onnxruntime-directml 1.24.1__cp314-cp314-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (322) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6121 -0
  4. onnxruntime/__init__.py +418 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +175 -0
  7. onnxruntime/backend/backend_rep.py +52 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/build_and_package_info.py +2 -0
  13. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  14. onnxruntime/capi/onnxruntime.dll +0 -0
  15. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  16. onnxruntime/capi/onnxruntime_inference_collection.py +1440 -0
  17. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  18. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  19. onnxruntime/capi/onnxruntime_validation.py +154 -0
  20. onnxruntime/capi/version_info.py +2 -0
  21. onnxruntime/datasets/__init__.py +18 -0
  22. onnxruntime/datasets/logreg_iris.onnx +0 -0
  23. onnxruntime/datasets/mul_1.onnx +0 -0
  24. onnxruntime/datasets/sigmoid.onnx +13 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  27. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  28. onnxruntime/quantization/__init__.py +19 -0
  29. onnxruntime/quantization/base_quantizer.py +529 -0
  30. onnxruntime/quantization/calibrate.py +1267 -0
  31. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  32. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  33. onnxruntime/quantization/execution_providers/qnn/fusion_spacetodepth.py +162 -0
  34. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  35. onnxruntime/quantization/execution_providers/qnn/preprocess.py +353 -0
  36. onnxruntime/quantization/execution_providers/qnn/quant_config.py +389 -0
  37. onnxruntime/quantization/fusions/__init__.py +4 -0
  38. onnxruntime/quantization/fusions/fusion.py +311 -0
  39. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  40. onnxruntime/quantization/fusions/fusion_layernorm.py +146 -0
  41. onnxruntime/quantization/fusions/replace_upsample_with_resize.py +96 -0
  42. onnxruntime/quantization/matmul_bnb4_quantizer.py +239 -0
  43. onnxruntime/quantization/matmul_nbits_quantizer.py +1638 -0
  44. onnxruntime/quantization/neural_compressor/__init__.py +1 -0
  45. onnxruntime/quantization/neural_compressor/onnx_model.py +1251 -0
  46. onnxruntime/quantization/neural_compressor/util.py +80 -0
  47. onnxruntime/quantization/neural_compressor/weight_only.py +932 -0
  48. onnxruntime/quantization/onnx_model.py +600 -0
  49. onnxruntime/quantization/onnx_quantizer.py +1163 -0
  50. onnxruntime/quantization/operators/__init__.py +2 -0
  51. onnxruntime/quantization/operators/activation.py +119 -0
  52. onnxruntime/quantization/operators/argmax.py +18 -0
  53. onnxruntime/quantization/operators/attention.py +73 -0
  54. onnxruntime/quantization/operators/base_operator.py +26 -0
  55. onnxruntime/quantization/operators/binary_op.py +72 -0
  56. onnxruntime/quantization/operators/concat.py +62 -0
  57. onnxruntime/quantization/operators/conv.py +260 -0
  58. onnxruntime/quantization/operators/direct_q8.py +78 -0
  59. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  60. onnxruntime/quantization/operators/gather.py +64 -0
  61. onnxruntime/quantization/operators/gavgpool.py +62 -0
  62. onnxruntime/quantization/operators/gemm.py +172 -0
  63. onnxruntime/quantization/operators/lstm.py +121 -0
  64. onnxruntime/quantization/operators/matmul.py +231 -0
  65. onnxruntime/quantization/operators/maxpool.py +34 -0
  66. onnxruntime/quantization/operators/norm.py +40 -0
  67. onnxruntime/quantization/operators/pad.py +172 -0
  68. onnxruntime/quantization/operators/pooling.py +67 -0
  69. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  70. onnxruntime/quantization/operators/resize.py +34 -0
  71. onnxruntime/quantization/operators/softmax.py +74 -0
  72. onnxruntime/quantization/operators/split.py +63 -0
  73. onnxruntime/quantization/operators/where.py +87 -0
  74. onnxruntime/quantization/preprocess.py +141 -0
  75. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  76. onnxruntime/quantization/qdq_quantizer.py +1477 -0
  77. onnxruntime/quantization/quant_utils.py +1051 -0
  78. onnxruntime/quantization/quantize.py +953 -0
  79. onnxruntime/quantization/registry.py +110 -0
  80. onnxruntime/quantization/shape_inference.py +204 -0
  81. onnxruntime/quantization/static_quantize_runner.py +256 -0
  82. onnxruntime/quantization/tensor_quant_overrides.py +520 -0
  83. onnxruntime/tools/__init__.py +10 -0
  84. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  85. onnxruntime/tools/convert_onnx_models_to_ort.py +380 -0
  86. onnxruntime/tools/file_utils.py +47 -0
  87. onnxruntime/tools/logger.py +11 -0
  88. onnxruntime/tools/make_dynamic_shape_fixed.py +73 -0
  89. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  90. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +53 -0
  91. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  92. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  93. onnxruntime/tools/mobile_helpers/usability_checker.py +738 -0
  94. onnxruntime/tools/offline_tuning.py +169 -0
  95. onnxruntime/tools/onnx_model_utils.py +416 -0
