warp-lang 1.7.0__py3-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (429) hide show
  1. warp/__init__.py +139 -0
  2. warp/__init__.pyi +1 -0
  3. warp/autograd.py +1142 -0
  4. warp/bin/warp-clang.so +0 -0
  5. warp/bin/warp.so +0 -0
  6. warp/build.py +557 -0
  7. warp/build_dll.py +405 -0
  8. warp/builtins.py +6855 -0
  9. warp/codegen.py +3969 -0
  10. warp/config.py +158 -0
  11. warp/constants.py +57 -0
  12. warp/context.py +6812 -0
  13. warp/dlpack.py +462 -0
  14. warp/examples/__init__.py +24 -0
  15. warp/examples/assets/bear.usd +0 -0
  16. warp/examples/assets/bunny.usd +0 -0
  17. warp/examples/assets/cartpole.urdf +110 -0
  18. warp/examples/assets/crazyflie.usd +0 -0
  19. warp/examples/assets/cube.usd +0 -0
  20. warp/examples/assets/nonuniform.usd +0 -0
  21. warp/examples/assets/nv_ant.xml +92 -0
  22. warp/examples/assets/nv_humanoid.xml +183 -0
  23. warp/examples/assets/nvidia_logo.png +0 -0
  24. warp/examples/assets/pixel.jpg +0 -0
  25. warp/examples/assets/quadruped.urdf +268 -0
  26. warp/examples/assets/rocks.nvdb +0 -0
  27. warp/examples/assets/rocks.usd +0 -0
  28. warp/examples/assets/sphere.usd +0 -0
  29. warp/examples/assets/square_cloth.usd +0 -0
  30. warp/examples/benchmarks/benchmark_api.py +389 -0
  31. warp/examples/benchmarks/benchmark_cloth.py +296 -0
  32. warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
  33. warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
  34. warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
  35. warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
  36. warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
  37. warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
  38. warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
  39. warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
  40. warp/examples/benchmarks/benchmark_gemm.py +164 -0
  41. warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
  42. warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
  43. warp/examples/benchmarks/benchmark_launches.py +301 -0
  44. warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
  45. warp/examples/browse.py +37 -0
  46. warp/examples/core/example_cupy.py +86 -0
  47. warp/examples/core/example_dem.py +241 -0
  48. warp/examples/core/example_fluid.py +299 -0
  49. warp/examples/core/example_graph_capture.py +150 -0
  50. warp/examples/core/example_marching_cubes.py +194 -0
  51. warp/examples/core/example_mesh.py +180 -0
  52. warp/examples/core/example_mesh_intersect.py +211 -0
  53. warp/examples/core/example_nvdb.py +182 -0
  54. warp/examples/core/example_raycast.py +111 -0
  55. warp/examples/core/example_raymarch.py +205 -0
  56. warp/examples/core/example_render_opengl.py +193 -0
  57. warp/examples/core/example_sample_mesh.py +300 -0
  58. warp/examples/core/example_sph.py +411 -0
  59. warp/examples/core/example_torch.py +211 -0
  60. warp/examples/core/example_wave.py +269 -0
  61. warp/examples/fem/example_adaptive_grid.py +286 -0
  62. warp/examples/fem/example_apic_fluid.py +423 -0
  63. warp/examples/fem/example_burgers.py +261 -0
  64. warp/examples/fem/example_convection_diffusion.py +178 -0
  65. warp/examples/fem/example_convection_diffusion_dg.py +204 -0
  66. warp/examples/fem/example_deformed_geometry.py +172 -0
  67. warp/examples/fem/example_diffusion.py +196 -0
  68. warp/examples/fem/example_diffusion_3d.py +225 -0
  69. warp/examples/fem/example_diffusion_mgpu.py +220 -0
  70. warp/examples/fem/example_distortion_energy.py +228 -0
  71. warp/examples/fem/example_magnetostatics.py +240 -0
  72. warp/examples/fem/example_mixed_elasticity.py +291 -0
  73. warp/examples/fem/example_navier_stokes.py +261 -0
  74. warp/examples/fem/example_nonconforming_contact.py +298 -0
  75. warp/examples/fem/example_stokes.py +213 -0
  76. warp/examples/fem/example_stokes_transfer.py +262 -0
  77. warp/examples/fem/example_streamlines.py +352 -0
  78. warp/examples/fem/utils.py +1000 -0
  79. warp/examples/interop/example_jax_callable.py +116 -0
  80. warp/examples/interop/example_jax_ffi_callback.py +132 -0
  81. warp/examples/interop/example_jax_kernel.py +205 -0
  82. warp/examples/optim/example_bounce.py +266 -0
  83. warp/examples/optim/example_cloth_throw.py +228 -0
  84. warp/examples/optim/example_diffray.py +561 -0
  85. warp/examples/optim/example_drone.py +870 -0
  86. warp/examples/optim/example_fluid_checkpoint.py +497 -0
  87. warp/examples/optim/example_inverse_kinematics.py +182 -0
  88. warp/examples/optim/example_inverse_kinematics_torch.py +191 -0
  89. warp/examples/optim/example_softbody_properties.py +400 -0
  90. warp/examples/optim/example_spring_cage.py +245 -0
  91. warp/examples/optim/example_trajectory.py +227 -0
  92. warp/examples/sim/example_cartpole.py +143 -0
  93. warp/examples/sim/example_cloth.py +225 -0
  94. warp/examples/sim/example_cloth_self_contact.py +322 -0
  95. warp/examples/sim/example_granular.py +130 -0
  96. warp/examples/sim/example_granular_collision_sdf.py +202 -0
