|
|
442
|
+
)
|
|
443
|
+
new_outputs.extend([vi_cache])
|
|
444
|
+
|
|
445
|
+
graph.ClearField("output")
|
|
446
|
+
graph.output.extend(new_outputs)
|
|
447
|
+
|
|
448
|
+
def preprocess_onnx(self, attn_op_type: AttentionOpType):
|
|
449
|
+
function_name = None
|
|
450
|
+
for func in self.model.functions:
|
|
451
|
+
if func.name.endswith(self.func_name):
|
|
452
|
+
function_name = func.name
|
|
453
|
+
break
|
|
454
|
+
assert function_name is not None
|
|
455
|
+
self.unroll_function(function_name)
|
|
456
|
+
self.update_edges(self.get_phi2_edge_dict())
|
|
457
|
+
self.simplify_phi2_op_type()
|
|
458
|
+
self.remove_dropout_layer()
|
|
459
|
+
if attn_op_type == AttentionOpType.PagedAttention:
|
|
460
|
+
self.remove_lm_head_layer()
|
|
461
|
+
self.process_graph_io(attn_op_type)
|
|
462
|
+
|
|
463
|
+
|
|
464
|
+
class FissionTransformerEmbeddingPhi(Fission):
|
|
465
|
+
def __init__(
|
|
466
|
+
self,
|
|
467
|
+
model: OnnxModel,
|
|
468
|
+
):
|
|
469
|
+
super().__init__(model, ["torch_nn_modules_sparse_Embedding_model_embed_tokens_1"])
|
|
470
|
+
|
|
471
|
+
def fuse(self, node, input_name_to_nodes, output_name_to_node):
|
|
472
|
+
logger.info("Optimizing %s...", node.name)
|
|
473
|
+
|
|
474
|
+
assert len(node.input) == 2
|
|
475
|
+
assert len(node.output) == 1
|
|
476
|
+
|
|
477
|
+
input = node.input[0]
|
|
478
|
+
output = node.output[0]
|
|
479
|
+
|
|
480
|
+
embedding = self.get_input_by_name(node, "embed_tokens.weight")
|
|
481
|
+
|
|
482
|
+
layer_known_edges_names = [input, output, embedding]
|
|
483
|
+
|
|
484
|
+
subgraph_nodes = [
|
|
485
|
+
helper.make_node(
|
|
486
|
+
"Gather",
|
|
487
|
+
inputs=[embedding, input],
|
|
488
|
+
outputs=[output],
|
|
489
|
+
name="Embedding_Gather",
|
|
490
|
+
),
|
|
491
|
+
]
|
|
492
|
+
|
|
493
|
+
self.set_unique_name_and_add_nodes(subgraph_nodes, 0, layer_known_edges_names)
|
|
494
|
+
self.nodes_to_remove.append(node)
|
|
495
|
+
self.prune_graph = True
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+
class FissionTransformerLayerNormPhi(Fission):
|
|
499
|
+
def __init__(
|
|
500
|
+
self,
|
|
501
|
+
model: OnnxModel,
|
|
502
|
+
):
|
|
503
|
+
super().__init__(model, ["torch_nn_modules_normalization_LayerNorm_model_final_layernorm_1"])
|
|
504
|
+
|
|
505
|
+
def fuse(self, node, input_name_to_nodes, output_name_to_node):
|
|
506
|
+
logger.info("Optimizing %s...", node.name)
|
|
507
|
+
|
|
508
|
+
assert len(node.input) == 3
|
|
509
|
+
assert len(node.output) == 1
|
|
510
|
+
|
|
511
|
+
input = node.input[0]
|
|
512
|
+
output = node.output[0]
|
|
513
|
+
|
|
514
|
+
ln_weight = self.get_input_by_name(node, "final_layernorm.weight")
|
|
515
|
+
ln_bias = self.get_input_by_name(node, "final_layernorm.bias")
|
|
516
|
+
|
|
517
|
+
layer_known_edges_names = [input, output, ln_weight, ln_bias]
|
|
518
|
+
|
|
519
|
+
subgraph_nodes = []
|
|
520
|
+
subgraph_nodes.extend(self.layernorm([input, ln_weight, ln_bias], [output], "Final"))