  96. onnxruntime/tools/onnx_randomizer.py +85 -0
  97. onnxruntime/tools/onnxruntime_test.py +164 -0
  98. onnxruntime/tools/optimize_onnx_model.py +56 -0
  99. onnxruntime/tools/ort_format_model/__init__.py +27 -0
  100. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +653 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  140. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  141. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  142. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  143. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  144. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  145. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  146. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  147. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  148. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  149. onnxruntime/tools/ort_format_model/types.py +85 -0
  150. onnxruntime/tools/ort_format_model/utils.py +61 -0
  151. onnxruntime/tools/pytorch_export_contrib_ops.py +129 -0
  152. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  153. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  154. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  155. onnxruntime/tools/qnn/add_trans_cast.py +292 -0
  156. onnxruntime/tools/qnn/gen_qnn_ctx_onnx_model.py +364 -0
  157. onnxruntime/tools/qnn/preprocess.py +165 -0
  158. onnxruntime/tools/reduced_build_config_parser.py +203 -0
  159. onnxruntime/tools/remove_initializer_from_input.py +37 -0
  160. onnxruntime/tools/symbolic_shape_infer.py +3094 -0
  161. onnxruntime/tools/update_onnx_opset.py +31 -0
  162. onnxruntime/transformers/__init__.py +8 -0
  163. onnxruntime/transformers/affinity_helper.py +40 -0
  164. onnxruntime/transformers/benchmark.py +942 -0
  165. onnxruntime/transformers/benchmark_helper.py +643 -0
  166. onnxruntime/transformers/bert_perf_test.py +629 -0
  167. onnxruntime/transformers/bert_test_data.py +641 -0
  168. onnxruntime/transformers/compare_bert_results.py +256 -0
  169. onnxruntime/transformers/constants.py +47 -0
  170. onnxruntime/transformers/convert_generation.py +3605 -0
  171. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  172. onnxruntime/transformers/convert_to_packing_mode.py +385 -0
  173. onnxruntime/transformers/dynamo_onnx_helper.py +205 -0
  174. onnxruntime/transformers/float16.py +501 -0
  175. onnxruntime/transformers/fusion_attention.py +1189 -0
  176. onnxruntime/transformers/fusion_attention_clip.py +340 -0
  177. onnxruntime/transformers/fusion_attention_sam2.py +533 -0
  178. onnxruntime/transformers/fusion_attention_unet.py +1307 -0
  179. onnxruntime/transformers/fusion_attention_vae.py +300 -0
  180. onnxruntime/transformers/fusion_bart_attention.py +435 -0
  181. onnxruntime/transformers/fusion_base.py +141 -0
  182. onnxruntime/transformers/fusion_bias_add.py +57 -0
  183. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  184. onnxruntime/transformers/fusion_biassplitgelu.py +110 -0
  185. onnxruntime/transformers/fusion_conformer_attention.py +222 -0
  186. onnxruntime/transformers/fusion_constant_fold.py +144 -0
  187. onnxruntime/transformers/fusion_embedlayer.py +810 -0
  188. onnxruntime/transformers/fusion_fastgelu.py +492 -0
  189. onnxruntime/transformers/fusion_gelu.py +258 -0
  190. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  191. onnxruntime/transformers/fusion_gemmfastgelu.py +121 -0
  192. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  193. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  194. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  195. onnxruntime/transformers/fusion_group_norm.py +180 -0
  196. onnxruntime/transformers/fusion_layernorm.py +489 -0
  197. onnxruntime/transformers/fusion_mha_mmdit.py +667 -0
  198. onnxruntime/transformers/fusion_nhwc_conv.py +99 -0
  199. onnxruntime/transformers/fusion_options.py +340 -0
  200. onnxruntime/transformers/fusion_qordered_attention.py +420 -0
  201. onnxruntime/transformers/fusion_qordered_gelu.py +118 -0
  202. onnxruntime/transformers/fusion_qordered_layernorm.py +122 -0
  203. onnxruntime/transformers/fusion_qordered_matmul.py +216 -0
  204. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  205. onnxruntime/transformers/fusion_reshape.py +173 -0
  206. onnxruntime/transformers/fusion_rotary_attention.py +1591 -0
  207. onnxruntime/transformers/fusion_shape.py +109 -0
  208. onnxruntime/transformers/fusion_simplified_layernorm.py +165 -0
  209. onnxruntime/transformers/fusion_skip_group_norm.py +254 -0
  210. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  211. onnxruntime/transformers/fusion_transpose.py +167 -0
  212. onnxruntime/transformers/fusion_utils.py +321 -0
  213. onnxruntime/transformers/huggingface_models.py +74 -0
  214. onnxruntime/transformers/import_utils.py +20 -0
  215. onnxruntime/transformers/io_binding_helper.py +487 -0
  216. onnxruntime/transformers/large_model_exporter.py +395 -0
  217. onnxruntime/transformers/machine_info.py +230 -0
  218. onnxruntime/transformers/metrics.py +163 -0
  219. onnxruntime/transformers/models/bart/__init__.py +12 -0