  97. warp/examples/sim/example_jacobian_ik.py +244 -0
  98. warp/examples/sim/example_particle_chain.py +124 -0
  99. warp/examples/sim/example_quadruped.py +203 -0
  100. warp/examples/sim/example_rigid_chain.py +203 -0
  101. warp/examples/sim/example_rigid_contact.py +195 -0
  102. warp/examples/sim/example_rigid_force.py +133 -0
  103. warp/examples/sim/example_rigid_gyroscopic.py +115 -0
  104. warp/examples/sim/example_rigid_soft_contact.py +140 -0
  105. warp/examples/sim/example_soft_body.py +196 -0
  106. warp/examples/tile/example_tile_cholesky.py +87 -0
  107. warp/examples/tile/example_tile_convolution.py +66 -0
  108. warp/examples/tile/example_tile_fft.py +55 -0
  109. warp/examples/tile/example_tile_filtering.py +113 -0
  110. warp/examples/tile/example_tile_matmul.py +85 -0
  111. warp/examples/tile/example_tile_mlp.py +383 -0
  112. warp/examples/tile/example_tile_nbody.py +199 -0
  113. warp/examples/tile/example_tile_walker.py +327 -0
  114. warp/fabric.py +355 -0
  115. warp/fem/__init__.py +106 -0
  116. warp/fem/adaptivity.py +508 -0
  117. warp/fem/cache.py +572 -0
  118. warp/fem/dirichlet.py +202 -0
  119. warp/fem/domain.py +411 -0
  120. warp/fem/field/__init__.py +125 -0
  121. warp/fem/field/field.py +619 -0
  122. warp/fem/field/nodal_field.py +326 -0
  123. warp/fem/field/restriction.py +37 -0
  124. warp/fem/field/virtual.py +848 -0
  125. warp/fem/geometry/__init__.py +32 -0
  126. warp/fem/geometry/adaptive_nanogrid.py +857 -0
  127. warp/fem/geometry/closest_point.py +84 -0
  128. warp/fem/geometry/deformed_geometry.py +221 -0
  129. warp/fem/geometry/element.py +776 -0
  130. warp/fem/geometry/geometry.py +362 -0
  131. warp/fem/geometry/grid_2d.py +392 -0
  132. warp/fem/geometry/grid_3d.py +452 -0
  133. warp/fem/geometry/hexmesh.py +911 -0
  134. warp/fem/geometry/nanogrid.py +571 -0
  135. warp/fem/geometry/partition.py +389 -0
  136. warp/fem/geometry/quadmesh.py +663 -0
  137. warp/fem/geometry/tetmesh.py +855 -0
  138. warp/fem/geometry/trimesh.py +806 -0
  139. warp/fem/integrate.py +2335 -0
  140. warp/fem/linalg.py +419 -0
  141. warp/fem/operator.py +293 -0
  142. warp/fem/polynomial.py +229 -0
  143. warp/fem/quadrature/__init__.py +17 -0
  144. warp/fem/quadrature/pic_quadrature.py +299 -0
  145. warp/fem/quadrature/quadrature.py +591 -0
  146. warp/fem/space/__init__.py +228 -0
  147. warp/fem/space/basis_function_space.py +468 -0
  148. warp/fem/space/basis_space.py +667 -0
  149. warp/fem/space/dof_mapper.py +251 -0
  150. warp/fem/space/function_space.py +309 -0
  151. warp/fem/space/grid_2d_function_space.py +177 -0
  152. warp/fem/space/grid_3d_function_space.py +227 -0
  153. warp/fem/space/hexmesh_function_space.py +257 -0
  154. warp/fem/space/nanogrid_function_space.py +201 -0
  155. warp/fem/space/partition.py +367 -0
  156. warp/fem/space/quadmesh_function_space.py +223 -0
  157. warp/fem/space/restriction.py +179 -0
  158. warp/fem/space/shape/__init__.py +143 -0
  159. warp/fem/space/shape/cube_shape_function.py +1105 -0
  160. warp/fem/space/shape/shape_function.py +133 -0
  161. warp/fem/space/shape/square_shape_function.py +926 -0
  162. warp/fem/space/shape/tet_shape_function.py +834 -0
  163. warp/fem/space/shape/triangle_shape_function.py +672 -0
  164. warp/fem/space/tetmesh_function_space.py +271 -0
  165. warp/fem/space/topology.py +424 -0
  166. warp/fem/space/trimesh_function_space.py +194 -0
  167. warp/fem/types.py +99 -0
  168. warp/fem/utils.py +420 -0
  169. warp/jax.py +187 -0
  170. warp/jax_experimental/__init__.py +16 -0
  171. warp/jax_experimental/custom_call.py +351 -0
  172. warp/jax_experimental/ffi.py +698 -0
  173. warp/jax_experimental/xla_ffi.py +602 -0
  174. warp/math.py +244 -0
  175. warp/native/array.h +1145 -0
  176. warp/native/builtin.h +1800 -0
  177. warp/native/bvh.cpp +492 -0
  178. warp/native/bvh.cu +791 -0
  179. warp/native/bvh.h +554 -0
  180. warp/native/clang/clang.cpp +536 -0
  181. warp/native/coloring.cpp +613 -0
  182. warp/native/crt.cpp +51 -0
  183. warp/native/crt.h +362 -0
  184. warp/native/cuda_crt.h +1058 -0
  185. warp/native/cuda_util.cpp +646 -0
  186. warp/native/cuda_util.h +307 -0
  187. warp/native/error.cpp +77 -0
  188. warp/native/error.h +36 -0
  189. warp/native/exports.h +1878 -0
  190. warp/native/fabric.h +245 -0
  191. warp/native/hashgrid.cpp +311 -0
  192. warp/native/hashgrid.cu +87 -0
  193. warp/native/hashgrid.h +240 -0
  194. warp/native/initializer_array.h +41 -0
  195. warp/native/intersect.h +1230 -0
  196. warp/native/intersect_adj.h +375 -0
  197. warp/native/intersect_tri.h +339 -0
  198. warp/native/marching.cpp +19 -0
  199. warp/native/marching.cu +514 -0
  200. warp/native/marching.h +19 -0
  201. warp/native/mat.h +2220 -0
  202. warp/native/mathdx.cpp +87 -0
  203. warp/native/matnn.h +343 -0
  204. warp/native/mesh.cpp +266 -0
  205. warp/native/mesh.cu +404 -0
  206. warp/native/mesh.h +1980 -0
  207. warp/native/nanovdb/GridHandle.h +366 -0
  208. warp/native/nanovdb/HostBuffer.h +590 -0
