warp-lang 1.7.0__py3-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +139 -0
- warp/__init__.pyi +1 -0
- warp/autograd.py +1142 -0
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +557 -0
- warp/build_dll.py +405 -0
- warp/builtins.py +6855 -0
- warp/codegen.py +3969 -0
- warp/config.py +158 -0
- warp/constants.py +57 -0
- warp/context.py +6812 -0
- warp/dlpack.py +462 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -0
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -0
- warp/examples/assets/nv_humanoid.xml +183 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/quadruped.urdf +268 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +194 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +193 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +423 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +178 -0
- warp/examples/fem/example_convection_diffusion_dg.py +204 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +220 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_magnetostatics.py +240 -0
- warp/examples/fem/example_mixed_elasticity.py +291 -0
- warp/examples/fem/example_navier_stokes.py +261 -0
- warp/examples/fem/example_nonconforming_contact.py +298 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +352 -0
- warp/examples/fem/utils.py +1000 -0
- warp/examples/interop/example_jax_callable.py +116 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +205 -0
- warp/examples/optim/example_bounce.py +266 -0
- warp/examples/optim/example_cloth_throw.py +228 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_drone.py +870 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/optim/example_inverse_kinematics.py +182 -0
- warp/examples/optim/example_inverse_kinematics_torch.py +191 -0
- warp/examples/optim/example_softbody_properties.py +400 -0
- warp/examples/optim/example_spring_cage.py +245 -0
- warp/examples/optim/example_trajectory.py +227 -0
- warp/examples/sim/example_cartpole.py +143 -0
- warp/examples/sim/example_cloth.py +225 -0
- warp/examples/sim/example_cloth_self_contact.py +322 -0
- warp/examples/sim/example_granular.py +130 -0
- warp/examples/sim/example_granular_collision_sdf.py +202 -0
- warp/examples/sim/example_jacobian_ik.py +244 -0
- warp/examples/sim/example_particle_chain.py +124 -0
- warp/examples/sim/example_quadruped.py +203 -0
- warp/examples/sim/example_rigid_chain.py +203 -0
- warp/examples/sim/example_rigid_contact.py +195 -0
- warp/examples/sim/example_rigid_force.py +133 -0
- warp/examples/sim/example_rigid_gyroscopic.py +115 -0
- warp/examples/sim/example_rigid_soft_contact.py +140 -0
- warp/examples/sim/example_soft_body.py +196 -0
- warp/examples/tile/example_tile_cholesky.py +87 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mlp.py +383 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/examples/tile/example_tile_walker.py +327 -0
- warp/fabric.py +355 -0
- warp/fem/__init__.py +106 -0
- warp/fem/adaptivity.py +508 -0
- warp/fem/cache.py +572 -0
- warp/fem/dirichlet.py +202 -0
- warp/fem/domain.py +411 -0
- warp/fem/field/__init__.py +125 -0
- warp/fem/field/field.py +619 -0
- warp/fem/field/nodal_field.py +326 -0
- warp/fem/field/restriction.py +37 -0
- warp/fem/field/virtual.py +848 -0
- warp/fem/geometry/__init__.py +32 -0
- warp/fem/geometry/adaptive_nanogrid.py +857 -0
- warp/fem/geometry/closest_point.py +84 -0
- warp/fem/geometry/deformed_geometry.py +221 -0
- warp/fem/geometry/element.py +776 -0
- warp/fem/geometry/geometry.py +362 -0
- warp/fem/geometry/grid_2d.py +392 -0
- warp/fem/geometry/grid_3d.py +452 -0
- warp/fem/geometry/hexmesh.py +911 -0
- warp/fem/geometry/nanogrid.py +571 -0
- warp/fem/geometry/partition.py +389 -0
- warp/fem/geometry/quadmesh.py +663 -0
- warp/fem/geometry/tetmesh.py +855 -0
- warp/fem/geometry/trimesh.py +806 -0
- warp/fem/integrate.py +2335 -0
- warp/fem/linalg.py +419 -0
- warp/fem/operator.py +293 -0
- warp/fem/polynomial.py +229 -0
- warp/fem/quadrature/__init__.py +17 -0
- warp/fem/quadrature/pic_quadrature.py +299 -0
- warp/fem/quadrature/quadrature.py +591 -0
- warp/fem/space/__init__.py +228 -0
- warp/fem/space/basis_function_space.py +468 -0
- warp/fem/space/basis_space.py +667 -0
- warp/fem/space/dof_mapper.py +251 -0
- warp/fem/space/function_space.py +309 -0
- warp/fem/space/grid_2d_function_space.py +177 -0
- warp/fem/space/grid_3d_function_space.py +227 -0
- warp/fem/space/hexmesh_function_space.py +257 -0
- warp/fem/space/nanogrid_function_space.py +201 -0
- warp/fem/space/partition.py +367 -0
- warp/fem/space/quadmesh_function_space.py +223 -0
- warp/fem/space/restriction.py +179 -0
- warp/fem/space/shape/__init__.py +143 -0
- warp/fem/space/shape/cube_shape_function.py +1105 -0
- warp/fem/space/shape/shape_function.py +133 -0
- warp/fem/space/shape/square_shape_function.py +926 -0
- warp/fem/space/shape/tet_shape_function.py +834 -0
- warp/fem/space/shape/triangle_shape_function.py +672 -0
- warp/fem/space/tetmesh_function_space.py +271 -0
- warp/fem/space/topology.py +424 -0
- warp/fem/space/trimesh_function_space.py +194 -0
- warp/fem/types.py +99 -0
- warp/fem/utils.py +420 -0
- warp/jax.py +187 -0
- warp/jax_experimental/__init__.py +16 -0
- warp/jax_experimental/custom_call.py +351 -0
- warp/jax_experimental/ffi.py +698 -0
- warp/jax_experimental/xla_ffi.py +602 -0
- warp/math.py +244 -0
- warp/native/array.h +1145 -0
- warp/native/builtin.h +1800 -0
- warp/native/bvh.cpp +492 -0