|
|
521
|
+
|
|
522
|
+
self.set_unique_name_and_add_nodes(subgraph_nodes, 99, layer_known_edges_names)
|
|
523
|
+
|
|
524
|
+
self.replace_fp32_value_info(input, ["batch_size", "seq_len", "hidden_size"])
|
|
525
|
+
self.replace_fp32_value_info(output, ["batch_size", "seq_len", "hidden_size"])
|
|
526
|
+
|
|
527
|
+
self.nodes_to_remove.append(node)
|
|
528
|
+
self.prune_graph = True
|
|
529
|
+
|
|
530
|
+
|
|
531
|
+
class FissionTransformerCausalLMHeadPhi(Fission):
|
|
532
|
+
def __init__(
|
|
533
|
+
self,
|
|
534
|
+
model: OnnxModel,
|
|
535
|
+
):
|
|
536
|
+
super().__init__(model, ["torch_nn_modules_linear_Linear_lm_head_1"])
|
|
537
|
+
|
|
538
|
+
def fuse(self, node, input_name_to_nodes, output_name_to_node):
|
|
539
|
+
logger.info("Optimizing %s...", node.name)
|
|
540
|
+
|
|
541
|
+
assert len(node.input) == 5
|
|
542
|
+
assert len(node.output) == 1
|
|
543
|
+
|
|
544
|
+
input = node.input[2]
|
|
545
|
+
output = node.output[0]
|
|
546
|
+
|
|
547
|
+
fc_weight = self.process_initializer(self.get_input_by_name(node, "lm_head.weight"), ProcessGemmWFunc())
|
|
548
|
+
fc_bias = self.get_input_by_name(node, "lm_head.bias")
|
|
549
|
+
|
|
550
|
+
layer_known_edges_names = [input, output, fc_weight, fc_bias]
|
|
551
|
+
|
|
552
|
+
subgraph_nodes = []
|
|
553
|
+
subgraph_nodes.extend(self.gemm([input, fc_weight, fc_bias], [output], "LMHead_"))
|
|
554
|
+
|
|
555
|
+
self.set_unique_name_and_add_nodes(subgraph_nodes, 99, layer_known_edges_names)
|
|
556
|
+
|
|
557
|
+
self.replace_fp32_value_info(input, ["batch_size", "seq_len", "hidden_size"])
|
|
558
|
+
self.replace_fp32_value_info(output, ["batch_size", "seq_len", 51200])
|
|
559
|
+
|
|
560
|
+
self.nodes_to_remove.append(node)
|
|
561
|
+
self.prune_graph = True
|
|
562
|
+
|
|
563
|
+
|
|
564
|
+
class FissionTransformerBlockPhi(Fission):
|
|
565
|
+
def __init__(
|
|
566
|
+
self,
|
|
567
|
+
model: OnnxModel,
|
|
568
|
+
num_heads: int,
|
|
569
|
+
):
|
|
570
|
+
self.num_heads = num_heads
|
|
571
|
+
max_num_layers = 32
|
|
572
|
+
self.func_to_layer_id = {}
|
|
573
|
+
nodes_to_find = []
|
|
574
|
+
for layer in range(max_num_layers):
|
|
575
|
+
func_name = f"modeling_phi_PhiDecoderLayer_model_layers_{layer}_1"
|
|
576
|
+
nodes_to_find.append(func_name)
|
|
577
|
+
self.func_to_layer_id[func_name] = layer
|
|
578
|
+
|
|
579
|
+
super().__init__(model, nodes_to_find)
|
|
580
|
+
|
|
581
|
+
def get_layer_id(self, node):
|
|
582
|
+
return self.func_to_layer_id[node.op_type]
|
|
583
|
+
|
|
584
|
+
def get_gqa_aux_nodes(self):
|
|
585
|
+
gqa_aux_nodes = [
|
|
586
|
+
helper.make_node(
|
|
587
|
+
"Cast",
|
|
588
|
+
inputs=["attention_mask"],
|
|
589
|
+
outputs=["mask_int64"],
|
|
590
|
+
name="Cast_gqa_aux_0",
|
|
591
|
+
to=TensorProto.INT64,
|
|
592
|
+
),
|
|
593
|
+
helper.make_node(
|
|
594
|
+
"ReduceSum",
|
|
595
|
+
inputs=["mask_int64", "one"],
|
|
596
|
+
outputs=["mask_row_sums"],
