warp-lang 1.7.0__py3-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +139 -0
- warp/__init__.pyi +1 -0
- warp/autograd.py +1142 -0
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +557 -0
- warp/build_dll.py +405 -0
- warp/builtins.py +6855 -0
- warp/codegen.py +3969 -0
- warp/config.py +158 -0
- warp/constants.py +57 -0
- warp/context.py +6812 -0
- warp/dlpack.py +462 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -0
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -0
- warp/examples/assets/nv_humanoid.xml +183 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/quadruped.urdf +268 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +194 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +193 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +423 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +178 -0
- warp/examples/fem/example_convection_diffusion_dg.py +204 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +220 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_magnetostatics.py +240 -0
- warp/examples/fem/example_mixed_elasticity.py +291 -0
- warp/examples/fem/example_navier_stokes.py +261 -0
- warp/examples/fem/example_nonconforming_contact.py +298 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +352 -0
- warp/examples/fem/utils.py +1000 -0
- warp/examples/interop/example_jax_callable.py +116 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +205 -0
- warp/examples/optim/example_bounce.py +266 -0
- warp/examples/optim/example_cloth_throw.py +228 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_drone.py +870 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/optim/example_inverse_kinematics.py +182 -0
- warp/examples/optim/example_inverse_kinematics_torch.py +191 -0
- warp/examples/optim/example_softbody_properties.py +400 -0
- warp/examples/optim/example_spring_cage.py +245 -0
- warp/examples/optim/example_trajectory.py +227 -0
- warp/examples/sim/example_cartpole.py +143 -0
- warp/examples/sim/example_cloth.py +225 -0
- warp/examples/sim/example_cloth_self_contact.py +322 -0
- warp/examples/sim/example_granular.py +130 -0
- warp/examples/sim/example_granular_collision_sdf.py +202 -0
- warp/examples/sim/example_jacobian_ik.py +244 -0
- warp/examples/sim/example_particle_chain.py +124 -0
- warp/examples/sim/example_quadruped.py +203 -0
- warp/examples/sim/example_rigid_chain.py +203 -0
- warp/examples/sim/example_rigid_contact.py +195 -0
- warp/examples/sim/example_rigid_force.py +133 -0
- warp/examples/sim/example_rigid_gyroscopic.py +115 -0
- warp/examples/sim/example_rigid_soft_contact.py +140 -0
- warp/examples/sim/example_soft_body.py +196 -0
- warp/examples/tile/example_tile_cholesky.py +87 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mlp.py +383 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/examples/tile/example_tile_walker.py +327 -0
- warp/fabric.py +355 -0
- warp/fem/__init__.py +106 -0
- warp/fem/adaptivity.py +508 -0
- warp/fem/cache.py +572 -0
- warp/fem/dirichlet.py +202 -0
- warp/fem/domain.py +411 -0
- warp/fem/field/__init__.py +125 -0
- warp/fem/field/field.py +619 -0
- warp/fem/field/nodal_field.py +326 -0
- warp/fem/field/restriction.py +37 -0
- warp/fem/field/virtual.py +848 -0
- warp/fem/geometry/__init__.py +32 -0
- warp/fem/geometry/adaptive_nanogrid.py +857 -0
- warp/fem/geometry/closest_point.py +84 -0
- warp/fem/geometry/deformed_geometry.py +221 -0
- warp/fem/geometry/element.py +776 -0
- warp/fem/geometry/geometry.py +362 -0
- warp/fem/geometry/grid_2d.py +392 -0
- warp/fem/geometry/grid_3d.py +452 -0
- warp/fem/geometry/hexmesh.py +911 -0
- warp/fem/geometry/nanogrid.py +571 -0
- warp/fem/geometry/partition.py +389 -0
- warp/fem/geometry/quadmesh.py +663 -0
- warp/fem/geometry/tetmesh.py +855 -0
- warp/fem/geometry/trimesh.py +806 -0
- warp/fem/integrate.py +2335 -0
- warp/fem/linalg.py +419 -0
- warp/fem/operator.py +293 -0
- warp/fem/polynomial.py +229 -0
- warp/fem/quadrature/__init__.py +17 -0
- warp/fem/quadrature/pic_quadrature.py +299 -0
- warp/fem/quadrature/quadrature.py +591 -0
- warp/fem/space/__init__.py +228 -0
- warp/fem/space/basis_function_space.py +468 -0
- warp/fem/space/basis_space.py +667 -0
- warp/fem/space/dof_mapper.py +251 -0
- warp/fem/space/function_space.py +309 -0
- warp/fem/space/grid_2d_function_space.py +177 -0
- warp/fem/space/grid_3d_function_space.py +227 -0
- warp/fem/space/hexmesh_function_space.py +257 -0
- warp/fem/space/nanogrid_function_space.py +201 -0
- warp/fem/space/partition.py +367 -0
- warp/fem/space/quadmesh_function_space.py +223 -0
- warp/fem/space/restriction.py +179 -0
- warp/fem/space/shape/__init__.py +143 -0
- warp/fem/space/shape/cube_shape_function.py +1105 -0
- warp/fem/space/shape/shape_function.py +133 -0
- warp/fem/space/shape/square_shape_function.py +926 -0
- warp/fem/space/shape/tet_shape_function.py +834 -0
- warp/fem/space/shape/triangle_shape_function.py +672 -0
- warp/fem/space/tetmesh_function_space.py +271 -0
- warp/fem/space/topology.py +424 -0
- warp/fem/space/trimesh_function_space.py +194 -0
- warp/fem/types.py +99 -0
- warp/fem/utils.py +420 -0
- warp/jax.py +187 -0
- warp/jax_experimental/__init__.py +16 -0
- warp/jax_experimental/custom_call.py +351 -0
- warp/jax_experimental/ffi.py +698 -0
- warp/jax_experimental/xla_ffi.py +602 -0
- warp/math.py +244 -0
- warp/native/array.h +1145 -0
- warp/native/builtin.h +1800 -0
- warp/native/bvh.cpp +492 -0
- warp/native/bvh.cu +791 -0
- warp/native/bvh.h +554 -0
- warp/native/clang/clang.cpp +536 -0
- warp/native/coloring.cpp +613 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +362 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +646 -0
- warp/native/cuda_util.h +307 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +1878 -0
- warp/native/fabric.h +245 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +87 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1230 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +339 -0
- warp/native/marching.cpp +19 -0
- warp/native/marching.cu +514 -0
- warp/native/marching.h +19 -0
- warp/native/mat.h +2220 -0
- warp/native/mathdx.cpp +87 -0
- warp/native/matnn.h +343 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +404 -0
- warp/native/mesh.h +1980 -0
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1371 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +139 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +364 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +53 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +277 -0
- warp/native/sort.h +33 -0
- warp/native/sparse.cpp +378 -0
- warp/native/sparse.cu +524 -0
- warp/native/spatial.h +657 -0
- warp/native/svd.h +702 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +2584 -0
- warp/native/tile_reduce.h +264 -0
- warp/native/vec.h +1426 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +67 -0
- warp/native/volume.h +969 -0
- warp/native/volume_builder.cu +477 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1082 -0
- warp/native/warp.cu +3636 -0
- warp/native/warp.h +381 -0
- warp/optim/__init__.py +17 -0
- warp/optim/adam.py +163 -0
- warp/optim/linear.py +1137 -0
- warp/optim/sgd.py +112 -0
- warp/paddle.py +407 -0
- warp/render/__init__.py +18 -0
- warp/render/render_opengl.py +3518 -0
- warp/render/render_usd.py +784 -0
- warp/render/utils.py +160 -0
- warp/sim/__init__.py +65 -0
- warp/sim/articulation.py +793 -0
- warp/sim/collide.py +2395 -0
- warp/sim/graph_coloring.py +300 -0
- warp/sim/import_mjcf.py +790 -0
- warp/sim/import_snu.py +227 -0
- warp/sim/import_urdf.py +579 -0
- warp/sim/import_usd.py +894 -0
- warp/sim/inertia.py +324 -0
- warp/sim/integrator.py +242 -0
- warp/sim/integrator_euler.py +1997 -0
- warp/sim/integrator_featherstone.py +2101 -0
- warp/sim/integrator_vbd.py +2048 -0
- warp/sim/integrator_xpbd.py +3292 -0
- warp/sim/model.py +4791 -0
- warp/sim/particles.py +121 -0
- warp/sim/render.py +427 -0