  209. warp/native/nanovdb/NanoVDB.h +6624 -0
  210. warp/native/nanovdb/PNanoVDB.h +3390 -0
  211. warp/native/noise.h +859 -0
  212. warp/native/quat.h +1371 -0
  213. warp/native/rand.h +342 -0
  214. warp/native/range.h +139 -0
  215. warp/native/reduce.cpp +174 -0
  216. warp/native/reduce.cu +364 -0
  217. warp/native/runlength_encode.cpp +79 -0
  218. warp/native/runlength_encode.cu +61 -0
  219. warp/native/scan.cpp +47 -0
  220. warp/native/scan.cu +53 -0
  221. warp/native/scan.h +23 -0
  222. warp/native/solid_angle.h +466 -0
  223. warp/native/sort.cpp +251 -0
  224. warp/native/sort.cu +277 -0
  225. warp/native/sort.h +33 -0
  226. warp/native/sparse.cpp +378 -0
  227. warp/native/sparse.cu +524 -0
  228. warp/native/spatial.h +657 -0
  229. warp/native/svd.h +702 -0
  230. warp/native/temp_buffer.h +46 -0
  231. warp/native/tile.h +2584 -0
  232. warp/native/tile_reduce.h +264 -0
  233. warp/native/vec.h +1426 -0
  234. warp/native/volume.cpp +501 -0
  235. warp/native/volume.cu +67 -0
  236. warp/native/volume.h +969 -0
  237. warp/native/volume_builder.cu +477 -0
  238. warp/native/volume_builder.h +52 -0
  239. warp/native/volume_impl.h +70 -0
  240. warp/native/warp.cpp +1082 -0
  241. warp/native/warp.cu +3636 -0
  242. warp/native/warp.h +381 -0
  243. warp/optim/__init__.py +17 -0
  244. warp/optim/adam.py +163 -0
  245. warp/optim/linear.py +1137 -0
  246. warp/optim/sgd.py +112 -0
  247. warp/paddle.py +407 -0
  248. warp/render/__init__.py +18 -0
  249. warp/render/render_opengl.py +3518 -0
  250. warp/render/render_usd.py +784 -0
  251. warp/render/utils.py +160 -0
  252. warp/sim/__init__.py +65 -0
  253. warp/sim/articulation.py +793 -0
  254. warp/sim/collide.py +2395 -0
  255. warp/sim/graph_coloring.py +300 -0
  256. warp/sim/import_mjcf.py +790 -0
  257. warp/sim/import_snu.py +227 -0
  258. warp/sim/import_urdf.py +579 -0
  259. warp/sim/import_usd.py +894 -0
  260. warp/sim/inertia.py +324 -0
  261. warp/sim/integrator.py +242 -0
  262. warp/sim/integrator_euler.py +1997 -0
  263. warp/sim/integrator_featherstone.py +2101 -0
  264. warp/sim/integrator_vbd.py +2048 -0
  265. warp/sim/integrator_xpbd.py +3292 -0
  266. warp/sim/model.py +4791 -0
  267. warp/sim/particles.py +121 -0
  268. warp/sim/render.py +427 -0
  269. warp/sim/utils.py +428 -0
  270. warp/sparse.py +2057 -0
  271. warp/stubs.py +3333 -0
  272. warp/tape.py +1203 -0
  273. warp/tests/__init__.py +1 -0
  274. warp/tests/__main__.py +4 -0
  275. warp/tests/assets/curlnoise_golden.npy +0 -0
  276. warp/tests/assets/mlp_golden.npy +0 -0
  277. warp/tests/assets/pixel.npy +0 -0
  278. warp/tests/assets/pnoise_golden.npy +0 -0
  279. warp/tests/assets/spiky.usd +0 -0
  280. warp/tests/assets/test_grid.nvdb +0 -0
  281. warp/tests/assets/test_index_grid.nvdb +0 -0
  282. warp/tests/assets/test_int32_grid.nvdb +0 -0
  283. warp/tests/assets/test_vec_grid.nvdb +0 -0
  284. warp/tests/assets/torus.nvdb +0 -0
  285. warp/tests/assets/torus.usda +105 -0
  286. warp/tests/aux_test_class_kernel.py +34 -0
  287. warp/tests/aux_test_compile_consts_dummy.py +18 -0
  288. warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
  289. warp/tests/aux_test_dependent.py +29 -0
  290. warp/tests/aux_test_grad_customs.py +29 -0
  291. warp/tests/aux_test_instancing_gc.py +26 -0
  292. warp/tests/aux_test_module_unload.py +23 -0
  293. warp/tests/aux_test_name_clash1.py +40 -0
  294. warp/tests/aux_test_name_clash2.py +40 -0
  295. warp/tests/aux_test_reference.py +9 -0
  296. warp/tests/aux_test_reference_reference.py +8 -0
  297. warp/tests/aux_test_square.py +16 -0
  298. warp/tests/aux_test_unresolved_func.py +22 -0
  299. warp/tests/aux_test_unresolved_symbol.py +22 -0
  300. warp/tests/cuda/__init__.py +0 -0
  301. warp/tests/cuda/test_async.py +676 -0
  302. warp/tests/cuda/test_ipc.py +124 -0
  303. warp/tests/cuda/test_mempool.py +233 -0
  304. warp/tests/cuda/test_multigpu.py +169 -0
  305. warp/tests/cuda/test_peer.py +139 -0
  306. warp/tests/cuda/test_pinned.py +84 -0
  307. warp/tests/cuda/test_streams.py +634 -0
  308. warp/tests/geometry/__init__.py +0 -0
  309. warp/tests/geometry/test_bvh.py +200 -0
  310. warp/tests/geometry/test_hash_grid.py +221 -0
  311. warp/tests/geometry/test_marching_cubes.py +74 -0
  312. warp/tests/geometry/test_mesh.py +316 -0
  313. warp/tests/geometry/test_mesh_query_aabb.py +399 -0
  314. warp/tests/geometry/test_mesh_query_point.py +932 -0
  315. warp/tests/geometry/test_mesh_query_ray.py +311 -0
  316. warp/tests/geometry/test_volume.py +1103 -0
  317. warp/tests/geometry/test_volume_write.py +346 -0
  318. warp/tests/interop/__init__.py +0 -0
  319. warp/tests/interop/test_dlpack.py +729 -0
  320. warp/tests/interop/test_jax.py +371 -0
  321. warp/tests/interop/test_paddle.py +800 -0
  322. warp/tests/interop/test_torch.py +1001 -0
  323. warp/tests/run_coverage_serial.py +39 -0
  324. warp/tests/sim/__init__.py +0 -0
  325. warp/tests/sim/disabled_kinematics.py +244 -0
  326. warp/tests/sim/flaky_test_sim_grad.py +290 -0