|
|
597
|
+
name="ReduceSum_gqa_aux",
|
|
598
|
+
),
|
|
599
|
+
helper.make_node(
|
|
600
|
+
"Sub",
|
|
601
|
+
inputs=["mask_row_sums", "one"],
|
|
602
|
+
outputs=["seqlens_k_int64"],
|
|
603
|
+
name="Sub_gqa_aux",
|
|
604
|
+
),
|
|
605
|
+
helper.make_node(
|
|
606
|
+
"Cast",
|
|
607
|
+
inputs=["seqlens_k_int64"],
|
|
608
|
+
outputs=["seqlens_k"],
|
|
609
|
+
name="Cast_gqa_aux_1",
|
|
610
|
+
to=TensorProto.INT32,
|
|
611
|
+
),
|
|
612
|
+
helper.make_node("Shape", inputs=["mask_int64"], outputs=["mask_shape"], name="Shape_gqa_aux_0"),
|
|
613
|
+
helper.make_node(
|
|
614
|
+
"Gather",
|
|
615
|
+
inputs=["mask_shape", "one"],
|
|
616
|
+
outputs=["total_seq_len_int64"],
|
|
617
|
+
name="Gather_gqa_aux_0",
|
|
618
|
+
axis=0,
|
|
619
|
+
),
|
|
620
|
+
helper.make_node(
|
|
621
|
+
"Cast",
|
|
622
|
+
inputs=["total_seq_len_int64"],
|
|
623
|
+
outputs=["total_sequence_length"],
|
|
624
|
+
name="Cast_gqa_aux_2",
|
|
625
|
+
to=TensorProto.INT32,
|
|
626
|
+
),
|
|
627
|
+
]
|
|
628
|
+
return gqa_aux_nodes
|
|
629
|
+
|
|
630
|
+
def pack_qkv_gemm(self, q_w, k_w, v_w, q_b, k_b, v_b, weight_name, bias_name):
|
|
631
|
+
q_weight = self.model.get_initializer(q_w)
|
|
632
|
+
k_weight = self.model.get_initializer(k_w)
|
|
633
|
+
v_weight = self.model.get_initializer(v_w)
|
|
634
|
+
qw = np.transpose(NumpyHelper.to_array(q_weight), (1, 0))
|
|
635
|
+
kw = np.transpose(NumpyHelper.to_array(k_weight), (1, 0))
|
|
636
|
+
vw = np.transpose(NumpyHelper.to_array(v_weight), (1, 0))
|
|
637
|
+
qkv_weight = np.stack((qw, kw, vw), axis=1)
|
|
638
|
+
|
|
639
|
+
q_bias = self.model.get_initializer(q_b)
|
|
640
|
+
k_bias = self.model.get_initializer(k_b)
|
|
641
|
+
v_bias = self.model.get_initializer(v_b)
|
|
642
|
+
qb = NumpyHelper.to_array(q_bias)
|
|
643
|
+
kb = NumpyHelper.to_array(k_bias)
|
|
644
|
+
vb = NumpyHelper.to_array(v_bias)
|
|
645
|
+
qkv_bias = np.stack((qb, kb, vb), axis=0)
|
|
646
|
+
|
|
647
|
+
hidden_size = qkv_weight.shape[0]
|
|
648
|
+
|
|
649
|
+
weight = helper.make_tensor(
|
|
650
|
+
weight_name,
|
|
651
|
+
data_type=TensorProto.FLOAT,
|
|
652
|
+
dims=[hidden_size, hidden_size * 3],
|
|
653
|
+
vals=qkv_weight.flatten().tobytes(),
|
|
654
|
+
raw=True,
|
|
655
|
+
)
|
|
656
|
+
self.model.add_initializer(weight, self.this_graph_name)
|
|
657
|
+
|
|
658
|
+
bias = helper.make_tensor(
|
|
659
|
+
bias_name,
|
|
660
|
+
data_type=TensorProto.FLOAT,
|
|
661
|
+
dims=[hidden_size * 3],
|
|
662
|
+
vals=qkv_bias.flatten().tobytes(),
|
|
663
|
+
raw=True,
|
|
664
|
+
)
|
|
665
|
+
self.model.add_initializer(bias, self.this_graph_name)
|
|
666
|
+
|
|
667
|
+
self.add_fp32_value_info(weight.name)
|
|
668
|
+
self.add_fp32_value_info(bias.name)
|
|
669
|
+
|
|
670
|
+
return weight_name, bias_name
|
|
671
|
+
|
|
672
|
+
def fuse(
|
|
673
|
+
self,
|
|
674
|
+
node,
|
|
675
|
+
input_name_to_nodes,
|
|
676
|
+
output_name_to_node,
|
|
677
|
+
):
|
|