- warp/sim/utils.py +428 -0
- warp/sparse.py +2057 -0
- warp/stubs.py +3333 -0
- warp/tape.py +1203 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +634 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +200 -0
- warp/tests/geometry/test_hash_grid.py +221 -0
- warp/tests/geometry/test_marching_cubes.py +74 -0
- warp/tests/geometry/test_mesh.py +316 -0
- warp/tests/geometry/test_mesh_query_aabb.py +399 -0
- warp/tests/geometry/test_mesh_query_point.py +932 -0
- warp/tests/geometry/test_mesh_query_ray.py +311 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +729 -0
- warp/tests/interop/test_jax.py +371 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/sim/__init__.py +0 -0
- warp/tests/sim/disabled_kinematics.py +244 -0
- warp/tests/sim/flaky_test_sim_grad.py +290 -0
- warp/tests/sim/test_collision.py +604 -0
- warp/tests/sim/test_coloring.py +258 -0
- warp/tests/sim/test_model.py +224 -0
- warp/tests/sim/test_sim_grad_bounce_linear.py +212 -0
- warp/tests/sim/test_sim_kinematics.py +98 -0
- warp/tests/sim/test_vbd.py +597 -0
- warp/tests/test_adam.py +163 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +2972 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +250 -0
- warp/tests/test_atomic.py +153 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +1298 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +810 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +252 -0
- warp/tests/test_context.py +42 -0
- warp/tests/test_copy.py +238 -0
- warp/tests/test_ctypes.py +638 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +97 -0
- warp/tests/test_examples.py +482 -0
- warp/tests/test_fabricarray.py +996 -0
- warp/tests/test_fast_math.py +74 -0
- warp/tests/test_fem.py +2003 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +454 -0
- warp/tests/test_future_annotations.py +98 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +73 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +193 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_mat.py +2089 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +178 -0
- warp/tests/test_mlp.py +282 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +44 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +339 -0
- warp/tests/test_quat.py +2315 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +302 -0
- warp/tests/test_rounding.py +185 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +105 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +582 -0
- warp/tests/test_spatial.py +2229 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +592 -0
- warp/tests/test_struct.py +734 -0
- warp/tests/test_tape.py +204 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +145 -0
- warp/tests/test_types.py +562 -0
- warp/tests/test_utils.py +588 -0
- warp/tests/test_vec.py +1487 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +780 -0
- warp/tests/tile/test_tile_load.py +407 -0
- warp/tests/tile/test_tile_mathdx.py +208 -0
- warp/tests/tile/test_tile_mlp.py +402 -0
- warp/tests/tile/test_tile_reduce.py +447 -0
- warp/tests/tile/test_tile_shared_memory.py +247 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +427 -0
- warp/tests/unittest_utils.py +468 -0
- warp/tests/walkthrough_debug.py +93 -0
- warp/thirdparty/__init__.py +0 -0
- warp/thirdparty/appdirs.py +598 -0
- warp/thirdparty/dlpack.py +145 -0
- warp/thirdparty/unittest_parallel.py +570 -0
- warp/torch.py +391 -0
- warp/types.py +5230 -0
- warp/utils.py +1137 -0
- warp_lang-1.7.0.dist-info/METADATA +516 -0
- warp_lang-1.7.0.dist-info/RECORD +429 -0
- warp_lang-1.7.0.dist-info/WHEEL +5 -0
- warp_lang-1.7.0.dist-info/licenses/LICENSE.md +202 -0
- warp_lang-1.7.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1096 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import unittest
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import warp as wp
|
|
21
|
+
from warp.tests.unittest_utils import *
|
|
22
|
+
|
|
23
|
+
np_signed_int_types = [
|
|
24
|
+
np.int8,
|
|
25
|
+
np.int16,
|
|
26
|
+
np.int32,
|
|
27
|
+
np.int64,
|
|
28
|
+
np.byte,
|
|
29
|
+
]
|
|
30
|
+
|
|
31
|
+
np_unsigned_int_types = [
|
|
32
|
+
np.uint8,
|
|
33
|
+
np.uint16,
|
|
34
|
+
np.uint32,
|
|
35
|
+
np.uint64,
|
|
36
|
+
np.ubyte,
|
|
37
|
+
]
|
|
38
|
+
|
|
39
|
+
np_int_types = np_signed_int_types + np_unsigned_int_types
|
|
40
|
+
|
|
41
|
+
np_float_types = [np.float16, np.float32, np.float64]
|
|
42
|
+
|
|
43
|
+
np_scalar_types = np_int_types + np_float_types
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def randvals(rng, shape, dtype):
|
|
47
|
+
if dtype in np_float_types:
|
|
48
|
+
return rng.standard_normal(size=shape).astype(dtype)
|
|
49
|
+
elif dtype in [np.int8, np.uint8, np.byte, np.ubyte]:
|
|
50
|
+
return rng.integers(1, high=3, size=shape, dtype=dtype)
|
|
51
|
+
return rng.integers(1, high=5, size=shape, dtype=dtype)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
kernel_cache = {}
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def getkernel(func, suffix=""):
|
|
58
|
+
key = func.__name__ + "_" + suffix
|
|
59
|
+
if key not in kernel_cache:
|
|
60
|
+
kernel_cache[key] = wp.Kernel(func=func, key=key)
|
|
61
|
+
return kernel_cache[key]
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def get_select_kernel(dtype):
|
|
65
|
+
def output_select_kernel_fn(
|
|
66
|
+
input: wp.array(dtype=dtype),
|
|
67
|
+
index: int,
|
|
68
|
+
out: wp.array(dtype=dtype),
|
|
69
|
+
):
|
|
70
|
+
out[0] = input[index]
|
|
71
|
+
|
|
72
|
+
return getkernel(output_select_kernel_fn, suffix=dtype.__name__)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
def get_select_kernel2(dtype):
|
|
76
|
+
def output_select_kernel2_fn(
|
|
77
|
+
input: wp.array(dtype=dtype, ndim=2),
|
|
78
|
+
index0: int,
|
|
79
|
+
index1: int,
|
|
80
|
+
out: wp.array(dtype=dtype),
|
|
81
|
+
):
|
|
82
|
+
out[0] = input[index0, index1]
|
|
83
|
+
|
|
84
|
+
return getkernel(output_select_kernel2_fn, suffix=dtype.__name__)
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def test_arrays(test, device, dtype):
|
|
88
|
+
rng = np.random.default_rng(123)
|
|
89
|
+
|
|
90
|
+
tol = {
|
|
91
|
+
np.float16: 1.0e-3,
|
|
92
|
+
np.float32: 1.0e-6,
|
|
93
|
+
np.float64: 1.0e-8,
|
|
94
|
+
}.get(dtype, 0)
|
|
95
|
+
|
|
96
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
97
|
+
arr_np = randvals(rng, (10, 5), dtype)
|
|
98
|
+
arr = wp.array(arr_np, dtype=wptype, requires_grad=True, device=device)
|
|
99
|
+
|
|
100
|
+
assert_np_equal(arr.numpy(), arr_np, tol=tol)
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def test_unary_ops(test, device, dtype, register_kernels=False):
|
|
104
|
+
rng = np.random.default_rng(123)
|
|
105
|
+
|
|
106
|
+
tol = {
|
|
107
|
+
np.float16: 5.0e-3,
|
|
108
|
+
np.float32: 1.0e-6,
|
|
109
|
+
np.float64: 1.0e-8,
|
|
110
|
+
}.get(dtype, 0)
|
|
111
|
+
|
|
112
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
113
|
+
|
|
114
|
+
def check_unary(
|
|
115
|
+
inputs: wp.array(dtype=wptype, ndim=2),
|
|
116
|
+
outputs: wp.array(dtype=wptype, ndim=2),
|
|
117
|
+
):
|
|
118
|
+
for i in range(10):
|
|
119
|
+
i0 = inputs[0, i]
|
|
120
|
+
i1 = inputs[1, i]
|
|
121
|
+
i2 = inputs[2, i]
|
|
122
|
+
i3 = inputs[3, i]
|
|
123
|
+
i4 = inputs[4, i]
|
|
124
|
+
|
|
125
|
+
# multiply outputs by 2 so we've got something to backpropagate:
|
|
126
|
+
outputs[0, i] = wptype(2.0) * (+i0)
|
|
127
|
+
outputs[1, i] = wptype(2.0) * (-i1)
|
|
128
|
+
outputs[2, i] = wptype(2.0) * wp.sign(i2)
|
|
129
|
+
outputs[3, i] = wptype(2.0) * wp.abs(i3)
|
|
130
|
+
outputs[4, i] = wptype(2.0) * wp.step(i4)
|
|
131
|
+
|
|
132
|
+
kernel = getkernel(check_unary, suffix=dtype.__name__)
|
|
133
|
+
output_select_kernel = get_select_kernel2(wptype)
|
|
134
|
+
|
|
135
|
+
if register_kernels:
|
|
136
|
+
return
|
|
137
|
+
|
|
138
|
+
if dtype in np_float_types:
|
|
139
|
+
inputs = wp.array(
|
|
140
|
+