  327. warp/tests/sim/test_collision.py +604 -0
  328. warp/tests/sim/test_coloring.py +258 -0
  329. warp/tests/sim/test_model.py +224 -0
  330. warp/tests/sim/test_sim_grad_bounce_linear.py +212 -0
  331. warp/tests/sim/test_sim_kinematics.py +98 -0
  332. warp/tests/sim/test_vbd.py +597 -0
  333. warp/tests/test_adam.py +163 -0
  334. warp/tests/test_arithmetic.py +1096 -0
  335. warp/tests/test_array.py +2972 -0
  336. warp/tests/test_array_reduce.py +156 -0
  337. warp/tests/test_assert.py +250 -0
  338. warp/tests/test_atomic.py +153 -0
  339. warp/tests/test_bool.py +220 -0
  340. warp/tests/test_builtins_resolution.py +1298 -0
  341. warp/tests/test_closest_point_edge_edge.py +327 -0
  342. warp/tests/test_codegen.py +810 -0
  343. warp/tests/test_codegen_instancing.py +1495 -0
  344. warp/tests/test_compile_consts.py +215 -0
  345. warp/tests/test_conditional.py +252 -0
  346. warp/tests/test_context.py +42 -0
  347. warp/tests/test_copy.py +238 -0
  348. warp/tests/test_ctypes.py +638 -0
  349. warp/tests/test_dense.py +73 -0
  350. warp/tests/test_devices.py +97 -0
  351. warp/tests/test_examples.py +482 -0
  352. warp/tests/test_fabricarray.py +996 -0
  353. warp/tests/test_fast_math.py +74 -0
  354. warp/tests/test_fem.py +2003 -0
  355. warp/tests/test_fp16.py +136 -0
  356. warp/tests/test_func.py +454 -0
  357. warp/tests/test_future_annotations.py +98 -0
  358. warp/tests/test_generics.py +656 -0
  359. warp/tests/test_grad.py +893 -0
  360. warp/tests/test_grad_customs.py +339 -0
  361. warp/tests/test_grad_debug.py +341 -0
  362. warp/tests/test_implicit_init.py +411 -0
  363. warp/tests/test_import.py +45 -0
  364. warp/tests/test_indexedarray.py +1140 -0
  365. warp/tests/test_intersect.py +73 -0
  366. warp/tests/test_iter.py +76 -0
  367. warp/tests/test_large.py +177 -0
  368. warp/tests/test_launch.py +411 -0
  369. warp/tests/test_lerp.py +151 -0
  370. warp/tests/test_linear_solvers.py +193 -0
  371. warp/tests/test_lvalue.py +427 -0
  372. warp/tests/test_mat.py +2089 -0
  373. warp/tests/test_mat_lite.py +122 -0
  374. warp/tests/test_mat_scalar_ops.py +2913 -0
  375. warp/tests/test_math.py +178 -0
  376. warp/tests/test_mlp.py +282 -0
  377. warp/tests/test_module_hashing.py +258 -0
  378. warp/tests/test_modules_lite.py +44 -0
  379. warp/tests/test_noise.py +252 -0
  380. warp/tests/test_operators.py +299 -0
  381. warp/tests/test_options.py +129 -0
  382. warp/tests/test_overwrite.py +551 -0
  383. warp/tests/test_print.py +339 -0
  384. warp/tests/test_quat.py +2315 -0
  385. warp/tests/test_rand.py +339 -0
  386. warp/tests/test_reload.py +302 -0
  387. warp/tests/test_rounding.py +185 -0
  388. warp/tests/test_runlength_encode.py +196 -0
  389. warp/tests/test_scalar_ops.py +105 -0
  390. warp/tests/test_smoothstep.py +108 -0
  391. warp/tests/test_snippet.py +318 -0
  392. warp/tests/test_sparse.py +582 -0
  393. warp/tests/test_spatial.py +2229 -0
  394. warp/tests/test_special_values.py +361 -0
  395. warp/tests/test_static.py +592 -0
  396. warp/tests/test_struct.py +734 -0
  397. warp/tests/test_tape.py +204 -0
  398. warp/tests/test_transient_module.py +93 -0
  399. warp/tests/test_triangle_closest_point.py +145 -0
  400. warp/tests/test_types.py +562 -0
  401. warp/tests/test_utils.py +588 -0
  402. warp/tests/test_vec.py +1487 -0
  403. warp/tests/test_vec_lite.py +80 -0
  404. warp/tests/test_vec_scalar_ops.py +2327 -0
  405. warp/tests/test_verify_fp.py +100 -0
  406. warp/tests/tile/__init__.py +0 -0
  407. warp/tests/tile/test_tile.py +780 -0
  408. warp/tests/tile/test_tile_load.py +407 -0
  409. warp/tests/tile/test_tile_mathdx.py +208 -0
  410. warp/tests/tile/test_tile_mlp.py +402 -0
  411. warp/tests/tile/test_tile_reduce.py +447 -0
  412. warp/tests/tile/test_tile_shared_memory.py +247 -0
  413. warp/tests/tile/test_tile_view.py +173 -0
  414. warp/tests/unittest_serial.py +47 -0
  415. warp/tests/unittest_suites.py +427 -0
  416. warp/tests/unittest_utils.py +468 -0
  417. warp/tests/walkthrough_debug.py +93 -0
  418. warp/thirdparty/__init__.py +0 -0
  419. warp/thirdparty/appdirs.py +598 -0
  420. warp/thirdparty/dlpack.py +145 -0
  421. warp/thirdparty/unittest_parallel.py +570 -0
  422. warp/torch.py +391 -0
  423. warp/types.py +5230 -0
  424. warp/utils.py +1137 -0
  425. warp_lang-1.7.0.dist-info/METADATA +516 -0
  426. warp_lang-1.7.0.dist-info/RECORD +429 -0
  427. warp_lang-1.7.0.dist-info/WHEEL +5 -0
  428. warp_lang-1.7.0.dist-info/licenses/LICENSE.md +202 -0
  429. warp_lang-1.7.0.dist-info/top_level.txt +1 -0
warp/fem/utils.py ADDED
@@ -0,0 +1,420 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Tuple, Union
17
+
18
+ import numpy as np
19
+
20
+ import warp as wp
21
+ import warp.fem.cache as cache
22
+ from warp.fem.linalg import ( # noqa: F401 (for backward compatibility, not part of public API but used in examples)
23
+ array_axpy,
24
+ inverse_qr,
25
+ symmetric_eigenvalues_qr,
26
+ )
27
+ from warp.fem.types import NULL_NODE_INDEX
28