678
|
+
logger.info("Optimizing %s...", node.name)
|
|
679
|
+
|
|
680
|
+
logger.info(f"AttentionOpType: {self.attn_op_type}")
|
|
681
|
+
|
|
682
|
+
layer_id = self.get_layer_id(node)
|
|
683
|
+
|
|
684
|
+
i_hidden_states = node.input[0]
|
|
685
|
+
i_key_cache = self.get_input_by_name(node, "past_key")
|
|
686
|
+
i_value_cache = self.get_input_by_name(node, "past_value")
|
|
687
|
+
|
|
688
|
+
o_hidden_states = node.output[-1]
|
|
689
|
+
o_key_cache = self.get_output_by_name(node, "present_key")
|
|
690
|
+
o_value_cache = self.get_output_by_name(node, "present_value")
|
|
691
|
+
|
|
692
|
+
ln_weight = self.get_input_by_name(node, "input_layernorm.weight")
|
|
693
|
+
ln_bias = self.get_input_by_name(node, "input_layernorm.bias")
|
|
694
|
+
|
|
695
|
+
attn_q_weight, attn_q_bias, attn_k_weight, attn_k_bias, attn_v_weight, attn_v_bias = (
|
|
696
|
+
None,
|
|
697
|
+
None,
|
|
698
|
+
None,
|
|
699
|
+
None,
|
|
700
|
+
None,
|
|
701
|
+
None,
|
|
702
|
+
)
|
|
703
|
+
attn_qkv_weight, attn_qkv_bias = None, None
|
|
704
|
+
cos_cache, sin_cache = None, None
|
|
705
|
+
|
|
706
|
+
if self.attn_op_type != AttentionOpType.Attention:
|
|
707
|
+
attn_q_weight = self.process_initializer(
|
|
708
|
+
self.get_input_by_name(node, "self_attn.q_proj.weight"), ProcessGemmWFunc()
|
|
709
|
+
)
|
|
710
|
+
attn_k_weight = self.process_initializer(
|
|
711
|
+
self.get_input_by_name(node, "self_attn.k_proj.weight"), ProcessGemmWFunc()
|
|
712
|
+
)
|
|
713
|
+
attn_v_weight = self.process_initializer(
|
|
714
|
+
self.get_input_by_name(node, "self_attn.v_proj.weight"), ProcessGemmWFunc()
|
|
715
|
+
)
|
|
716
|
+
attn_q_bias = self.get_input_by_name(node, "self_attn.q_proj.bias")
|
|
717
|
+
attn_k_bias = self.get_input_by_name(node, "self_attn.k_proj.bias")
|
|
718
|
+
attn_v_bias = self.get_input_by_name(node, "self_attn.v_proj.bias")
|
|
719
|
+
|
|
720
|
+
cos_cache = self.process_initializer(
|
|
721
|
+
self.get_input_by_name(node, "rotary_emb.cos_cached"), ProcessRotCacheFunc()
|
|
722
|
+
)
|
|
723
|
+
sin_cache = self.process_initializer(
|
|
724
|
+
self.get_input_by_name(node, "rotary_emb.sin_cached"), ProcessRotCacheFunc()
|
|
725
|
+
)
|
|
726
|
+
else:
|
|
727
|
+
attn_qkv_weight, attn_qkv_bias = self.pack_qkv_gemm(
|
|
728
|
+
self.get_input_by_name(node, "self_attn.q_proj.weight"),
|
|
729
|
+
self.get_input_by_name(node, "self_attn.k_proj.weight"),
|
|
730
|
+
self.get_input_by_name(node, "self_attn.v_proj.weight"),
|
|
731
|
+
self.get_input_by_name(node, "self_attn.q_proj.bias"),
|
|
732
|
+
self.get_input_by_name(node, "self_attn.k_proj.bias"),
|
|
733
|
+
self.get_input_by_name(node, "self_attn.v_proj.bias"),
|
|
734
|
+
self.get_uname(layer_id, "attn_qkv_weight"),
|
|
735
|
+
self.get_uname(layer_id, "attn_qkv_bias"),
|
|
736
|
+
)
|
|
737
|
+
|
|
738
|
+
attn_out_weight = self.process_initializer(
|
|
739
|
+
self.get_input_by_name(node, "self_attn.dense.weight"), ProcessGemmWFunc()