rng.standard_normal(size=(5, 10)).astype(dtype), dtype=wptype, requires_grad=True, device=device
|
|
141
|
+
)
|
|
142
|
+
else:
|
|
143
|
+
inputs = wp.array(
|
|
144
|
+
rng.integers(-2, high=3, size=(5, 10), dtype=dtype), dtype=wptype, requires_grad=True, device=device
|
|
145
|
+
)
|
|
146
|
+
outputs = wp.zeros_like(inputs)
|
|
147
|
+
|
|
148
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
149
|
+
assert_np_equal(outputs.numpy()[0], 2 * inputs.numpy()[0], tol=tol)
|
|
150
|
+
assert_np_equal(outputs.numpy()[1], -2 * inputs.numpy()[1], tol=tol)
|
|
151
|
+
expected = 2 * np.sign(inputs.numpy()[2])
|
|
152
|
+
expected[expected == 0] = 2
|
|
153
|
+
assert_np_equal(outputs.numpy()[2], expected, tol=tol)
|
|
154
|
+
assert_np_equal(outputs.numpy()[3], 2 * np.abs(inputs.numpy()[3]), tol=tol)
|
|
155
|
+
assert_np_equal(outputs.numpy()[4], 2 * (1 - np.heaviside(inputs.numpy()[4], 1)), tol=tol)
|
|
156
|
+
|
|
157
|
+
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
158
|
+
if dtype in np_float_types:
|
|
159
|
+
for i in range(10):
|
|
160
|
+
# grad of 2x:
|
|
161
|
+
tape = wp.Tape()
|
|
162
|
+
with tape:
|
|
163
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
164
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device)
|
|
165
|
+
|
|
166
|
+
tape.backward(loss=out)
|
|
167
|
+
expected_grads = np.zeros_like(inputs.numpy())
|
|
168
|
+
expected_grads[0, i] = 2
|
|
169
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol)
|
|
170
|
+
tape.zero()
|
|
171
|
+
|
|
172
|
+
# grad of -2x:
|
|
173
|
+
tape = wp.Tape()
|
|
174
|
+
with tape:
|
|
175
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
176
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device)
|
|
177
|
+
|
|
178
|
+
tape.backward(loss=out)
|
|
179
|
+
expected_grads = np.zeros_like(inputs.numpy())
|
|
180
|
+
expected_grads[1, i] = -2
|
|
181
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol)
|
|
182
|
+
tape.zero()
|
|
183
|
+
|
|
184
|
+
# grad of 2 * sign(x):
|
|
185
|
+
tape = wp.Tape()
|
|
186
|
+
with tape:
|
|
187
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
188
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 2, i], outputs=[out], device=device)
|
|
189
|
+
|
|
190
|
+
tape.backward(loss=out)
|
|
191
|
+
expected_grads = np.zeros_like(inputs.numpy())
|
|
192
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol)
|
|
193
|
+
tape.zero()
|
|
194
|
+
|
|
195
|
+
# grad of 2 * abs(x):
|
|
196
|
+
tape = wp.Tape()
|
|
197
|
+
with tape:
|
|
198
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
199
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 3, i], outputs=[out], device=device)
|
|
200
|
+
|
|
201
|
+
tape.backward(loss=out)
|
|
202
|
+
expected_grads = np.zeros_like(inputs.numpy())
|
|
203
|
+
expected_grads[3, i] = 2 * np.sign(inputs.numpy()[3, i])
|
|
204
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol)
|
|
205
|
+
tape.zero()
|
|
206
|
+
|
|
207
|
+
# grad of 2 * step(x):
|
|
208
|
+
tape = wp.Tape()
|
|
209
|
+
with tape:
|
|
210
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
211
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 4, i], outputs=[out], device=device)
|
|
212
|
+
|
|
213
|
+
tape.backward(loss=out)
|
|
214
|
+
expected_grads = np.zeros_like(inputs.numpy())
|
|
215
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol)
|
|
216
|
+
tape.zero()
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
def test_nonzero(test, device, dtype, register_kernels=False):
|
|
220
|
+
rng = np.random.default_rng(123)
|
|
221
|
+
|
|
222
|
+
tol = {
|
|
223
|
+
np.float16: 5.0e-3,
|
|
224
|
+
np.float32: 1.0e-6,
|
|
225
|
+
np.float64: 1.0e-8,
|
|
226
|
+
}.get(dtype, 0)
|
|
227
|
+
|
|
228
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
229
|
+
|
|
230
|
+
def check_nonzero(
|
|
231
|
+
inputs: wp.array(dtype=wptype),
|
|
232
|
+
outputs: wp.array(dtype=wptype),
|
|
233
|
+
):
|
|
234
|
+
for i in range(10):
|
|
235
|
+
i0 = inputs[i]
|
|
236
|
+
outputs[i] = wp.nonzero(i0)
|
|
237
|
+
|
|
238
|
+
kernel = getkernel(check_nonzero, suffix=dtype.__name__)
|
|
239
|
+
output_select_kernel = get_select_kernel(wptype)
|
|
240
|
+
|
|
241
|
+
if register_kernels:
|
|
242
|
+
return
|
|
243
|
+
|
|
244
|
+
inputs = wp.array(rng.integers(-2, high=3, size=10).astype(dtype), dtype=wptype, requires_grad=True, device=device)
|
|
245
|
+
outputs = wp.zeros_like(inputs)
|
|
246
|
+
|
|
247
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
248
|
+
assert_np_equal(outputs.numpy(), (inputs.numpy() != 0))
|
|
249
|
+
|
|
250
|
+
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
251
|
+
if dtype in np_float_types:
|
|
252
|
+
for i in range(10):
|
|
253
|
+
# grad should just be zero:
|
|
254
|
+
tape = wp.Tape()
|
|
255
|
+
with tape:
|
|
256
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
257
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[out], device=device)
|
|
258
|
+
|
|
259
|
+
tape.backward(loss=out)
|
|
260
|
+
expected_grads = np.zeros_like(inputs.numpy())
|
|
261
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected_grads, tol=tol)
|
|
262
|
+
tape.zero()
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
def test_binary_ops(test, device, dtype, register_kernels=False):
|
|
266
|
+
rng = np.random.default_rng(123)
|
|
267
|
+
|
|
268
|
+
tol = {
|
|
269
|
+
np.float16: 5.0e-2,
|
|
270
|
+
np.float32: 1.0e-6,
|
|
271
|
+
np.float64: 1.0e-8,
|
|
272
|
+
}.get(dtype, 0)
|
|
273
|
+
|
|
274
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
275
|
+
|
|
276
|
+
def check_binary_ops(
|
|
277
|
+
in1: wp.array(dtype=wptype, ndim=2),
|
|
278
|
+
in2: wp.array(dtype=wptype, ndim=2),
|
|
279
|
+
outputs: wp.array(dtype=wptype, ndim=2),
|
|
280
|
+
):
|
|
281
|
+
for i in range(10):
|
|
282
|
+
i0 = in1[0, i]
|
|
283
|
+
i1 = in1[1, i]
|
|
284
|
+
i2 = in1[2, i]
|
|
285
|
+
i3 = in1[3, i]
|
|
286
|
+
i4 = in1[4, i]
|
|
287
|
+
i5 = in1[5, i]
|
|
288
|
+
i6 = in1[6, i]
|
|
289
|
+
i7 = in1[7, i]
|
|
290
|
+
|
|
291
|
+
j0 = in2[0, i]
|
|
292
|
+
j1 = in2[1, i]
|
|
293
|
+
j2 = in2[2, i]
|
|
294
|
+
j3 = in2[3, i]
|
|
295
|
+
j4 = in2[4, i]
|
|
296
|
+
j5 = in2[5, i]
|
|
297
|
+
j6 = in2[6, i]
|
|
298
|
+
j7 = in2[7, i]
|
|
299
|
+
|
|
300
|
+
outputs[0, i] = wptype(2) * wp.mul(i0, j0)
|
|
301
|
+
outputs[1, i] = wptype(2) * wp.div(i1, j1)
|
|
302
|
+
outputs[2, i] = wptype(2) * wp.add(i2, j2)
|
|
303
|
+
outputs[3, i] = wptype(2) * wp.sub(i3, j3)
|
|
304
|
+
outputs[4, i] = wptype(2) * wp.mod(i4, j4)
|
|
305
|
+
outputs[5, i] = wptype(2) * wp.min(i5, j5)
|
|
306
|
+
outputs[6, i] = wptype(2) * wp.max(i6, j6)
|
|
307
|
+
outputs[7, i] = wptype(2) * wp.floordiv(i7, j7)
|
|
308
|
+
|
|
309
|
+
kernel = getkernel(check_binary_ops, suffix=dtype.__name__)
|
|
310
|
+
output_select_kernel = get_select_kernel2(wptype)
|
|
311
|
+
|
|
312
|
+
if register_kernels:
|
|
313
|
+
return
|
|
314
|
+
|
|
315
|
+
vals1 = randvals(rng, [8, 10], dtype)
|
|
316
|
+
if dtype in [np_unsigned_int_types]:
|
|
317
|
+
vals2 = vals1 + randvals(rng, [8, 10], dtype)
|
|
318
|
+
else:
|
|
319
|
+
vals2 = np.abs(randvals(rng, [8, 10], dtype))
|
|
320
|
+
|
|
321
|
+
in1 = wp.array(vals1, dtype=wptype, requires_grad=True, device=device)
|
|
322
|
+
in2 = wp.array(vals2, dtype=wptype, requires_grad=True, device=device)
|
|
323
|
+
|
|
324
|
+
outputs = wp.zeros_like(in1)
|
|
325
|
+
|
|
326
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
327
|
+
|
|
328
|
+
assert_np_equal(outputs.numpy()[0], 2 * in1.numpy()[0] * in2.numpy()[0], tol=tol)
|
|
329
|
+
if dtype in np_float_types:
|
|
330
|
+
assert_np_equal(outputs.numpy()[1], 2 * in1.numpy()[1] / (in2.numpy()[1]), tol=tol)
|
|
331
|
+
else:
|
|
332
|
+
assert_np_equal(outputs.numpy()[1], 2 * (in1.numpy()[1] // (in2.numpy()[1])), tol=tol)
|
|
333
|
+
assert_np_equal(outputs.numpy()[2], 2 * (in1.numpy()[2] + (in2.numpy()[2])), tol=tol)
|
|
334
|
+
assert_np_equal(outputs.numpy()[3], 2 * (in1.numpy()[3] - (in2.numpy()[3])), tol=tol)