+ from warp.utils import array_scan, radix_sort_pairs, runlength_encode
29
+
30
+
31
+ def compress_node_indices(
32
+ node_count: int,
33
+ node_indices: wp.array(dtype=int),
34
+ return_unique_nodes=False,
35
+ temporary_store: cache.TemporaryStore = None,
36
+ ) -> Union[Tuple[cache.Temporary, cache.Temporary], Tuple[cache.Temporary, cache.Temporary, int, cache.Temporary]]:
37
+ """
38
+ Compress an unsorted list of node indices into:
39
+ - a node_offsets array, giving for each node the start offset of corresponding indices in sorted_array_indices
40
+ - a sorted_array_indices array, listing the indices in the input array corresponding to each node
41
+
42
+ Plus if `return_unique_nodes` is ``True``,
43
+ - the number of unique node indices
44
+ - a unique_node_indices array containing the sorted list of unique node indices (i.e. the list of indices i for which node_offsets[i] < node_offsets[i+1])
45
+
46
+ Node indices equal to NULL_NODE_INDEX will be ignored
47
+ """
48
+
49
+ index_count = node_indices.size
50
+ device = node_indices.device
51
+
52
+ with wp.ScopedDevice(device):
53
+ sorted_node_indices_temp = cache.borrow_temporary(temporary_store, shape=2 * index_count, dtype=int)
54
+ sorted_array_indices_temp = cache.borrow_temporary_like(sorted_node_indices_temp, temporary_store)
55
+
56
+ sorted_node_indices = sorted_node_indices_temp.array
57
+ sorted_array_indices = sorted_array_indices_temp.array
58
+
59
+ indices_per_element = 1 if node_indices.ndim == 1 else node_indices.shape[-1]
60
+ wp.launch(
61
+ kernel=_prepare_node_sort_kernel,
62
+ dim=index_count,
63
+ inputs=[node_indices.flatten(), sorted_node_indices, sorted_array_indices, indices_per_element],
64
+ )
65
+
66
+ # Sort indices
67
+ radix_sort_pairs(sorted_node_indices, sorted_array_indices, count=index_count)
68
+
69
+ # Build prefix sum of number of elements per node
70
+ unique_node_indices_temp = cache.borrow_temporary(temporary_store, shape=index_count, dtype=int)
71
+ node_element_counts_temp = cache.borrow_temporary(temporary_store, shape=index_count, dtype=int)
72
+
73
+ unique_node_indices = unique_node_indices_temp.array
74
+ node_element_counts = node_element_counts_temp.array
75
+
76
+ unique_node_count_dev = cache.borrow_temporary(temporary_store, shape=(1,), dtype=int)
77
+
78
+ runlength_encode(
79
+ sorted_node_indices,
80
+ unique_node_indices,
81
+ node_element_counts,
82
+ value_count=index_count,
83
+ run_count=unique_node_count_dev.array,
84
+ )
85
+
86
+ # Scatter seen run counts to global array of element count per node
87
+ node_offsets_temp = cache.borrow_temporary(temporary_store, shape=(node_count + 1), dtype=int)
88
+ node_offsets = node_offsets_temp.array
89
+
90
+ node_offsets.zero_()
91
+ wp.launch(
92
+ kernel=_scatter_node_counts,
93
+ dim=node_count + 1, # +1 to accommodate possible NULL node,
94
+ inputs=[node_element_counts, unique_node_indices, node_offsets, unique_node_count_dev.array],
95
+ )
96
+
97
+ if device.is_cuda and return_unique_nodes:
98
+ unique_node_count_host = cache.borrow_temporary(
99
+ temporary_store, shape=(1,), dtype=int, pinned=True, device="cpu"
100
+ )
101
+ wp.copy(src=unique_node_count_dev.array, dest=unique_node_count_host.array, count=1)
102
+ copy_event = cache.capture_event(device)
103
+
104
+ # Prefix sum of number of elements per node
105
+ array_scan(node_offsets, node_offsets, inclusive=True)
106
+
107
+ sorted_node_indices_temp.release()
108
+ node_element_counts_temp.release()
109
+
110
+ if not return_unique_nodes:
111
+ unique_node_count_dev.release()
112
+ return node_offsets_temp, sorted_array_indices_temp
113
+
114
+ if device.is_cuda:
115
+ cache.synchronize_event(copy_event)
116
+ unique_node_count_dev.release()
117
+ else:
118
+ unique_node_count_host = unique_node_count_dev
119
+ unique_node_count = int(unique_node_count_host.array.numpy()[0])
120
+ unique_node_count_host.release()
121
+ return node_offsets_temp, sorted_array_indices_temp, unique_node_count, unique_node_indices_temp
122
+
123
+
124
+ def host_read_at_index(array: wp.array, index: int = -1, temporary_store: cache.TemporaryStore = None) -> int:
125
+ """Returns the value of the array element at the given index on host"""
126
+
127
+ if index < 0:
128
+ index += array.shape[0]
129
+
130
+ if array.device.is_cuda:
131
+ temp = cache.borrow_temporary(temporary_store, shape=1, dtype=int, pinned=True, device="cpu")
132
+ wp.copy(dest=temp.array, src=array, src_offset=index, count=1)
133
+ wp.synchronize_stream(wp.get_stream(array.device))
134
+ return temp.array.numpy()[0]
135
+
136
+ return array.numpy()[index]
137
+
138
+
139
+ def masked_indices(
140
+ mask: wp.array, missing_index=-1, temporary_store: cache.TemporaryStore = None
141
+ ) -> Tuple[cache.Temporary, cache.Temporary]:
142
+ """
143
+ From an array of boolean masks (must be either 0 or 1), returns:
144
+ - The list of indices for which the mask is 1
145
+ - A map associating to each element of the input mask array its local index if non-zero, or missing_index if zero.