  220. onnxruntime/transformers/models/bart/export.py +98 -0
  221. onnxruntime/transformers/models/bert/__init__.py +12 -0
  222. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  223. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  224. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  225. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +566 -0
  226. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1031 -0
  227. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  228. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  229. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  230. onnxruntime/transformers/models/llama/__init__.py +12 -0
  231. onnxruntime/transformers/models/llama/benchmark.py +700 -0
  232. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  233. onnxruntime/transformers/models/llama/benchmark_e2e.py +608 -0
  234. onnxruntime/transformers/models/llama/convert_to_onnx.py +1064 -0
  235. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  236. onnxruntime/transformers/models/llama/llama_inputs.py +504 -0
  237. onnxruntime/transformers/models/llama/llama_parity.py +343 -0
  238. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  239. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  240. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  241. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  242. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  243. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  244. onnxruntime/transformers/models/longformer/longformer_helper.py +76 -0
  245. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  246. onnxruntime/transformers/models/phi2/convert_to_onnx.py +590 -0
  247. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  248. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  249. onnxruntime/transformers/models/sam2/benchmark_sam2.py +638 -0
  250. onnxruntime/transformers/models/sam2/convert_to_onnx.py +270 -0
  251. onnxruntime/transformers/models/sam2/image_decoder.py +272 -0
  252. onnxruntime/transformers/models/sam2/image_encoder.py +236 -0
  253. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  254. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  255. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  256. onnxruntime/transformers/models/sam2/sam2_demo.py +321 -0
  257. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +279 -0
  258. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  259. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  260. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1519 -0
  261. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  262. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +103 -0
  263. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +269 -0
  264. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  265. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1318 -0
  266. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1179 -0
  267. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +295 -0
  268. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +387 -0
  269. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  270. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  271. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  272. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +590 -0
  273. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  274. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  275. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  276. onnxruntime/transformers/models/t5/__init__.py +12 -0
  277. onnxruntime/transformers/models/t5/convert_to_onnx.py +318 -0
  278. onnxruntime/transformers/models/t5/t5_decoder.py +437 -0
  279. onnxruntime/transformers/models/t5/t5_encoder.py +70 -0
  280. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +361 -0
  281. onnxruntime/transformers/models/t5/t5_helper.py +302 -0
  282. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  283. onnxruntime/transformers/models/whisper/benchmark.py +585 -0
  284. onnxruntime/transformers/models/whisper/benchmark_all.py +526 -0
  285. onnxruntime/transformers/models/whisper/convert_to_onnx.py +609 -0
  286. onnxruntime/transformers/models/whisper/whisper_chain.py +334 -0
  287. onnxruntime/transformers/models/whisper/whisper_decoder.py +464 -0
  288. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  289. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +371 -0
  290. onnxruntime/transformers/models/whisper/whisper_helper.py +1035 -0
  291. onnxruntime/transformers/models/whisper/whisper_inputs.py +380 -0
  292. onnxruntime/transformers/models/whisper/whisper_jump_times.py +477 -0
  293. onnxruntime/transformers/onnx_exporter.py +719 -0
  294. onnxruntime/transformers/onnx_model.py +1636 -0
  295. onnxruntime/transformers/onnx_model_bart.py +141 -0
  296. onnxruntime/transformers/onnx_model_bert.py +488 -0
  297. onnxruntime/transformers/onnx_model_bert_keras.py +474 -0
  298. onnxruntime/transformers/onnx_model_bert_tf.py +588 -0
  299. onnxruntime/transformers/onnx_model_clip.py +42 -0
  300. onnxruntime/transformers/onnx_model_conformer.py +32 -0