|
|
335
|
+
|
|
336
|
+
# ...so this is actually the desired behaviour right? Looks like wp.mod doesn't behave like
|
|
337
|
+
# python's % operator or np.mod()...
|
|
338
|
+
assert_np_equal(
|
|
339
|
+
outputs.numpy()[4],
|
|
340
|
+
2
|
|
341
|
+
* (
|
|
342
|
+
(in1.numpy()[4])
|
|
343
|
+
- (in2.numpy()[4]) * np.sign(in1.numpy()[4]) * np.floor(np.abs(in1.numpy()[4]) / (in2.numpy()[4]))
|
|
344
|
+
),
|
|
345
|
+
tol=tol,
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
assert_np_equal(outputs.numpy()[5], 2 * np.minimum(in1.numpy()[5], in2.numpy()[5]), tol=tol)
|
|
349
|
+
assert_np_equal(outputs.numpy()[6], 2 * np.maximum(in1.numpy()[6], in2.numpy()[6]), tol=tol)
|
|
350
|
+
assert_np_equal(outputs.numpy()[7], 2 * np.floor_divide(in1.numpy()[7], in2.numpy()[7]), tol=tol)
|
|
351
|
+
|
|
352
|
+
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
353
|
+
if dtype in np_float_types:
|
|
354
|
+
for i in range(10):
|
|
355
|
+
# multiplication:
|
|
356
|
+
tape = wp.Tape()
|
|
357
|
+
with tape:
|
|
358
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
359
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device)
|
|
360
|
+
|
|
361
|
+
tape.backward(loss=out)
|
|
362
|
+
expected = np.zeros_like(in1.numpy())
|
|
363
|
+
expected[0, i] = 2.0 * in2.numpy()[0, i]
|
|
364
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
365
|
+
expected[0, i] = 2.0 * in1.numpy()[0, i]
|
|
366
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
367
|
+
tape.zero()
|
|
368
|
+
|
|
369
|
+
# division:
|
|
370
|
+
tape = wp.Tape()
|
|
371
|
+
with tape:
|
|
372
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
373
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device)
|
|
374
|
+
|
|
375
|
+
tape.backward(loss=out)
|
|
376
|
+
expected = np.zeros_like(in1.numpy())
|
|
377
|
+
expected[1, i] = 2.0 / (in2.numpy()[1, i])
|
|
378
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
379
|
+
# y = x1/x2
|
|
380
|
+
# dy/dx2 = -x1/x2^2
|
|
381
|
+
expected[1, i] = (-2.0) * (in1.numpy()[1, i] / (in2.numpy()[1, i] ** 2))
|
|
382
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
383
|
+
tape.zero()
|
|
384
|
+
|
|
385
|
+
# addition:
|
|
386
|
+
tape = wp.Tape()
|
|
387
|
+
with tape:
|
|
388
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
389
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 2, i], outputs=[out], device=device)
|
|
390
|
+
|
|
391
|
+
tape.backward(loss=out)
|
|
392
|
+
expected = np.zeros_like(in1.numpy())
|
|
393
|
+
expected[2, i] = 2.0
|
|
394
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
395
|
+
expected[2, i] = 2.0
|
|
396
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
397
|
+
tape.zero()
|
|
398
|
+
|
|
399
|
+
# subtraction:
|
|
400
|
+
tape = wp.Tape()
|
|
401
|
+
with tape:
|
|
402
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
403
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 3, i], outputs=[out], device=device)
|
|
404
|
+
|
|
405
|
+
tape.backward(loss=out)
|
|
406
|
+
expected = np.zeros_like(in1.numpy())
|
|
407
|
+
expected[3, i] = 2.0
|
|
408
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
409
|
+
expected[3, i] = -2.0
|
|
410
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
411
|
+
tape.zero()
|
|
412
|
+
|
|
413
|
+
# modulus. unless at discontinuities,
|
|
414
|
+
# d/dx1( x1 % x2 ) == 1
|
|
415
|
+
# d/dx2( x1 % x2 ) == 0
|
|
416
|
+
tape = wp.Tape()
|
|
417
|
+
with tape:
|
|
418
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
419
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 4, i], outputs=[out], device=device)
|
|
420
|
+
|
|
421
|
+
tape.backward(loss=out)
|
|
422
|
+
expected = np.zeros_like(in1.numpy())
|
|
423
|
+
expected[4, i] = 2.0
|
|
424
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
425
|
+
expected[4, i] = 0.0
|
|
426
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
427
|
+
tape.zero()
|
|
428
|
+
|
|
429
|
+
# min
|
|
430
|
+
tape = wp.Tape()
|
|
431
|
+
with tape:
|
|
432
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
433
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 5, i], outputs=[out], device=device)
|
|
434
|
+
|
|
435
|
+
tape.backward(loss=out)
|
|
436
|
+
expected = np.zeros_like(in1.numpy())
|
|
437
|
+
expected[5, i] = 2.0 if (in1.numpy()[5, i] < in2.numpy()[5, i]) else 0.0
|
|
438
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
439
|
+
expected[5, i] = 2.0 if (in2.numpy()[5, i] < in1.numpy()[5, i]) else 0.0
|
|
440
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
441
|
+
tape.zero()
|
|
442
|
+
|
|
443
|
+
# max
|
|
444
|
+
tape = wp.Tape()
|
|
445
|
+
with tape:
|
|
446
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
447
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 6, i], outputs=[out], device=device)
|
|
448
|
+
|
|
449
|
+
tape.backward(loss=out)
|
|
450
|
+
expected = np.zeros_like(in1.numpy())
|
|
451
|
+
expected[6, i] = 2.0 if (in1.numpy()[6, i] > in2.numpy()[6, i]) else 0.0
|
|
452
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
453
|
+
expected[6, i] = 2.0 if (in2.numpy()[6, i] > in1.numpy()[6, i]) else 0.0
|
|
454
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
455
|
+
tape.zero()
|
|
456
|
+
|
|
457
|
+
# floor_divide. Returns integers so gradient is zero
|
|
458
|
+
tape = wp.Tape()
|
|
459
|
+
with tape:
|
|
460
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
461
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 7, i], outputs=[out], device=device)
|
|
462
|
+
|
|
463
|
+
tape.backward(loss=out)
|
|
464
|
+
expected = np.zeros_like(in1.numpy())
|
|
465
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
466
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
467
|
+
tape.zero()
|
|
468
|
+
|
|
469
|
+
|
|
470
|
+
def test_special_funcs(test, device, dtype, register_kernels=False):
|
|
471
|
+
rng = np.random.default_rng(123)
|
|
472
|
+
|
|
473
|
+
tol = {
|
|
474
|
+
np.float16: 1.0e-2,
|
|
475
|
+
np.float32: 1.0e-6,
|
|
476
|
+
np.float64: 1.0e-8,
|
|
477
|
+
}.get(dtype, 0)
|
|
478
|
+
|
|
479
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
480
|
+
|
|
481
|
+
def check_special_funcs(
|
|
482
|
+
inputs: wp.array(dtype=wptype, ndim=2),
|
|
483
|
+
outputs: wp.array(dtype=wptype, ndim=2),
|
|
484
|
+
):
|
|
485
|
+
# multiply outputs by 2 so we've got something to backpropagate:
|
|
486
|
+
for i in range(10):
|
|
487
|
+
outputs[0, i] = wptype(2) * wp.log(inputs[0, i])
|
|
488
|
+
outputs[1, i] = wptype(2) * wp.log2(inputs[1, i])
|
|
489
|
+
outputs[2, i] = wptype(2) * wp.log10(inputs[2, i])
|
|
490
|
+
outputs[3, i] = wptype(2) * wp.exp(inputs[3, i])
|
|
491
|
+
outputs[4, i] = wptype(2) * wp.atan(inputs[4, i])
|
|
492
|
+