146
+ """
147
+
148
+ offsets_temp = cache.borrow_temporary_like(mask, temporary_store)
149
+ offsets = offsets_temp.array
150
+
151
+ wp.utils.array_scan(mask, offsets, inclusive=True)
152
+
153
+ # Get back total counts on host
154
+ masked_count = int(host_read_at_index(offsets, temporary_store=temporary_store))
155
+
156
+ # Convert counts to indices
157
+ indices_temp = cache.borrow_temporary(temporary_store, shape=masked_count, device=mask.device, dtype=int)
158
+
159
+ wp.launch(
160
+ kernel=_masked_indices_kernel,
161
+ dim=offsets.shape,
162
+ inputs=[missing_index, mask, offsets, indices_temp.array, offsets],
163
+ device=mask.device,
164
+ )
165
+
166
+ return indices_temp, offsets_temp
167
+
168
+
169
+ @wp.kernel
170
+ def _prepare_node_sort_kernel(
171
+ node_indices: wp.array(dtype=int),
172
+ sort_keys: wp.array(dtype=int),
173
+ sort_values: wp.array(dtype=int),
174
+ divisor: int,
175
+ ):
176
+ i = wp.tid()
177
+ node = node_indices[i]
178
+ sort_keys[i] = wp.where(node >= 0, node, NULL_NODE_INDEX)
179
+ sort_values[i] = i // divisor
180
+
181
+
182
+ @wp.kernel
183
+ def _scatter_node_counts(
184
+ unique_counts: wp.array(dtype=int),
185
+ unique_node_indices: wp.array(dtype=int),
186
+ node_counts: wp.array(dtype=int),
187
+ unique_node_count: wp.array(dtype=int),
188
+ ):
189
+ i = wp.tid()
190
+
191
+ if i >= unique_node_count[0]:
192
+ return
193
+
194
+ node_index = unique_node_indices[i]
195
+ if node_index == NULL_NODE_INDEX:
196
+ wp.atomic_sub(unique_node_count, 0, 1)
197
+ return
198
+
199
+ node_counts[1 + node_index] = unique_counts[i]
200
+
201
+
202
+ @wp.kernel
203
+ def _masked_indices_kernel(
204
+ missing_index: int,
205
+ mask: wp.array(dtype=int),
206
+ offsets: wp.array(dtype=int),
207
+ masked_to_global: wp.array(dtype=int),
208
+ global_to_masked: wp.array(dtype=int),
209
+ ):
210
+ i = wp.tid()
211
+
212
+ if mask[i] == 0:
213
+ global_to_masked[i] = missing_index
214
+ else:
215
+ masked_idx = offsets[i] - 1
216
+ global_to_masked[i] = masked_idx
217
+ masked_to_global[masked_idx] = i
218
+
219
+
220
+ def grid_to_tris(Nx: int, Ny: int):
221
+ """Constructs a triangular mesh topology by dividing each cell of a dense 2D grid into two triangles.
222
+
223
+ The resulting triangles will be oriented counter-clockwise assuming that `y` is the fastest moving index direction
224
+
225
+ Args:
226
+ Nx: Resolution of the grid along `x` dimension
227
+ Ny: Resolution of the grid along `y` dimension
228
+
229
+ Returns:
230
+ Array of shape (2 * Nx * Ny, 3) containing vertex indices for each triangle
231
+ """
232
+
233
+ cx, cy = np.meshgrid(np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), indexing="ij")
234
+
235
+ vidx = np.transpose(
236
+ np.array(
237
+ [
238
+ (Ny + 1) * cx + cy,
239
+ (Ny + 1) * (cx + 1) + cy,
240
+ (Ny + 1) * (cx + 1) + (cy + 1),
241
+ (Ny + 1) * cx + cy,
242
+ (Ny + 1) * (cx + 1) + (cy + 1),
243
+ (Ny + 1) * (cx) + (cy + 1),
244
+ ]
245
+ )
246
+ ).reshape((-1, 3))
247
+
248
+ return vidx
249
+
250
+
251
+ def grid_to_tets(Nx: int, Ny: int, Nz: int):
252
+ """Constructs a tetrahedral mesh topology by diving each cell of a dense 3D grid into five tetrahedrons
253
+
254
+ The resulting tets have positive volume assuming that `z` is the fastest moving index direction
255
+
256
+ Args:
257
+ Nx: Resolution of the grid along `x` dimension
258
+ Ny: Resolution of the grid along `y` dimension
259
+ Nz: Resolution of the grid along `z` dimension
260
+
261
+ Returns:
262
+ Array of shape (5 * Nx * Ny * Nz, 4) containing vertex indices for each tet
263
+ """
264
+
265
+ # Global node indices for each cell
266
+ cx, cy, cz = np.meshgrid(
267
+ np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), np.arange(Nz, dtype=int), indexing="ij"
268
+ )
269
+
270
+ grid_vidx = np.array(
271
+ [
272
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz,
273
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz + 1,
274
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz,
275
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz + 1,
276
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz,
277
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz + 1,
278
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz,
279
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz + 1,
280
+ ]
281
+ )
282
+
283
+ # decompose grid cells into 5 tets
284
+ tet_vidx = np.array(
285
+ [
286
+ [0, 1, 2, 4],
287
+ [3, 2, 1, 7],
288
+ [5, 1, 7, 4],
289
+ [6, 7, 4, 2],
290
+ [4, 1, 2, 7],
291
+ ]
292
+ )
293
+
294