  301. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  302. onnxruntime/transformers/onnx_model_mmdit.py +112 -0
  303. onnxruntime/transformers/onnx_model_phi.py +929 -0
  304. onnxruntime/transformers/onnx_model_sam2.py +137 -0
  305. onnxruntime/transformers/onnx_model_t5.py +985 -0
  306. onnxruntime/transformers/onnx_model_tnlr.py +226 -0
  307. onnxruntime/transformers/onnx_model_unet.py +258 -0
  308. onnxruntime/transformers/onnx_model_vae.py +42 -0
  309. onnxruntime/transformers/onnx_utils.py +55 -0
  310. onnxruntime/transformers/optimizer.py +620 -0
  311. onnxruntime/transformers/past_helper.py +149 -0
  312. onnxruntime/transformers/profile_result_processor.py +358 -0
  313. onnxruntime/transformers/profiler.py +434 -0
  314. onnxruntime/transformers/quantize_helper.py +76 -0
  315. onnxruntime/transformers/shape_infer_helper.py +121 -0
  316. onnxruntime/transformers/shape_optimizer.py +400 -0
  317. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  318. onnxruntime_directml-1.24.1.dist-info/METADATA +216 -0
  319. onnxruntime_directml-1.24.1.dist-info/RECORD +322 -0
  320. onnxruntime_directml-1.24.1.dist-info/WHEEL +5 -0
  321. onnxruntime_directml-1.24.1.dist-info/entry_points.txt +2 -0
  322. onnxruntime_directml-1.24.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,590 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+ from __future__ import annotations
6
+
7
+ import argparse
8
+ import logging
9
+ import os
10
+ import warnings
11
+ from pathlib import Path
12
+
13
+ import onnx
14
+ import torch
15
+ from benchmark_helper import Precision
16
+ from fusion_options import AttentionOpType
17
+ from onnx_model import OnnxModel
18
+ from packaging import version
19
+ from transformers import AutoConfig, AutoModelForCausalLM
20
+
21
+ from onnxruntime import __version__ as ort_version
22
+
23
+ if version.parse(ort_version) < version.parse("1.22.0"):
24
+ from onnxruntime.quantization.matmul_4bits_quantizer import MatMul4BitsQuantizer as MatMulNBitsQuantizer
25
+ else:
26
+ from onnxruntime.quantization.matmul_nbits_quantizer import MatMulNBitsQuantizer
27
+
28
+
29
+ class ConvertPhi2ToONNX:
30
+ def __init__(
31
+ self,
32
+ device: torch.device,
33
+ model_class: str = "microsoft/phi-2",
34
+ cache_dir: str = "./cache",
35
+ ):
36
+ self.model_class = model_class
37
+ self.device = device
38
+ self.cache_dir = cache_dir
39
+ self.phi_config = AutoConfig.from_pretrained(self.model_class, trust_remote_code=True, cache_dir=self.cache_dir)
40
+ self.phi_model = None
41
+ self.batch_size = 2
42
+ self.sequence_length = 8
43
+ self.attn_op_type = None
44
+ self.precision = None
45
+ self.block_size = 16
46
+ self.accuracy_level = None
47
+
48
+ def set_quantization_params(self, block_size: int, accuracy_level: int | None):
49
+ self.block_size = block_size
50
+ self.accuracy_level = accuracy_level
51
+
52
+ def init_attn_type_and_precision(self, attn_op_type: AttentionOpType, precision: Precision):
53
+ self.attn_op_type = attn_op_type
54
+ self.precision = precision
55
+
56
+ def erase_onnx_model(self, onnx_path: str) -> None:
57
+ assert onnx_path.endswith(".onnx")
58
+ if not os.path.exists(onnx_path):
59
+ return
60
+
61
+ model = onnx.load_model(onnx_path, load_external_data=False)
62
+ onnx_data_path = None
63
+ for initializer in model.graph.initializer:
64
+ if initializer.data_location == 1 and initializer.external_data[0].key == "location":
65
+ onnx_data_path = "./" + initializer.external_data[0].value
66
+ break
67
+ logging.info(f"Erasing {onnx_path}...")
68
+ os.remove(onnx_path)
69
+ if onnx_data_path is not None:
70
+ onnx_data_path = os.path.join(Path(onnx_path).parent, onnx_data_path)
71
+ logging.info(f"Erasing {onnx_data_path}...")
72
+ os.remove(onnx_data_path)
73
+
74
+ def get_phi2_torch_model(self):
75
+ logging.info("Loading phi2 torch model...")
76
+ if self.phi_model is not None:
77
+ return
78
+ self.phi_model = AutoModelForCausalLM.from_pretrained(
79
+ self.model_class, trust_remote_code=True, cache_dir=self.cache_dir
80
+ )
81
+ self.phi_model.eval()
82
+ self.phi_model.to(self.device)
83
+
84
+ def get_phi2_torch_inputs(self, batch_size: int, sequence_length: int):
85
+ input_ids = torch.randint(
86
+ low=0,
87
+ high=self.phi_config.vocab_size,
88
+ size=(batch_size, sequence_length),
89
+ dtype=torch.int64,
90
+ device=self.device,
91
+ )
92
+ self.get_phi2_torch_model()
93
+ torch_inputs = self.phi_model.prepare_inputs_for_generation(
94
+ input_ids, past_key_values=self.phi_model(input_ids, use_cache=True)["past_key_values"]
95
+ )
96
+ return torch_inputs["input_ids"], torch_inputs["attention_mask"], torch_inputs["past_key_values"]
97
+
98
+ def dynamo_export(self, onnx_path: str):
99
+ input_ids, attention_mask, past_key_values = self.get_phi2_torch_inputs(self.batch_size, self.sequence_length)
100
+ self.phi_model(input_ids, attention_mask=attention_mask, past_key_values=past_key_values)
101
+
102
+ from torch._dynamo import config # noqa: PLC0415
103
+
104
+ config.capture_scalar_outputs = True
105
+
106
+ logging.info("Exporting Phi2 torch model to ONNX...")