outputs[5, i] = wptype(2) * wp.sin(inputs[5, i])
|
|
493
|
+
outputs[6, i] = wptype(2) * wp.cos(inputs[6, i])
|
|
494
|
+
outputs[7, i] = wptype(2) * wp.sqrt(inputs[7, i])
|
|
495
|
+
outputs[8, i] = wptype(2) * wp.tan(inputs[8, i])
|
|
496
|
+
outputs[9, i] = wptype(2) * wp.sinh(inputs[9, i])
|
|
497
|
+
outputs[10, i] = wptype(2) * wp.cosh(inputs[10, i])
|
|
498
|
+
outputs[11, i] = wptype(2) * wp.tanh(inputs[11, i])
|
|
499
|
+
outputs[12, i] = wptype(2) * wp.acos(inputs[12, i])
|
|
500
|
+
outputs[13, i] = wptype(2) * wp.asin(inputs[13, i])
|
|
501
|
+
outputs[14, i] = wptype(2) * wp.cbrt(inputs[14, i])
|
|
502
|
+
|
|
503
|
+
kernel = getkernel(check_special_funcs, suffix=dtype.__name__)
|
|
504
|
+
output_select_kernel = get_select_kernel2(wptype)
|
|
505
|
+
|
|
506
|
+
if register_kernels:
|
|
507
|
+
return
|
|
508
|
+
|
|
509
|
+
invals = rng.normal(size=(15, 10)).astype(dtype)
|
|
510
|
+
invals[[0, 1, 2, 7, 14]] = 0.1 + np.abs(invals[[0, 1, 2, 7, 14]])
|
|
511
|
+
invals[12] = np.clip(invals[12], -0.9, 0.9)
|
|
512
|
+
invals[13] = np.clip(invals[13], -0.9, 0.9)
|
|
513
|
+
inputs = wp.array(invals, dtype=wptype, requires_grad=True, device=device)
|
|
514
|
+
outputs = wp.zeros_like(inputs)
|
|
515
|
+
|
|
516
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
517
|
+
|
|
518
|
+
assert_np_equal(outputs.numpy()[0], 2 * np.log(inputs.numpy()[0]), tol=tol)
|
|
519
|
+
assert_np_equal(outputs.numpy()[1], 2 * np.log2(inputs.numpy()[1]), tol=tol)
|
|
520
|
+
assert_np_equal(outputs.numpy()[2], 2 * np.log10(inputs.numpy()[2]), tol=tol)
|
|
521
|
+
assert_np_equal(outputs.numpy()[3], 2 * np.exp(inputs.numpy()[3]), tol=tol)
|
|
522
|
+
assert_np_equal(outputs.numpy()[4], 2 * np.arctan(inputs.numpy()[4]), tol=tol)
|
|
523
|
+
assert_np_equal(outputs.numpy()[5], 2 * np.sin(inputs.numpy()[5]), tol=tol)
|
|
524
|
+
assert_np_equal(outputs.numpy()[6], 2 * np.cos(inputs.numpy()[6]), tol=tol)
|
|
525
|
+
assert_np_equal(outputs.numpy()[7], 2 * np.sqrt(inputs.numpy()[7]), tol=tol)
|
|
526
|
+
assert_np_equal(outputs.numpy()[8], 2 * np.tan(inputs.numpy()[8]), tol=tol)
|
|
527
|
+
assert_np_equal(outputs.numpy()[9], 2 * np.sinh(inputs.numpy()[9]), tol=tol)
|
|
528
|
+
assert_np_equal(outputs.numpy()[10], 2 * np.cosh(inputs.numpy()[10]), tol=tol)
|
|
529
|
+
assert_np_equal(outputs.numpy()[11], 2 * np.tanh(inputs.numpy()[11]), tol=tol)
|
|
530
|
+
assert_np_equal(outputs.numpy()[12], 2 * np.arccos(inputs.numpy()[12]), tol=tol)
|
|
531
|
+
assert_np_equal(outputs.numpy()[13], 2 * np.arcsin(inputs.numpy()[13]), tol=tol)
|
|
532
|
+
assert_np_equal(outputs.numpy()[14], 2 * np.cbrt(inputs.numpy()[14]), tol=tol)
|
|
533
|
+
|
|
534
|
+
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
535
|
+
if dtype in np_float_types:
|
|
536
|
+
for i in range(10):
|
|
537
|
+
# log:
|
|
538
|
+
tape = wp.Tape()
|
|
539
|
+
with tape:
|
|
540
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
541
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device)
|
|
542
|
+
|
|
543
|
+
tape.backward(loss=out)
|
|
544
|
+
expected = np.zeros_like(inputs.numpy())
|
|
545
|
+
expected[0, i] = 2.0 / inputs.numpy()[0, i]
|
|
546
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
547
|
+
tape.zero()
|
|
548
|
+
|
|
549
|
+
# log2:
|
|
550
|
+
tape = wp.Tape()
|
|
551
|
+
with tape:
|
|
552
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
553
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device)
|
|
554
|
+
|
|
555
|
+
tape.backward(loss=out)
|
|
556
|
+
expected = np.zeros_like(inputs.numpy())
|
|
557
|
+
expected[1, i] = 2.0 / (inputs.numpy()[1, i] * np.log(2.0))
|
|
558
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
559
|
+
tape.zero()
|
|
560
|
+
|
|
561
|
+
# log10:
|
|
562
|
+
tape = wp.Tape()
|
|
563
|
+
with tape:
|
|
564
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
565
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 2, i], outputs=[out], device=device)
|
|
566
|
+
|
|
567
|
+
tape.backward(loss=out)
|
|
568
|
+
expected = np.zeros_like(inputs.numpy())
|
|
569
|
+
expected[2, i] = 2.0 / (inputs.numpy()[2, i] * np.log(10.0))
|
|
570
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
571
|
+
tape.zero()
|
|
572
|
+
|
|
573
|
+
# exp:
|
|
574
|
+
tape = wp.Tape()
|
|
575
|
+
with tape:
|
|
576
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
577
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 3, i], outputs=[out], device=device)
|
|
578
|
+
|
|
579
|
+
tape.backward(loss=out)
|
|
580
|
+
expected = np.zeros_like(inputs.numpy())
|
|
581
|
+
expected[3, i] = outputs.numpy()[3, i]
|
|
582
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
583
|
+
tape.zero()
|
|
584
|
+
|
|
585
|
+
# arctan:
|
|
586
|
+
# looks like the autodiff formula in warp was wrong? Was (1 + x^2) rather than
|
|
587
|
+
# 1/(1 + x^2)
|
|
588
|
+
tape = wp.Tape()
|
|
589
|
+
with tape:
|
|
590
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
591
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 4, i], outputs=[out], device=device)
|
|
592
|
+
|
|
593
|
+
tape.backward(loss=out)
|
|
594
|
+
expected = np.zeros_like(inputs.numpy())
|
|
595
|
+
expected[4, i] = 2.0 / (inputs.numpy()[4, i] ** 2 + 1)
|
|
596
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
597
|
+
tape.zero()
|
|
598
|
+
|
|
599
|
+
# sin:
|
|
600
|
+
tape = wp.Tape()
|
|
601
|
+
with tape:
|
|
602
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
603
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 5, i], outputs=[out], device=device)
|
|
604
|
+
|
|
605
|
+
tape.backward(loss=out)
|
|
606
|
+
expected = np.zeros_like(inputs.numpy())
|
|
607
|
+
expected[5, i] = np.cos(inputs.numpy()[5, i]) * 2
|
|
608
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
609
|
+
tape.zero()
|
|
610
|
+
|
|
611
|
+
# cos:
|
|
612
|
+
tape = wp.Tape()
|
|
613
|
+
with tape:
|
|
614
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
615
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 6, i], outputs=[out], device=device)
|
|
616
|
+
|
|
617
|
+
tape.backward(loss=out)
|
|
618
|
+
expected = np.zeros_like(inputs.numpy())
|
|
619
|
+
expected[6, i] = -np.sin(inputs.numpy()[6, i]) * 2.0
|
|
620
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
621
|
+
tape.zero()
|
|
622
|
+
|
|
623
|
+
# sqrt:
|
|
624
|
+
tape = wp.Tape()
|
|
625
|
+
with tape:
|
|
626
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
627
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 7, i], outputs=[out], device=device)
|
|
628
|
+
|
|
629
|
+
tape.backward(loss=out)
|
|
630
|
+
expected = np.zeros_like(inputs.numpy())
|
|
631
|
+
expected[7, i] = 1.0 / (np.sqrt(inputs.numpy()[7, i]))
|
|
632