+ # Convert to 3d index coordinates
295
+ vidx_coords = np.array(
296
+ [
297
+ [0, 0, 0],
298
+ [0, 0, 1],
299
+ [0, 1, 0],
300
+ [0, 1, 1],
301
+ [1, 0, 0],
302
+ [1, 0, 1],
303
+ [1, 1, 0],
304
+ [1, 1, 1],
305
+ ]
306
+ )
307
+ tet_coords = vidx_coords[tet_vidx]
308
+
309
+ # Symmetry bits for each cell
310
+ ox, oy, oz = np.meshgrid(
311
+ np.arange(Nx, dtype=int) % 2, np.arange(Ny, dtype=int) % 2, np.arange(Nz, dtype=int) % 2, indexing="ij"
312
+ )
313
+ tet_coords = np.broadcast_to(tet_coords, shape=(*ox.shape, *tet_coords.shape))
314
+
315
+ # Flip coordinates according to symmetry
316
+ ox_bk = np.broadcast_to(ox.reshape(*ox.shape, 1, 1), tet_coords.shape[:-1])
317
+ oy_bk = np.broadcast_to(oy.reshape(*oy.shape, 1, 1), tet_coords.shape[:-1])
318
+ oz_bk = np.broadcast_to(oz.reshape(*oz.shape, 1, 1), tet_coords.shape[:-1])
319
+
320
+ tet_coords_x = tet_coords[..., 0] ^ ox_bk
321
+ tet_coords_y = tet_coords[..., 1] ^ oy_bk
322
+ tet_coords_z = tet_coords[..., 2] ^ oz_bk
323
+
324
+ # Back to local vertex indices
325
+ corner_indices = 4 * tet_coords_x + 2 * tet_coords_y + tet_coords_z
326
+
327
+ # Now go from cell-local to global node indices
328
+ # There must be a nicer way than this, but for small grids this works
329
+
330
+ corner_indices = corner_indices.reshape(-1, 4)
331
+
332
+ grid_vidx = grid_vidx.reshape((8, -1, 1))
333
+ grid_vidx = np.broadcast_to(grid_vidx, shape=(8, grid_vidx.shape[1], 5))
334
+ grid_vidx = grid_vidx.reshape((8, -1))
335
+
336
+ node_indices = np.arange(corner_indices.shape[0])
337
+ tet_grid_vidx = np.transpose(
338
+ [
339
+ grid_vidx[corner_indices[:, 0], node_indices],
340
+ grid_vidx[corner_indices[:, 1], node_indices],
341
+ grid_vidx[corner_indices[:, 2], node_indices],
342
+ grid_vidx[corner_indices[:, 3], node_indices],
343
+ ]
344
+ )
345
+
346
+ return tet_grid_vidx
347
+
348
+
349
+ def grid_to_quads(Nx: int, Ny: int):
350
+ """Constructs a quadrilateral mesh topology from a dense 2D grid
351
+
352
+ The resulting quads will be indexed counter-clockwise
353
+
354
+ Args:
355
+ Nx: Resolution of the grid along `x` dimension
356
+ Ny: Resolution of the grid along `y` dimension
357
+
358
+ Returns:
359
+ Array of shape (Nx * Ny, 4) containing vertex indices for each quadrilateral
360
+ """
361
+
362
+ quad_vtx = np.array(
363
+ [
364
+ [0, 0],
365
+ [1, 0],
366
+ [1, 1],
367
+ [0, 1],
368
+ ]
369
+ ).T
370
+
371
+ quads = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), indexing="ij"))
372
+
373
+ quads_vtx_shape = (*quads.shape, quad_vtx.shape[1])
374
+ quads_vtx = np.broadcast_to(quads.reshape(*quads.shape, 1), quads_vtx_shape) + np.broadcast_to(
375
+ quad_vtx.reshape(2, 1, 1, quad_vtx.shape[1]), quads_vtx_shape
376
+ )
377
+
378
+ quad_vtx_indices = quads_vtx[0] * (Ny + 1) + quads_vtx[1]
379
+
380
+ return quad_vtx_indices.reshape(-1, 4)
381
+
382
+
383
+ def grid_to_hexes(Nx: int, Ny: int, Nz: int):
384
+ """Constructs a hexahedral mesh topology from a dense 3D grid
385
+
386
+ The resulting hexes will be indexed following usual convention assuming that `z` is the fastest moving index direction
387
+ (counter-clockwise bottom vertices, then counter-clockwise top vertices)
388
+
389
+ Args:
390
+ Nx: Resolution of the grid along `x` dimension
391
+ Ny: Resolution of the grid along `y` dimension
392
+ Nz: Resolution of the grid along `z` dimension
393
+
394
+ Returns:
395
+ Array of shape (Nx * Ny * Nz, 8) containing vertex indices for each hexahedron
396
+ """
397
+
398
+ hex_vtx = np.array(
399
+ [
400
+ [0, 0, 0],
401
+ [1, 0, 0],
402
+ [1, 1, 0],
403
+ [0, 1, 0],
404
+ [0, 0, 1],
405
+ [1, 0, 1],
406
+ [1, 1, 1],
407
+ [0, 1, 1],
408
+ ]
409
+ ).T
410
+
411
+ hexes = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), np.arange(0, Nz), indexing="ij"))
412
+
413
+ hexes_vtx_shape = (*hexes.shape, hex_vtx.shape[1])
414
+ hexes_vtx = np.broadcast_to(hexes.reshape(*hexes.shape, 1), hexes_vtx_shape) + np.broadcast_to(
415
+ hex_vtx.reshape(3, 1, 1, 1, hex_vtx.shape[1]), hexes_vtx_shape
416
+ )
417
+
418
+ hexes_vtx_indices = hexes_vtx[0] * (Nz + 1) * (Ny + 1) + hexes_vtx[1] * (Nz + 1) + hexes_vtx[2]
419
+
420
+ return hexes_vtx_indices.reshape(-1, 8)
warp/jax.py ADDED
@@ -0,0 +1,187 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import warp
17
+
18
+
19
+ def device_to_jax(warp_device: warp.context.Devicelike):
20
+ """Return the Jax device corresponding to a Warp device.
21
+
22
+ Returns:
23
+ :class:`jax.Device`
24
+
25
+ Raises:
26
+ RuntimeError: Failed to find the corresponding Jax device.