|
|
740
|
+
)
|
|
741
|
+
attn_out_bias = self.get_input_by_name(node, "self_attn.dense.bias")
|
|
742
|
+
|
|
743
|
+
mlp_fc1_weight = self.process_initializer(self.get_input_by_name(node, "mlp.fc1.weight"), ProcessGemmWFunc())
|
|
744
|
+
mlp_fc2_weight = self.process_initializer(self.get_input_by_name(node, "mlp.fc2.weight"), ProcessGemmWFunc())
|
|
745
|
+
mlp_fc1_bias = self.get_input_by_name(node, "mlp.fc1.bias")
|
|
746
|
+
mlp_fc2_bias = self.get_input_by_name(node, "mlp.fc2.bias")
|
|
747
|
+
|
|
748
|
+
layer_known_edges_names = []
|
|
749
|
+
layer_known_edges_names.extend([i_hidden_states, i_key_cache, i_value_cache])
|
|
750
|
+
layer_known_edges_names.extend([o_hidden_states, o_key_cache, o_value_cache])
|
|
751
|
+
layer_known_edges_names.extend([ln_weight, ln_bias])
|
|
752
|
+
if self.attn_op_type != AttentionOpType.Attention:
|
|
753
|
+
layer_known_edges_names.extend(
|
|
754
|
+
[
|
|
755
|
+
attn_q_weight,
|
|
756
|
+
attn_q_bias,
|
|
757
|
+
attn_k_weight,
|
|
758
|
+
attn_k_bias,
|
|
759
|
+
attn_v_weight,
|
|
760
|
+
attn_v_bias,
|
|
761
|
+
cos_cache,
|
|
762
|
+
sin_cache,
|
|
763
|
+
]
|
|
764
|
+
)
|
|
765
|
+
else:
|
|
766
|
+
layer_known_edges_names.extend([attn_qkv_weight, attn_qkv_bias])
|
|
767
|
+
layer_known_edges_names.extend(
|
|
768
|
+
[attn_out_weight, attn_out_bias, mlp_fc1_weight, mlp_fc1_bias, mlp_fc2_weight, mlp_fc2_bias]
|
|
769
|
+
)
|
|
770
|
+
layer_known_edges_names.extend(
|
|
771
|
+
["attention_mask", "step", "seqlens_k", "total_sequence_length", "input_metadata", "position_ids"]
|
|
772
|
+
)
|
|
773
|
+
|
|
774
|
+
subgraph_nodes = []
|
|
775
|
+
subgraph_nodes.extend(self.layernorm([i_hidden_states, ln_weight, ln_bias], ["ln_out"]))
|
|
776
|
+
subgraph_nodes.extend(self.gemm(["attn_out", attn_out_weight, attn_out_bias], ["attn_add_out"], "OutProj_"))
|
|
777
|
+
subgraph_nodes.extend(self.gemm(["ln_out", mlp_fc1_weight, mlp_fc1_bias], ["fc1_out"], "FC1_"))
|
|
778
|
+
subgraph_nodes.extend(self.fastgelu(["fc1_out"], ["gelu_out"]))
|
|
779
|
+
subgraph_nodes.extend(self.gemm(["gelu_out", mlp_fc2_weight, mlp_fc2_bias], ["fc2_out"], "FC2_"))
|
|
780
|
+
subgraph_nodes.extend(self.add(["attn_add_out", "fc2_out"], ["residual_1_out"], "Residual_1"))
|
|
781
|
+
subgraph_nodes.extend(self.add([i_hidden_states, "residual_1_out"], [o_hidden_states], "Residual_2"))
|
|
782
|
+
if self.attn_op_type != AttentionOpType.Attention:
|
|
783
|
+
subgraph_nodes.extend(self.gemm(["ln_out", attn_q_weight, attn_q_bias], ["query"], "Q_"))
|
|
784
|
+
subgraph_nodes.extend(self.gemm(["ln_out", attn_k_weight, attn_k_bias], ["key"], "K_"))
|
|
785
|
+
subgraph_nodes.extend(self.gemm(["ln_out", attn_v_weight, attn_v_bias], ["value"], "V_"))
|
|
786
|
+
# vllm engine requires full position ids as the input
|
|
787
|
+
pos_ids_name = "position_ids" if self.attn_op_type == AttentionOpType.PagedAttention else "step"
|
|
788
|
+