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
633
|
+
tape.zero()
|
|
634
|
+
|
|
635
|
+
# tan:
|
|
636
|
+
# looks like there was a bug in autodiff formula here too - gradient was zero if cos(x) > 0
|
|
637
|
+
# (should have been "if(cosx != 0)")
|
|
638
|
+
tape = wp.Tape()
|
|
639
|
+
with tape:
|
|
640
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
641
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 8, i], outputs=[out], device=device)
|
|
642
|
+
|
|
643
|
+
tape.backward(loss=out)
|
|
644
|
+
expected = np.zeros_like(inputs.numpy())
|
|
645
|
+
expected[8, i] = 2.0 / (np.cos(inputs.numpy()[8, i]) ** 2)
|
|
646
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=200 * tol)
|
|
647
|
+
tape.zero()
|
|
648
|
+
|
|
649
|
+
# sinh:
|
|
650
|
+
tape = wp.Tape()
|
|
651
|
+
with tape:
|
|
652
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
653
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 9, i], outputs=[out], device=device)
|
|
654
|
+
|
|
655
|
+
tape.backward(loss=out)
|
|
656
|
+
expected = np.zeros_like(inputs.numpy())
|
|
657
|
+
expected[9, i] = 2.0 * np.cosh(inputs.numpy()[9, i])
|
|
658
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
659
|
+
tape.zero()
|
|
660
|
+
|
|
661
|
+
# cosh:
|
|
662
|
+
tape = wp.Tape()
|
|
663
|
+
with tape:
|
|
664
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
665
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 10, i], outputs=[out], device=device)
|
|
666
|
+
|
|
667
|
+
tape.backward(loss=out)
|
|
668
|
+
expected = np.zeros_like(inputs.numpy())
|
|
669
|
+
expected[10, i] = 2.0 * np.sinh(inputs.numpy()[10, i])
|
|
670
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
671
|
+
tape.zero()
|
|
672
|
+
|
|
673
|
+
# tanh:
|
|
674
|
+
tape = wp.Tape()
|
|
675
|
+
with tape:
|
|
676
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
677
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 11, i], outputs=[out], device=device)
|
|
678
|
+
|
|
679
|
+
tape.backward(loss=out)
|
|
680
|
+
expected = np.zeros_like(inputs.numpy())
|
|
681
|
+
expected[11, i] = 2.0 / (np.cosh(inputs.numpy()[11, i]) ** 2)
|
|
682
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
683
|
+
tape.zero()
|
|
684
|
+
|
|
685
|
+
# arccos:
|
|
686
|
+
tape = wp.Tape()
|
|
687
|
+
with tape:
|
|
688
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
689
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 12, i], outputs=[out], device=device)
|
|
690
|
+
|
|
691
|
+
tape.backward(loss=out)
|
|
692
|
+
expected = np.zeros_like(inputs.numpy())
|
|
693
|
+
expected[12, i] = -2.0 / np.sqrt(1 - inputs.numpy()[12, i] ** 2)
|
|
694
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
695
|
+
tape.zero()
|
|
696
|
+
|
|
697
|
+
# arcsin:
|
|
698
|
+
tape = wp.Tape()
|
|
699
|
+
with tape:
|
|
700
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
701
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 13, i], outputs=[out], device=device)
|
|
702
|
+
|
|
703
|
+
tape.backward(loss=out)
|
|
704
|
+
expected = np.zeros_like(inputs.numpy())
|
|
705
|
+
expected[13, i] = 2.0 / np.sqrt(1 - inputs.numpy()[13, i] ** 2)
|
|
706
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=6 * tol)
|
|
707
|
+
tape.zero()
|
|
708
|
+
|
|
709
|
+
# cbrt:
|
|
710
|
+
tape = wp.Tape()
|
|
711
|
+
with tape:
|
|
712
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
713
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 14, i], outputs=[out], device=device)
|
|
714
|
+
|
|
715
|
+
tape.backward(loss=out)
|
|
716
|
+
expected = np.zeros_like(inputs.numpy())
|
|
717
|
+
cbrt = np.cbrt(inputs.numpy()[14, i], dtype=np.dtype(dtype))
|
|
718
|
+
expected[14, i] = (2.0 / 3.0) * (1.0 / (cbrt * cbrt))
|
|
719
|
+
assert_np_equal(tape.gradients[inputs].numpy(), expected, tol=tol)
|
|
720
|
+
tape.zero()
|
|
721
|
+
|
|
722
|
+
|
|
723
|
+
def test_special_funcs_2arg(test, device, dtype, register_kernels=False):
|
|
724
|
+
rng = np.random.default_rng(123)
|
|
725
|
+
|
|
726
|
+
tol = {
|
|
727
|
+
np.float16: 1.0e-2,
|
|
728
|
+
np.float32: 1.0e-6,
|
|
729
|
+
np.float64: 1.0e-8,
|
|
730
|
+
}.get(dtype, 0)
|
|
731
|
+
|
|
732
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
733
|
+
|
|
734
|
+
def check_special_funcs_2arg(
|
|
735
|
+
in1: wp.array(dtype=wptype, ndim=2),
|
|
736
|
+
in2: wp.array(dtype=wptype, ndim=2),
|
|
737
|
+
outputs: wp.array(dtype=wptype, ndim=2),
|
|
738
|
+
):
|
|
739
|
+
# multiply outputs by 2 so we've got something to backpropagate:
|
|
740
|
+
for i in range(10):
|
|
741
|
+
outputs[0, i] = wptype(2) * wp.pow(in1[0, i], in2[0, i])
|
|
742
|
+
outputs[1, i] = wptype(2) * wp.atan2(in1[1, i], in2[1, i])
|
|
743
|
+
|
|
744
|
+
kernel = getkernel(check_special_funcs_2arg, suffix=dtype.__name__)
|
|
745
|
+
output_select_kernel = get_select_kernel2(wptype)
|
|
746
|
+
|
|
747
|
+
if register_kernels:
|
|
748
|
+
return
|
|
749
|
+
|
|
750
|
+
in1 = wp.array(np.abs(randvals(rng, [2, 10], dtype)), dtype=wptype, requires_grad=True, device=device)
|
|
751
|
+
in2 = wp.array(randvals(rng, [2, 10], dtype), dtype=wptype, requires_grad=True, device=device)
|
|
752
|
+
outputs = wp.zeros_like(in1)
|
|
753
|
+
|
|
754
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
755
|
+
|
|
756
|
+
assert_np_equal(outputs.numpy()[0], 2.0 * np.power(in1.numpy()[0], in2.numpy()[0]), tol=tol)
|
|
757
|
+
assert_np_equal(outputs.numpy()[1], 2.0 * np.arctan2(in1.numpy()[1], in2.numpy()[1]), tol=tol)
|
|
758
|
+
|
|
759
|
+
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
760
|
+
if dtype in np_float_types:
|
|
761
|
+
for i in range(10):
|
|
762
|
+
# pow:
|
|
763
|
+
tape = wp.Tape()
|
|
764
|
+
with tape:
|
|
765
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
766
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device)
|
|
767
|
+
tape.backward(loss=out)
|
|
768
|
+
expected = np.zeros_like(in1.numpy())
|
|
769
|
+
expected[0, i] = 2.0 * in2.numpy()[0, i] * np.power(in1.numpy()[0, i], in2.numpy()[0, i] - 1)
|
|
770
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=5 * tol)
|
|
771
|
+
expected[0, i] = 2.0 * np.power(in1.numpy()[0, i], in2.numpy()[0, i]) * np.log(in1.numpy()[0, i])
|
|
772
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
773
|
+
tape.zero()
|
|
774
|
+
|
|
775
|
+
# atan2:
|
|
776
|
+
tape = wp.Tape()
|
|
777
|
+
with tape:
|
|
778
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2], outputs=[outputs], device=device)
|
|
779
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device)
|
|
780
|
+
|
|
781
|
+
tape.backward(loss=out)
|
|
782
|
+
expected = np.zeros_like(in1.numpy())
|
|
783
|
+
expected[1, i] = 2.0 * in2.numpy()[1, i] / (in1.numpy()[1, i] ** 2 + in2.numpy()[1, i] ** 2)
|