107
+ torch.onnx.dynamo_export(
108
+ self.phi_model,
109
+ input_ids,
110
+ attention_mask=attention_mask,
111
+ past_key_values=past_key_values,
112
+ export_options=torch.onnx.ExportOptions(dynamic_shapes=True),
113
+ ).save(onnx_path)
114
+ onnx.checker.check_model(onnx_path)
115
+ onnx.shape_inference.infer_shapes_path(onnx_path)
116
+
117
+ def optimize_phi2_onnx(self, onnx_path: str, onnx_path_opt: str):
118
+ from fusion_options import FusionOptions # noqa: PLC0415
119
+ from optimizer import optimize_model # noqa: PLC0415
120
+
121
+ optimization_options = FusionOptions("phi")
122
+ optimization_options.set_attention_op_type(self.attn_op_type)
123
+ optimizer = optimize_model(
124
+ onnx_path,
125
+ model_type="phi",
126
+ num_heads=self.phi_config.num_attention_heads,
127
+ hidden_size=self.phi_config.hidden_size,
128
+ opt_level=0,
129
+ optimization_options=optimization_options,
130
+ only_onnxruntime=False,
131
+ )
132
+
133
+ fused_op_count = optimizer.get_fused_operator_statistics()
134
+ if optimizer.is_fully_optimized(fused_op_count):
135
+ logging.info("Model is fully optimized.")
136
+ else:
137
+ logging.info("Model is not fully optimized.")
138
+
139
+ if self.precision == Precision.FLOAT32:
140
+ optimizer.save_model_to_file(onnx_path_opt, use_external_data_format=True)
141
+ return
142
+
143
+ if (
144
+ self.precision == Precision.FLOAT16 or self.precision == Precision.INT4
145
+ ) and self.attn_op_type != AttentionOpType.MultiHeadAttention:
146
+ # We keep last three layers of Attention as float32 or bfloat16 to avoid overflow.
147
+ node_block_list = (
148
+ [
149
+ "Attention_29",
150
+ "Attention_30",
151
+ "Attention_31",
152
+ ]
153
+ if self.attn_op_type != AttentionOpType.PagedAttention
154
+ else []
155
+ ) # TODO: temp setting for paged attention
156
+ logging.info("Converting onnx model to float16/bfloat16...")
157
+ optimizer.convert_float_to_float16(
158
+ keep_io_types=False,
159
+ node_block_list=node_block_list,
160
+ use_symbolic_shape_infer=True,
161
+ use_bfloat16_as_blocked_nodes_dtype=self.attn_op_type == AttentionOpType.GroupQueryAttention,
162
+ )
163
+ logging.info("Converting onnx model to float16/bfloat16 done.")
164
+
165
+ if self.precision == Precision.FLOAT16:
166
+ optimizer.save_model_to_file(onnx_path_opt, use_external_data_format=True)
167
+ return
168
+ else:
169
+ assert self.precision == Precision.INT4
170
+ quant = MatMulNBitsQuantizer(
171
+ model=optimizer.model,
172
+ bits=4,
173
+ block_size=self.block_size,
174
+ is_symmetric=True,
175
+ accuracy_level=self.accuracy_level,
176
+ )
177
+ quant.process()
178
+ quant.model.save_model_to_file(onnx_path_opt, use_external_data_format=True)
179
+
180
+ # This function currently only works for phi2 model
181
+ def convert_to_use_cuda_graph(self, in_onnx_path: str, out_onnx_path: str):
182
+ onnx_model = OnnxModel(onnx.load(in_onnx_path, load_external_data=True))
183
+
184
+ from onnx import TensorProto, helper # noqa: PLC0415
185
+
186
+ graph = onnx_model.graph()
187
+ new_inputs = []
188
+ for vi in graph.input:
189
+ if "attention_mask" in vi.name:
190
+ vi_seqlen_k = helper.make_tensor_value_info(
191
+ "seqlens_k",
192
+ elem_type=TensorProto.INT32,
193
+ shape=["batch_size"],
194
+ )
195
+ vi_total_seq_len = helper.make_tensor_value_info(
196
+ "total_sequence_length",
197
+ elem_type=TensorProto.INT32,
198
+ shape=[1],
199
+ )
200
+ new_inputs.extend([vi_seqlen_k, vi_total_seq_len])
201
+ else:
202
+ new_inputs.append(vi)
203
+
204
+ graph.ClearField("input")
205
+ graph.input.extend(new_inputs)
206
+
207
+ gqas = onnx_model.get_nodes_by_op_type("GroupQueryAttention")
208
+ gqa = gqas[0]
209
+ seqlens_path = onnx_model.match_parent_path(
210
+ gqa,
211
+ ["Cast", "Sub", "ReduceSum", "Cast"],
212
+ [5, 0, 0, 0],
213
+ )
214
+ if seqlens_path is None:
215
+ raise RuntimeError("Failed to find seqlens path for GroupQueryAttention node.")