27
+ """
28
+ import jax
29
+
30
+ d = warp.get_device(warp_device)
31
+
32
+ if d.is_cuda:
33
+ cuda_devices = jax.devices("cuda")
34
+ if d.ordinal >= len(cuda_devices):
35
+ raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
36
+ return cuda_devices[d.ordinal]
37
+ else:
38
+ cpu_devices = jax.devices("cpu")
39
+ if not cpu_devices:
40
+ raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
41
+ return cpu_devices[0]
42
+
43
+
44
+ def device_from_jax(jax_device) -> warp.context.Device:
45
+ """Return the Warp device corresponding to a Jax device.
46
+
47
+ Args:
48
+ jax_device (jax.Device): A Jax device descriptor.
49
+
50
+ Raises:
51
+ RuntimeError: The Jax device is neither a CPU nor GPU device.
52
+ """
53
+ if jax_device.platform == "cpu":
54
+ return warp.get_device("cpu")
55
+ elif jax_device.platform == "gpu":
56
+ return warp.get_cuda_device(jax_device.id)
57
+ else:
58
+ raise RuntimeError(f"Unsupported Jax device platform '{jax_device.platform}'")
59
+
60
+
61
+ def get_jax_device():
62
+ """Get the current Jax device."""
63
+ import jax
64
+
65
+ # TODO: is there a simpler way of getting the Jax "current" device?
66
+ # check if jax.default_device() context manager is active
67
+ device = jax.config.jax_default_device
68
+ # if default device is not set, use first device
69
+ if device is None:
70
+ device = jax.local_devices()[0]
71
+ return device
72
+
73
+
74
+ def dtype_to_jax(warp_dtype):
75
+ """Return the Jax dtype corresponding to a Warp dtype.
76
+
77
+ Args:
78
+ warp_dtype: A Warp data type that has a corresponding Jax data type.
79
+
80
+ Raises:
81
+ TypeError: Unable to find a corresponding Jax data type.
82
+ """
83
+ # initialize lookup table on first call to defer jax import
84
+ if dtype_to_jax.type_map is None:
85
+ import jax.numpy as jp
86
+
87
+ dtype_to_jax.type_map = {
88
+ warp.float16: jp.float16,
89
+ warp.float32: jp.float32,
90
+ warp.float64: jp.float64,
91
+ warp.int8: jp.int8,
92
+ warp.int16: jp.int16,
93
+ warp.int32: jp.int32,
94
+ warp.int64: jp.int64,
95
+ warp.uint8: jp.uint8,
96
+ warp.uint16: jp.uint16,
97
+ warp.uint32: jp.uint32,
98
+ warp.uint64: jp.uint64,
99
+ warp.bool: jp.bool_,
100
+ }
101
+
102
+ jax_dtype = dtype_to_jax.type_map.get(warp_dtype)
103
+ if jax_dtype is not None:
104
+ return jax_dtype
105
+ else:
106
+ raise TypeError(f"Cannot convert {warp_dtype} to a Jax type")
107
+
108
+
109
+ def dtype_from_jax(jax_dtype):
110
+ """Return the Warp dtype corresponding to a Jax dtype.
111
+
112
+ Raises:
113
+ TypeError: Unable to find a corresponding Warp data type.
114
+ """
115
+ # initialize lookup table on first call to defer jax import
116
+ if dtype_from_jax.type_map is None:
117
+ import jax.numpy as jp
118
+
119
+ dtype_from_jax.type_map = {
120
+ # Jax scalar types
121
+ jp.float16: warp.float16,
122
+ jp.float32: warp.float32,
123
+ jp.float64: warp.float64,
124
+ jp.int8: warp.int8,
125
+ jp.int16: warp.int16,
126
+ jp.int32: warp.int32,
127
+ jp.int64: warp.int64,
128
+ jp.uint8: warp.uint8,
129
+ jp.uint16: warp.uint16,
130
+ jp.uint32: warp.uint32,
131
+ jp.uint64: warp.uint64,
132
+ jp.bool_: warp.bool,
133
+ # Jax dtype objects
134
+ jp.dtype(jp.float16): warp.float16,
135
+ jp.dtype(jp.float32): warp.float32,
136
+ jp.dtype(jp.float64): warp.float64,
137
+ jp.dtype(jp.int8): warp.int8,
138
+ jp.dtype(jp.int16): warp.int16,
139
+ jp.dtype(jp.int32): warp.int32,
140
+ jp.dtype(jp.int64): warp.int64,
141
+ jp.dtype(jp.uint8): warp.uint8,
142
+ jp.dtype(jp.uint16): warp.uint16,
143
+ jp.dtype(jp.uint32): warp.uint32,
144
+ jp.dtype(jp.uint64): warp.uint64,
145
+ jp.dtype(jp.bool_): warp.bool,
146
+ }
147
+
148
+ wp_dtype = dtype_from_jax.type_map.get(jax_dtype)
149
+ if wp_dtype is not None:
150
+ return wp_dtype
151
+ else:
152
+ raise TypeError(f"Cannot convert {jax_dtype} to a Warp type")
153
+
154
+
155
+ # lookup tables initialized when needed
156
+ dtype_from_jax.type_map = None
157
+ dtype_to_jax.type_map = None
158
+
159
+
160
+ def to_jax(warp_array):
161
+ """
162
+ Convert a Warp array to a Jax array without copying the data.
163
+
164
+ Args:
165
+ warp_array (warp.array): The Warp array to convert.
166
+
167
+ Returns:
168
+ jax.Array: The converted Jax array.
169
+ """
170
+ import jax.dlpack
171
+
172
+ return jax.dlpack.from_dlpack(warp_array)
173
+
174
+
175
+ def from_jax(jax_array, dtype=None) -> warp.array:
176
+ """Convert a Jax array to a Warp array without copying the data.
177
+
178
+ Args:
179
+ jax_array (jax.Array): The Jax array to convert.
180
+ dtype (optional): The target data type of the resulting Warp array. Defaults to the Jax array's data type mapped to a Warp data type.
181
+
182
+ Returns:
183
+ warp.array: The converted Warp array.
184
+ """
185
+ import jax.dlpack
186
+
187
+ return warp.from_dlpack(jax.dlpack.to_dlpack(jax_array), dtype=dtype)
@@ -0,0 +1,16 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from .custom_call import jax_kernel