subgraph_nodes.extend(self.rotary(["query", pos_ids_name, cos_cache, sin_cache], ["query_rot"], "Q_"))
|
|
789
|
+
subgraph_nodes.extend(self.rotary(["key", pos_ids_name, cos_cache, sin_cache], ["key_rot"], "K_"))
|
|
790
|
+
if self.attn_op_type == AttentionOpType.MultiHeadAttention:
|
|
791
|
+
subgraph_nodes.extend(
|
|
792
|
+
self.mha(
|
|
793
|
+
["query_rot", "key_rot", "value", "", "attention_mask", "", i_key_cache, i_value_cache],
|
|
794
|
+
["attn_out", o_key_cache, o_value_cache],
|
|
795
|
+
)
|
|
796
|
+
)
|
|
797
|
+
elif self.attn_op_type == AttentionOpType.GroupQueryAttention:
|
|
798
|
+
subgraph_nodes.extend(
|
|
799
|
+
self.gqa(
|
|
800
|
+
[
|
|
801
|
+
"query_rot",
|
|
802
|
+
"key_rot",
|
|
803
|
+
"value",
|
|
804
|
+
i_key_cache,
|
|
805
|
+
i_value_cache,
|
|
806
|
+
"seqlens_k",
|
|
807
|
+
"total_sequence_length",
|
|
808
|
+
],
|
|
809
|
+
["attn_out", o_key_cache, o_value_cache],
|
|
810
|
+
)
|
|
811
|
+
)
|
|
812
|
+
if layer_id == 0:
|
|
813
|
+
gqa_aux_nodes = self.get_gqa_aux_nodes()
|
|
814
|
+
for new_node in gqa_aux_nodes:
|
|
815
|
+
self.nodes_to_add.append(new_node)
|
|
816
|
+
self.node_name_to_graph_name[new_node.name] = self.this_graph_name
|
|
817
|
+
self.model.add_initializer(
|
|
818
|
+
numpy_helper.from_array(np.array([1], dtype="int64"), name="one"), self.this_graph_name
|
|
819
|
+
)
|
|
820
|
+
elif self.attn_op_type == AttentionOpType.PagedAttention:
|
|
821
|
+
subgraph_nodes.extend(
|
|
822
|
+
self.paged_attn(
|
|
823
|
+
["query_rot", "key_rot", "value", i_key_cache, i_value_cache, "input_metadata"],
|
|
824
|
+
["attn_out"],
|
|
825
|
+
)
|
|
826
|
+
)
|
|
827
|
+
else:
|
|
828
|
+
past_name = f"past_{layer_id}"
|
|
829
|
+
present_name = f"present_{layer_id}"
|
|
830
|
+
layer_known_edges_names.extend([past_name, present_name])
|
|
831
|
+
subgraph_nodes.extend(
|
|
832
|
+
self.attention(
|
|
833
|
+
["ln_out", attn_qkv_weight, attn_qkv_bias, "attention_mask", past_name], ["attn_out", present_name]
|
|
834
|
+
)
|
|
835
|
+
)
|
|
836
|
+
|
|
837
|
+
self.set_unique_name_and_add_nodes(subgraph_nodes, layer_id, layer_known_edges_names)
|
|
838
|
+
|
|
839
|
+
self.replace_fp32_value_info(i_hidden_states, ["batch_size", "seq_len", "hidden_size"])
|
|
840
|
+
self.replace_fp32_value_info(o_hidden_states, ["batch_size", "seq_len", "hidden_size"])
|
|
841
|
+
|
|
842
|
+
self.nodes_to_remove.append(node)
|
|
843
|
+
self.prune_graph = True
|
|
844
|
+
|
|
845
|
+
|
|
846
|
+
class PhiOnnxModel(OnnxModel):
|
|
847
|
+
def __init__(self, model: ModelProto, num_heads: int, hidden_size: int):
|
|
848
|
+
super().__init__(model)
|
|
849
|
+
self.phi2_preprocessor = Phi2PreProcessor(self.model, num_heads, hidden_size)
|
|
850
|
+
self.fission_transformer_block = FissionTransformerBlockPhi(self, num_heads)
|
|
851
|
+
self.fission_causal_lm_head = FissionTransformerCausalLMHeadPhi(self)
|
|
852
|
+
self.fission_transformer_layernorm = FissionTransformerLayerNormPhi(self)
|
|
853