216
+ total_seq_len_path = onnx_model.match_parent_path(
217
+ gqa,
218
+ ["Cast", "Gather", "Shape"],
219
+ [6, 0, 0],
220
+ )
221
+ if total_seq_len_path is None:
222
+ raise RuntimeError("Failed to find total_seq_len path for GroupQueryAttention node.")
223
+ onnx_model.remove_nodes(seqlens_path)
224
+ onnx_model.remove_nodes(total_seq_len_path)
225
+
226
+ for gqa in gqas:
227
+ gqa.input[5] = "seqlens_k"
228
+ gqa.input[6] = "total_sequence_length"
229
+
230
+ onnx_model.save(onnx_model.model, out_onnx_path, save_as_external_data=True)
231
+
232
+
233
+ def parse_arguments():
234
+ parser = argparse.ArgumentParser()
235
+
236
+ parser.add_argument(
237
+ "--fp32_cpu",
238
+ required=False,
239
+ action="store_true",
240
+ help="Generate fp32 ONNX model for CPU",
241
+ )
242
+
243
+ parser.add_argument(
244
+ "--int4_cpu",
245
+ required=False,
246
+ action="store_true",
247
+ help="Generate int4 ONNX model for CPU",
248
+ )
249
+
250
+ parser.add_argument(
251
+ "--fp32_gpu",
252
+ required=False,
253
+ action="store_true",
254
+ help="Generate fp32 ONNX model for Nvidia GPUs",
255
+ )
256
+
257
+ parser.add_argument(
258
+ "--fp16_gpu",
259
+ required=False,
260
+ action="store_true",
261
+ help="Generate fp16 ONNX model for Nvidia GPUs",
262
+ )
263
+
264
+ parser.add_argument(
265
+ "--int4_gpu",
266
+ required=False,
267
+ action="store_true",
268
+ help="Generate int4 ONNX model for Nvidia GPUs",
269
+ )
270
+
271
+ parser.add_argument(
272
+ "--fp16_gpu_sm8x",
273
+ required=False,
274
+ action="store_true",
275
+ help="Generate fp16 ONNX model for Nvidia GPUs with CUDA architecture SM=80~89",
276
+ )
277
+
278
+ parser.add_argument(
279
+ "--int4_gpu_sm8x",
280
+ required=False,
281
+ action="store_true",
282
+ help="Generate int4 ONNX model for Nvidia GPUs with CUDA architecture SM=80~89",
283
+ )
284
+
285
+ parser.add_argument(
286
+ "--fp16_vllm",
287
+ required=False,
288
+ action="store_true",
289
+ help="Generate fp16 ONNX model for ORT VLLM",
290
+ )
291
+
292
+ parser.add_argument(
293
+ "--int4_vllm",
294
+ required=False,
295
+ action="store_true",
296
+ help="Generate int4 ONNX model for ORT VLLM",
297
+ )
298
+
299
+ parser.add_argument(
300
+ "--use_cuda_graph",
301
+ required=False,
302
+ action="store_true",
303
+ help="Use CUDA Graph in decoding process",
304
+ )
305
+
306
+ parser.add_argument(
307
+ "--overwrite",
308
+ required=False,
309
+ action="store_true",
310
+ help="Overwrite existing ONNX models",
311
+ )
312
+
313
+ parser.add_argument(
314
+ "--cache_dir",
315
+ required=False,
316
+ type=str,
317
+ default="./cache",
318
+ help="The cache directory for the pytorch model",
319
+ )
320
+
321
+ parser.add_argument(
322
+ "--device_id",
323
+ required=False,
324
+ type=int,
325
+ default=0,
326
+ help="The device id for the pytorch model",
327
+ )
328
+
329
+ parser.add_argument(
330
+ "--run_example",
331
+ required=False,
332
+ action="store_true",
333
+ help="Run ORT inference example",
334
+ )
335
+
336
+ parser.add_argument(
337
+ "--run_benchmark",
338
+ required=False,
339
+ action="store_true",
340
+ help="Run ORT benchmark",
341
+ )
342
+
343
+ parser.add_argument(
344
+ "--skip_export",
345
+ required=False,
346
+ action="store_true",
347
+ help="Skip exporting ONNX model",
348
+ )
349
+
350
+ parser.add_argument(
351
+ "--output_dir",
352
+ type=str,
353
+ help="The output directory for the ONNX models",
354
+ default="phi2_onnx_models",
355
+ )
356
+
357
+ parser.add_argument(
358
+ "--block_size",
359
+ required=False,
360
+ default=16,