|
784
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
785
|
+
expected[1, i] = -2.0 * in1.numpy()[1, i] / (in1.numpy()[1, i] ** 2 + in2.numpy()[1, i] ** 2)
|
|
786
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
787
|
+
tape.zero()
|
|
788
|
+
|
|
789
|
+
|
|
790
|
+
def test_float_to_int(test, device, dtype, register_kernels=False):
|
|
791
|
+
rng = np.random.default_rng(123)
|
|
792
|
+
|
|
793
|
+
tol = {
|
|
794
|
+
np.float16: 5.0e-3,
|
|
795
|
+
np.float32: 1.0e-6,
|
|
796
|
+
np.float64: 1.0e-8,
|
|
797
|
+
}.get(dtype, 0)
|
|
798
|
+
|
|
799
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
800
|
+
|
|
801
|
+
def check_float_to_int(
|
|
802
|
+
inputs: wp.array(dtype=wptype, ndim=2),
|
|
803
|
+
outputs: wp.array(dtype=wptype, ndim=2),
|
|
804
|
+
):
|
|
805
|
+
for i in range(10):
|
|
806
|
+
outputs[0, i] = wp.round(inputs[0, i])
|
|
807
|
+
outputs[1, i] = wp.rint(inputs[1, i])
|
|
808
|
+
outputs[2, i] = wp.trunc(inputs[2, i])
|
|
809
|
+
outputs[3, i] = wp.floor(inputs[3, i])
|
|
810
|
+
outputs[4, i] = wp.ceil(inputs[4, i])
|
|
811
|
+
outputs[5, i] = wp.frac(inputs[5, i])
|
|
812
|
+
|
|
813
|
+
kernel = getkernel(check_float_to_int, suffix=dtype.__name__)
|
|
814
|
+
output_select_kernel = get_select_kernel2(wptype)
|
|
815
|
+
|
|
816
|
+
if register_kernels:
|
|
817
|
+
return
|
|
818
|
+
|
|
819
|
+
inputs = wp.array(rng.standard_normal(size=(6, 10)).astype(dtype), dtype=wptype, requires_grad=True, device=device)
|
|
820
|
+
outputs = wp.zeros_like(inputs)
|
|
821
|
+
|
|
822
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
823
|
+
|
|
824
|
+
assert_np_equal(outputs.numpy()[0], np.round(inputs.numpy()[0]))
|
|
825
|
+
assert_np_equal(outputs.numpy()[1], np.rint(inputs.numpy()[1]))
|
|
826
|
+
assert_np_equal(outputs.numpy()[2], np.trunc(inputs.numpy()[2]))
|
|
827
|
+
assert_np_equal(outputs.numpy()[3], np.floor(inputs.numpy()[3]))
|
|
828
|
+
assert_np_equal(outputs.numpy()[4], np.ceil(inputs.numpy()[4]))
|
|
829
|
+
assert_np_equal(outputs.numpy()[5], np.modf(inputs.numpy()[5])[0])
|
|
830
|
+
|
|
831
|
+
# all the gradients should be zero as these functions are piecewise constant:
|
|
832
|
+
|
|
833
|
+
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
834
|
+
for i in range(10):
|
|
835
|
+
for j in range(5):
|
|
836
|
+
tape = wp.Tape()
|
|
837
|
+
with tape:
|
|
838
|
+
wp.launch(kernel, dim=1, inputs=[inputs], outputs=[outputs], device=device)
|
|
839
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, j, i], outputs=[out], device=device)
|
|
840
|
+
|
|
841
|
+
tape.backward(loss=out)
|
|
842
|
+
assert_np_equal(tape.gradients[inputs].numpy(), np.zeros_like(inputs.numpy()), tol=tol)
|
|
843
|
+
tape.zero()
|
|
844
|
+
|
|
845
|
+
|
|
846
|
+
def test_interp(test, device, dtype, register_kernels=False):
|
|
847
|
+
rng = np.random.default_rng(123)
|
|
848
|
+
|
|
849
|
+
tol = {
|
|
850
|
+
np.float16: 1.0e-2,
|
|
851
|
+
np.float32: 5.0e-6,
|
|
852
|
+
np.float64: 1.0e-8,
|
|
853
|
+
}.get(dtype, 0)
|
|
854
|
+
|
|
855
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
856
|
+
|
|
857
|
+
def check_interp(
|
|
858
|
+
in1: wp.array(dtype=wptype, ndim=2),
|
|
859
|
+
in2: wp.array(dtype=wptype, ndim=2),
|
|
860
|
+
in3: wp.array(dtype=wptype, ndim=2),
|
|
861
|
+
outputs: wp.array(dtype=wptype, ndim=2),
|
|
862
|
+
):
|
|
863
|
+
# multiply outputs by 2 so we've got something to backpropagate:
|
|
864
|
+
for i in range(10):
|
|
865
|
+
outputs[0, i] = wptype(2) * wp.smoothstep(in1[0, i], in2[0, i], in3[0, i])
|
|
866
|
+
outputs[1, i] = wptype(2) * wp.lerp(in1[1, i], in2[1, i], in3[1, i])
|
|
867
|
+
|
|
868
|
+
kernel = getkernel(check_interp, suffix=dtype.__name__)
|
|
869
|
+
output_select_kernel = get_select_kernel2(wptype)
|
|
870
|
+
|
|
871
|
+
if register_kernels:
|
|
872
|
+
return
|
|
873
|
+
|
|
874
|
+
e0 = randvals(rng, [2, 10], dtype)
|
|
875
|
+
e1 = e0 + randvals(rng, [2, 10], dtype) + 0.1
|
|
876
|
+
in1 = wp.array(e0, dtype=wptype, requires_grad=True, device=device)
|
|
877
|
+
in2 = wp.array(e1, dtype=wptype, requires_grad=True, device=device)
|
|
878
|
+
in3 = wp.array(randvals(rng, [2, 10], dtype), dtype=wptype, requires_grad=True, device=device)
|
|
879
|
+
|
|
880
|
+
outputs = wp.zeros_like(in1)
|
|
881
|
+
|
|
882
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device)
|
|
883
|
+
|
|
884
|
+
edge0 = in1.numpy()[0]
|
|
885
|
+
edge1 = in2.numpy()[0]
|
|
886
|
+
t_smoothstep = in3.numpy()[0]
|
|
887
|
+
x = np.clip((t_smoothstep - edge0) / (edge1 - edge0), 0, 1)
|
|
888
|
+
smoothstep_expected = 2.0 * x * x * (3 - 2 * x)
|
|
889
|
+
|
|
890
|
+
assert_np_equal(outputs.numpy()[0], smoothstep_expected, tol=tol)
|
|
891
|
+
|
|
892
|
+
a = in1.numpy()[1]
|
|
893
|
+
b = in2.numpy()[1]
|
|
894
|
+
t = in3.numpy()[1]
|
|
895
|
+
assert_np_equal(outputs.numpy()[1], 2.0 * (a * (1 - t) + b * t), tol=tol)
|
|
896
|
+
|
|
897
|
+
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
898
|
+
if dtype in np_float_types:
|
|
899
|
+
for i in range(10):
|
|
900
|
+
tape = wp.Tape()
|
|
901
|
+
with tape:
|
|
902
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device)
|
|
903
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 0, i], outputs=[out], device=device)
|
|
904
|
+
tape.backward(loss=out)
|
|
905
|
+
|
|
906
|
+
# e0 = in1
|
|
907
|
+
# e1 = in2
|
|
908
|
+
# t = in3
|
|
909
|
+
|
|
910
|
+
# x = clamp((t - e0) / (e1 - e0), 0,1)
|
|
911
|
+
# dx/dt = 1 / (e1 - e0) if e0 < t < e1 else 0
|
|
912
|
+
|
|
913
|
+
# y = x * x * (3 - 2 * x)
|
|
914
|
+
|
|
915
|
+
# y = 3 * x * x - 2 * x * x * x
|
|
916
|
+
# dy/dx = 6 * ( x - x^2 )
|
|
917
|
+
dydx = 6 * x * (1 - x)
|
|
918
|
+
|
|
919
|
+
# dy/in1 = dy/dx dx/de0 de0/din1
|
|
920
|
+
dxde0 = (t_smoothstep - edge1) / ((edge1 - edge0) ** 2)
|
|
921
|
+
dxde0[x == 0] = 0
|
|
922
|
+
dxde0[x == 1] = 0
|
|
923
|
+
|
|
924
|
+
expected_grads = np.zeros_like(in1.numpy())
|
|
925
|
+
expected_grads[0, i] = 2.0 * dydx[i] * dxde0[i]
|
|
926
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected_grads, tol=tol)
|
|
927
|
+
|
|
928
|
+
# dy/in2 = dy/dx dx/de1 de1/din2
|
|
929
|
+
dxde1 = (edge0 - t_smoothstep) / ((edge1 - edge0) ** 2)
|
|
930
|
+
dxde1[x == 0] = 0
|
|
931
|
+
dxde1[x == 1] = 0
|
|
932
|
+
|
|
933
|
+
expected_grads = np.zeros_like(in1.numpy())
|
|
934
|
+
expected_grads[0, i] = 2.0 * dydx[i] * dxde1[i]
|
|
935
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected_grads, tol=tol)
|
|
936
|
+
|
|
937
|
+
# dy/in3 = dy/dx dx/dt dt/din3
|
|
938
|
+
dxdt = 1.0 / (edge1 - edge0)
|
|
939
|
+
dxdt[x == 0] = 0
|
|
940
|
+
dxdt[x == 1] = 0
|
|
941
|
+
|
|
942
|
+
expected_grads = np.zeros_like(in1.numpy())
|
|
943
|
+