|
+
self.fission_transformer_embedding = FissionTransformerEmbeddingPhi(self)
|
|
854
|
+
|
|
855
|
+
def optimize(self, options: FusionOptions | None = None, add_dynamic_axes: bool = False):
|
|
856
|
+
assert options is not None
|
|
857
|
+
attn_op_type = options.attention_op_type
|
|
858
|
+
|
|
859
|
+
self.fission_transformer_block.set_attention_op_type(attn_op_type)
|
|
860
|
+
|
|
861
|
+
self.phi2_preprocessor.preprocess_onnx(attn_op_type)
|
|
862
|
+
|
|
863
|
+
self.fission_transformer_block.apply()
|
|
864
|
+
self.fission_transformer_layernorm.apply()
|
|
865
|
+
self.fission_causal_lm_head.apply()
|
|
866
|
+
self.fission_transformer_embedding.apply()
|
|
867
|
+
|
|
868
|
+
super().prune_graph()
|
|
869
|
+
|
|
870
|
+
# SLN ctor is placed here intentionally to delay the symbolic shape inference
|
|
871
|
+
self.fuse_sln = FusionSkipLayerNormalization(self)
|
|
872
|
+
self.fuse_bias_sln = FusionBiasSkipLayerNormalization(self)
|
|
873
|
+
self.fuse_sln.apply()
|
|
874
|
+
self.fuse_bias_sln.apply()
|
|
875
|
+
|
|
876
|
+
def get_fused_operator_statistics(self):
|
|
877
|
+
"""
|
|
878
|
+
Returns node count of fused operators.
|
|
879
|
+
"""
|
|
880
|
+
op_count = {}
|
|
881
|
+
ops = [
|
|
882
|
+
"Attention",
|
|
883
|
+
"MultiHeadAttention",
|
|
884
|
+
"GroupQueryAttention",
|
|
885
|
+
"PagedAttention",
|
|
886
|
+
"Gelu",
|
|
887
|
+
"BiasGelu",
|
|
888
|
+
"FastGelu",
|
|
889
|
+
"LayerNormalization",
|
|
890
|
+
"SkipLayerNormalization",
|
|
891
|
+
]
|
|
892
|
+
for op in ops:
|
|
893
|
+
nodes = self.get_nodes_by_op_type(op)
|
|
894
|
+
op_count[op] = len(nodes)
|
|
895
|
+
|
|
896
|
+
logger.info(f"Optimized operators: {op_count}")
|
|
897
|
+
return op_count
|
|
898
|
+
|
|
899
|
+
def is_fully_optimized(self, fused_op_count=None):
|
|
900
|
+
"""
|
|
901
|
+
Returns True when the model is fully optimized.
|
|
902
|
+
"""
|
|
903
|
+
if fused_op_count is None:
|
|
904
|
+
fused_op_count = self.get_fused_operator_statistics()
|
|
905
|
+
|
|
906
|
+
def op_count(op_name: str):
|
|
907
|
+
return fused_op_count.get(op_name) or 0
|
|
908
|
+
|
|
909
|
+
attention = (
|
|
910
|
+
op_count("Attention")
|
|
911
|
+
+ op_count("MultiHeadAttention")
|
|
912
|
+
+ op_count("GroupQueryAttention")
|
|
913
|
+
+ op_count("PagedAttention")
|
|
914
|
+
)
|
|
915
|
+
gelu = op_count("Gelu") + op_count("BiasGelu") + op_count("FastGelu")
|
|
916
|
+
layer_norm = op_count("LayerNormalization") + op_count("SkipLayerNormalization")
|
|
917
|
+
|
|
918
|
+
is_perfect = (attention > 0) and (attention == gelu) and (layer_norm >= attention)
|
|
919
|
+
|
|
920
|
+
if layer_norm == 0:
|
|
921
|
+
logger.debug("Layer Normalization not fused")
|
|
922
|
+
|
|
923
|
+
if gelu == 0:
|
|
924
|
+
logger.debug("Gelu (or FastGelu) not fused")
|
|
925
|
+
|
|
926
|
+
if attention == 0:
|
|
927
|
+
logger.warning("Attention (or MultiHeadAttention) not fused")
|
|
928
|
+
|
|
929
|
+
return is_perfect
|