361
+ type=int,
362
+ help="Block size to quantize with. See https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/quantization/matmul_nbits_quantizer.py for details.",
363
+ )
364
+
365
+ parser.add_argument(
366
+ "--int4_accuracy_level",
367
+ required=False,
368
+ type=int,
369
+ help="Accuracy level of the 4-bit quantized MatMul computation. "
370
+ "Refer to the MatMulNBits contrib op's 'accuracy_level' attribute for details "
371
+ "(https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#commicrosoftmatmulnbits).",
372
+ )
373
+
374
+ args = parser.parse_args()
375
+ return args
376
+
377
+
378
+ def main():
379
+ warnings.warn(
380
+ "This example is deprecated. Use the Olive recipe instead: "
381
+ "https://github.com/microsoft/olive-recipes/tree/main",
382
+ DeprecationWarning,
383
+ stacklevel=2,
384
+ )
385
+ args = parse_arguments()
386
+
387
+ device = torch.device("cuda", args.device_id) if torch.cuda.is_available() else torch.device("cpu")
388
+
389
+ converter = ConvertPhi2ToONNX(device, cache_dir=args.cache_dir)
390
+ converter.set_quantization_params(args.block_size, args.int4_accuracy_level)
391
+
392
+ output_dir = args.output_dir
393
+
394
+ if not os.path.exists(output_dir):
395
+ os.makedirs(output_dir)
396
+
397
+ original_onnx_path = os.path.join(output_dir, "phi2_original.onnx")
398
+
399
+ if not args.skip_export:
400
+ if not os.path.exists(original_onnx_path) or args.overwrite:
401
+ converter.dynamo_export(original_onnx_path)
402
+
403
+ model_type_to_args = {
404
+ "fp32_cpu": (
405
+ AttentionOpType.MultiHeadAttention,
406
+ Precision.FLOAT32,
407
+ os.path.join(output_dir, "phi2_decoder_fp32_cpu.onnx"),
408
+ ),
409
+ "int4_cpu": (
410
+ AttentionOpType.MultiHeadAttention,
411
+ Precision.INT4,
412
+ os.path.join(output_dir, "phi2_decoder_int4_cpu.onnx"),
413
+ ),
414
+ "fp32_gpu": (
415
+ AttentionOpType.Attention,
416
+ Precision.FLOAT32,
417
+ os.path.join(output_dir, "phi2_decoder_fp32_gpu.onnx"),
418
+ ),
419
+ "fp16_gpu": (
420
+ AttentionOpType.Attention,
421
+ Precision.FLOAT16,
422
+ os.path.join(output_dir, "phi2_decoder_fp16_gpu.onnx"),
423
+ ),
424
+ "int4_gpu": (AttentionOpType.Attention, Precision.INT4, os.path.join(output_dir, "phi2_decoder_int4_gpu.onnx")),
425
+ "fp16_gpu_sm8x": (
426
+ AttentionOpType.GroupQueryAttention,
427
+ Precision.FLOAT16,
428
+ os.path.join(output_dir, "phi2_decoder_fp16_gpu_sm8x.onnx"),
429
+ ),
430
+ "int4_gpu_sm8x": (
431
+ AttentionOpType.GroupQueryAttention,
432
+ Precision.INT4,
433
+ os.path.join(output_dir, "phi2_decoder_int4_gpu_sm8x.onnx"),
434
+ ),
435
+ "fp16_vllm": (
436
+ AttentionOpType.PagedAttention,
437
+ Precision.FLOAT16,
438
+ os.path.join(output_dir, "phi2_decoder_fp16_vllm.onnx"),
439
+ ),
440
+ "int4_vllm": (
441
+ AttentionOpType.PagedAttention,
442
+ Precision.INT4,
443
+ os.path.join(output_dir, "phi2_decoder_int4_vllm.onnx"),
444
+ ),
445
+ }
446
+
447
+ if not args.skip_export:
448
+ from multiprocessing import Process # noqa: PLC0415
449
+
450
+ def run_optimize_phi2_onnx(
451
+ converter: ConvertPhi2ToONNX,
452
+ original_onnx_path: str,
453
+ attention_type: AttentionOpType,
454
+ precision: Precision,
455
+ optimized_onnx_path: str,
456
+ ):
457
+ converter.init_attn_type_and_precision(attention_type, precision)
458
+ converter.optimize_phi2_onnx(original_onnx_path, optimized_onnx_path)
459
+ if args.use_cuda_graph:
460
+ assert args.fp16_gpu_sm8x or args.int4_gpu_sm8x
461
+ converter.convert_to_use_cuda_graph(optimized_onnx_path, optimized_onnx_path)
462
+
463