expected_grads[0, i] = 2.0 * dydx[i] * dxdt[i]
|
|
944
|
+
assert_np_equal(tape.gradients[in3].numpy(), expected_grads, tol=tol)
|
|
945
|
+
tape.zero()
|
|
946
|
+
|
|
947
|
+
tape = wp.Tape()
|
|
948
|
+
with tape:
|
|
949
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device)
|
|
950
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, 1, i], outputs=[out], device=device)
|
|
951
|
+
tape.backward(loss=out)
|
|
952
|
+
|
|
953
|
+
# y = a*(1-t) + b*t
|
|
954
|
+
# a = in1
|
|
955
|
+
# b = in2
|
|
956
|
+
# t = in3
|
|
957
|
+
|
|
958
|
+
# y = in1*( 1 - in3 ) + in2*in3
|
|
959
|
+
|
|
960
|
+
# dy/din1 = (1-in3)
|
|
961
|
+
expected_grads = np.zeros_like(in1.numpy())
|
|
962
|
+
expected_grads[1, i] = 2.0 * (1 - in3.numpy()[1, i])
|
|
963
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected_grads, tol=tol)
|
|
964
|
+
|
|
965
|
+
# dy/din2 = in3
|
|
966
|
+
expected_grads = np.zeros_like(in1.numpy())
|
|
967
|
+
expected_grads[1, i] = 2.0 * in3.numpy()[1, i]
|
|
968
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected_grads, tol=tol)
|
|
969
|
+
|
|
970
|
+
# dy/din3 = 8*in2 - 1.5*4*in1
|
|
971
|
+
expected_grads = np.zeros_like(in1.numpy())
|
|
972
|
+
expected_grads[1, i] = 2.0 * (in2.numpy()[1, i] - in1.numpy()[1, i])
|
|
973
|
+
assert_np_equal(tape.gradients[in3].numpy(), expected_grads, tol=tol)
|
|
974
|
+
tape.zero()
|
|
975
|
+
|
|
976
|
+
|
|
977
|
+
def test_clamp(test, device, dtype, register_kernels=False):
|
|
978
|
+
rng = np.random.default_rng(123)
|
|
979
|
+
|
|
980
|
+
tol = {
|
|
981
|
+
np.float16: 5.0e-3,
|
|
982
|
+
np.float32: 1.0e-6,
|
|
983
|
+
np.float64: 1.0e-6,
|
|
984
|
+
}.get(dtype, 0)
|
|
985
|
+
|
|
986
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
987
|
+
|
|
988
|
+
def check_clamp(
|
|
989
|
+
in1: wp.array(dtype=wptype),
|
|
990
|
+
in2: wp.array(dtype=wptype),
|
|
991
|
+
in3: wp.array(dtype=wptype),
|
|
992
|
+
outputs: wp.array(dtype=wptype),
|
|
993
|
+
):
|
|
994
|
+
for i in range(100):
|
|
995
|
+
# multiply output by 2 so we've got something to backpropagate:
|
|
996
|
+
outputs[i] = wptype(2) * wp.clamp(in1[i], in2[i], in3[i])
|
|
997
|
+
|
|
998
|
+
kernel = getkernel(check_clamp, suffix=dtype.__name__)
|
|
999
|
+
output_select_kernel = get_select_kernel(wptype)
|
|
1000
|
+
|
|
1001
|
+
if register_kernels:
|
|
1002
|
+
return
|
|
1003
|
+
|
|
1004
|
+
in1 = wp.array(randvals(rng, [100], dtype), dtype=wptype, requires_grad=True, device=device)
|
|
1005
|
+
starts = randvals(rng, [100], dtype)
|
|
1006
|
+
diffs = np.abs(randvals(rng, [100], dtype))
|
|
1007
|
+
in2 = wp.array(starts, dtype=wptype, requires_grad=True, device=device)
|
|
1008
|
+
in3 = wp.array(starts + diffs, dtype=wptype, requires_grad=True, device=device)
|
|
1009
|
+
outputs = wp.zeros_like(in1)
|
|
1010
|
+
|
|
1011
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device)
|
|
1012
|
+
|
|
1013
|
+
assert_np_equal(2 * np.clip(in1.numpy(), in2.numpy(), in3.numpy()), outputs.numpy(), tol=tol)
|
|
1014
|
+
|
|
1015
|
+
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1016
|
+
if dtype in np_float_types:
|
|
1017
|
+
for i in range(100):
|
|
1018
|
+
tape = wp.Tape()
|
|
1019
|
+
with tape:
|
|
1020
|
+
wp.launch(kernel, dim=1, inputs=[in1, in2, in3], outputs=[outputs], device=device)
|
|
1021
|
+
wp.launch(output_select_kernel, dim=1, inputs=[outputs, i], outputs=[out], device=device)
|
|
1022
|
+
|
|
1023
|
+
tape.backward(loss=out)
|
|
1024
|
+
t = in1.numpy()[i]
|
|
1025
|
+
lower = in2.numpy()[i]
|
|
1026
|
+
upper = in3.numpy()[i]
|
|
1027
|
+
expected = np.zeros_like(in1.numpy())
|
|
1028
|
+
if t < lower:
|
|
1029
|
+
expected[i] = 2.0
|
|
1030
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
1031
|
+
expected[i] = 0.0
|
|
1032
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
1033
|
+
assert_np_equal(tape.gradients[in3].numpy(), expected, tol=tol)
|
|
1034
|
+
elif t > upper:
|
|
1035
|
+
expected[i] = 2.0
|
|
1036
|
+
assert_np_equal(tape.gradients[in3].numpy(), expected, tol=tol)
|
|
1037
|
+
expected[i] = 0.0
|
|
1038
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
1039
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
1040
|
+
else:
|
|
1041
|
+
expected[i] = 2.0
|
|
1042
|
+
assert_np_equal(tape.gradients[in1].numpy(), expected, tol=tol)
|
|
1043
|
+
expected[i] = 0.0
|
|
1044
|
+
assert_np_equal(tape.gradients[in2].numpy(), expected, tol=tol)
|
|
1045
|
+
assert_np_equal(tape.gradients[in3].numpy(), expected, tol=tol)
|
|
1046
|
+
|
|
1047
|
+
tape.zero()
|
|
1048
|
+
|
|
1049
|
+
|
|
1050
|
+
devices = get_test_devices()
|
|
1051
|
+
|
|
1052
|
+
|
|
1053
|
+
class TestArithmetic(unittest.TestCase):
|
|
1054
|
+
pass
|
|
1055
|
+
|
|
1056
|
+
|
|
1057
|
+
# these unary ops only make sense for signed values:
|
|
1058
|
+
for dtype in np_signed_int_types + np_float_types:
|
|
1059
|
+
add_function_test_register_kernel(
|
|
1060
|
+
TestArithmetic, f"test_unary_ops_{dtype.__name__}", test_unary_ops, devices=devices, dtype=dtype
|
|
1061
|
+
)
|
|
1062
|
+
|
|
1063
|
+
for dtype in np_float_types:
|
|
1064
|
+
add_function_test_register_kernel(
|
|
1065
|
+
TestArithmetic, f"test_special_funcs_{dtype.__name__}", test_special_funcs, devices=devices, dtype=dtype
|
|
1066
|
+
)
|
|
1067
|
+
add_function_test_register_kernel(
|
|
1068
|
+
TestArithmetic,
|
|
1069
|
+
f"test_special_funcs_2arg_{dtype.__name__}",
|
|
1070
|
+
test_special_funcs_2arg,
|
|
1071
|
+
devices=devices,
|
|
1072
|
+
dtype=dtype,
|
|
1073
|
+
)
|
|
1074
|
+
add_function_test_register_kernel(
|
|
1075
|
+
TestArithmetic, f"test_interp_{dtype.__name__}", test_interp, devices=devices, dtype=dtype
|
|
1076
|
+
)
|
|
1077
|
+
add_function_test_register_kernel(
|
|
1078
|
+
TestArithmetic, f"test_float_to_int_{dtype.__name__}", test_float_to_int, devices=devices, dtype=dtype
|
|
1079
|
+
)
|
|
1080
|
+
|
|
1081
|
+
for dtype in np_scalar_types:
|
|
1082
|
+
add_function_test_register_kernel(
|
|
1083
|
+
TestArithmetic, f"test_clamp_{dtype.__name__}", test_clamp, devices=devices, dtype=dtype
|
|
1084
|
+
)
|
|
1085
|
+
add_function_test_register_kernel(
|
|
1086
|
+
TestArithmetic, f"test_nonzero_{dtype.__name__}", test_nonzero, devices=devices, dtype=dtype
|
|
1087
|
+
)
|
|
1088
|
+
add_function_test(TestArithmetic, f"test_arrays_{dtype.__name__}", test_arrays, devices=devices, dtype=dtype)
|
|
1089
|
+
add_function_test_register_kernel(
|
|
1090
|
+
TestArithmetic, f"test_binary_ops_{dtype.__name__}", test_binary_ops, devices=devices, dtype=dtype
|
|
1091
|
+
)
|
|
1092
|
+
|
|
1093
|
+
|
|
1094
|
+
if __name__ == "__main__":
|
|
1095
|
+
wp.clear_kernel_cache()
|
|
1096
|
+
unittest.main(verbosity=2, failfast=False)
|