+ processes = []
464
+ if args.fp32_cpu:
465
+ processes.append(
466
+ Process(
467
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["fp32_cpu"])
468
+ )
469
+ )
470
+
471
+ if args.int4_cpu:
472
+ processes.append(
473
+ Process(
474
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["int4_cpu"])
475
+ )
476
+ )
477
+
478
+ if args.fp32_gpu:
479
+ processes.append(
480
+ Process(
481
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["fp32_gpu"])
482
+ )
483
+ )
484
+
485
+ if args.fp16_gpu:
486
+ processes.append(
487
+ Process(
488
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["fp16_gpu"])
489
+ )
490
+ )
491
+
492
+ if args.int4_gpu:
493
+ processes.append(
494
+ Process(
495
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["int4_gpu"])
496
+ )
497
+ )
498
+
499
+ if args.fp16_gpu_sm8x:
500
+ processes.append(
501
+ Process(
502
+ target=run_optimize_phi2_onnx,
503
+ args=(converter, original_onnx_path, *model_type_to_args["fp16_gpu_sm8x"]),
504
+ )
505
+ )
506
+
507
+ if args.int4_gpu_sm8x:
508
+ processes.append(
509
+ Process(
510
+ target=run_optimize_phi2_onnx,
511
+ args=(converter, original_onnx_path, *model_type_to_args["int4_gpu_sm8x"]),
512
+ )
513
+ )
514
+
515
+ if args.fp16_vllm:
516
+ processes.append(
517
+ Process(
518
+ target=run_optimize_phi2_onnx,
519
+ args=(converter, original_onnx_path, *model_type_to_args["fp16_vllm"]),
520
+ )
521
+ )
522
+
523
+ if args.int4_vllm:
524
+ processes.append(
525
+ Process(
526
+ target=run_optimize_phi2_onnx,
527
+ args=(converter, original_onnx_path, *model_type_to_args["int4_vllm"]),
528
+ )
529
+ )
530
+
531
+ [p.start() for p in processes]
532
+ [p.join() for p in processes]
533
+
534
+ if args.run_example or args.run_benchmark:
535
+ from inference_example import run_phi2 # noqa: PLC0415
536
+
537
+ if args.fp16_gpu_sm8x:
538
+ logging.info("Running fp16_gpu_sm8x example...")
539
+ run_phi2(
540
+ onnx_model_path=model_type_to_args["fp16_gpu_sm8x"][2],
541
+ use_buffer_share=True,
542
+ device_id=args.device_id,
543
+ use_step=True,
544
+ use_cuda_graph=args.use_cuda_graph,
545
+ run_benchmark=args.run_benchmark,
546
+ )
547
+ if args.int4_gpu_sm8x:
548
+ logging.info("Running int4_gpu_sm8x example...")
549
+ run_phi2(
550
+ onnx_model_path=model_type_to_args["int4_gpu_sm8x"][2],
551
+ use_buffer_share=True,
552
+ device_id=args.device_id,
553
+ use_step=True,
554
+ use_cuda_graph=args.use_cuda_graph,
555
+ run_benchmark=args.run_benchmark,
556
+ )
557
+ if args.fp32_gpu:
558
+ logging.info("Running fp32_gpu example...")
559
+ run_phi2(
560
+ onnx_model_path=model_type_to_args["fp32_gpu"][2],
561
+ use_buffer_share=False,
562
+ device_id=args.device_id,
563
+ packed_kv=True,
564
+ use_fp16=False,
565
+ run_benchmark=args.run_benchmark,
566
+ )
567
+ if args.fp16_gpu:
568
+ logging.info("Running fp16_gpu example...")
569
+ run_phi2(
570
+ onnx_model_path=model_type_to_args["fp16_gpu"][2],
571
+ use_buffer_share=False,
572
+ device_id=args.device_id,
573
+ packed_kv=True,
574
+ run_benchmark=args.run_benchmark,
575
+ )
576
+ if args.int4_gpu:
577
+ logging.info("Running int4_gpu example...")
578
+ run_phi2(
579
+ onnx_model_path=model_type_to_args["int4_gpu"][2],
580
+ use_buffer_share=False,
581
+ device_id=args.device_id,
582
+ packed_kv=True,
583
+ run_benchmark=args.run_benchmark,
584
+ )
585
+ if args.fp32_cpu or args.int4_cpu or args.fp16_vllm or args.int4_vllm:
586
+ raise NotImplementedError("CPU/vllm inference example is not implemented yet.")
587
+
588
+
589
+ if __name__ == "__main__":
590
+ main()