- warp/native/bvh.cu +791 -0
- warp/native/bvh.h +554 -0
- warp/native/clang/clang.cpp +536 -0
- warp/native/coloring.cpp +613 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +362 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +646 -0
- warp/native/cuda_util.h +307 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +1878 -0
- warp/native/fabric.h +245 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +87 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1230 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +339 -0
- warp/native/marching.cpp +19 -0
- warp/native/marching.cu +514 -0
- warp/native/marching.h +19 -0
- warp/native/mat.h +2220 -0
- warp/native/mathdx.cpp +87 -0
- warp/native/matnn.h +343 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +404 -0
- warp/native/mesh.h +1980 -0
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1371 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +139 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +364 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +53 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +277 -0
- warp/native/sort.h +33 -0
- warp/native/sparse.cpp +378 -0
- warp/native/sparse.cu +524 -0
- warp/native/spatial.h +657 -0
- warp/native/svd.h +702 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +2584 -0
- warp/native/tile_reduce.h +264 -0
- warp/native/vec.h +1426 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +67 -0
- warp/native/volume.h +969 -0
- warp/native/volume_builder.cu +477 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1082 -0
- warp/native/warp.cu +3636 -0
- warp/native/warp.h +381 -0
- warp/optim/__init__.py +17 -0
- warp/optim/adam.py +163 -0
- warp/optim/linear.py +1137 -0
- warp/optim/sgd.py +112 -0
- warp/paddle.py +407 -0
- warp/render/__init__.py +18 -0
- warp/render/render_opengl.py +3518 -0
- warp/render/render_usd.py +784 -0
- warp/render/utils.py +160 -0
- warp/sim/__init__.py +65 -0
- warp/sim/articulation.py +793 -0
- warp/sim/collide.py +2395 -0
- warp/sim/graph_coloring.py +300 -0
- warp/sim/import_mjcf.py +790 -0
- warp/sim/import_snu.py +227 -0
- warp/sim/import_urdf.py +579 -0
- warp/sim/import_usd.py +894 -0
- warp/sim/inertia.py +324 -0
- warp/sim/integrator.py +242 -0
- warp/sim/integrator_euler.py +1997 -0
- warp/sim/integrator_featherstone.py +2101 -0
- warp/sim/integrator_vbd.py +2048 -0
- warp/sim/integrator_xpbd.py +3292 -0
- warp/sim/model.py +4791 -0
- warp/sim/particles.py +121 -0
- warp/sim/render.py +427 -0
- warp/sim/utils.py +428 -0
- warp/sparse.py +2057 -0
- warp/stubs.py +3333 -0
- warp/tape.py +1203 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +634 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +200 -0
- warp/tests/geometry/test_hash_grid.py +221 -0
- warp/tests/geometry/test_marching_cubes.py +74 -0
- warp/tests/geometry/test_mesh.py +316 -0
- warp/tests/geometry/test_mesh_query_aabb.py +399 -0
- warp/tests/geometry/test_mesh_query_point.py +932 -0
- warp/tests/geometry/test_mesh_query_ray.py +311 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +729 -0
- warp/tests/interop/test_jax.py +371 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/sim/__init__.py +0 -0
- warp/tests/sim/disabled_kinematics.py +244 -0
- warp/tests/sim/flaky_test_sim_grad.py +290 -0
- warp/tests/sim/test_collision.py +604 -0
- warp/tests/sim/test_coloring.py +258 -0
- warp/tests/sim/test_model.py +224 -0
- warp/tests/sim/test_sim_grad_bounce_linear.py +212 -0
- warp/tests/sim/test_sim_kinematics.py +98 -0
- warp/tests/sim/test_vbd.py +597 -0
- warp/tests/test_adam.py +163 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +2972 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +250 -0
- warp/tests/test_atomic.py +153 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +1298 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +810 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +252 -0
- warp/tests/test_context.py +42 -0
- warp/tests/test_copy.py +238 -0
- warp/tests/test_ctypes.py +638 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +97 -0
- warp/tests/test_examples.py +482 -0
- warp/tests/test_fabricarray.py +996 -0
- warp/tests/test_fast_math.py +74 -0
- warp/tests/test_fem.py +2003 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +454 -0
- warp/tests/test_future_annotations.py +98 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +73 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +193 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_mat.py +2089 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +178 -0
- warp/tests/test_mlp.py +282 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +44 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +339 -0
- warp/tests/test_quat.py +2315 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +302 -0
- warp/tests/test_rounding.py +185 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +105 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +582 -0
- warp/tests/test_spatial.py +2229 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +592 -0
- warp/tests/test_struct.py +734 -0
- warp/tests/test_tape.py +204 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +145 -0
- warp/tests/test_types.py +562 -0
- warp/tests/test_utils.py +588 -0
- warp/tests/test_vec.py +1487 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +780 -0
- warp/tests/tile/test_tile_load.py +407 -0
- warp/tests/tile/test_tile_mathdx.py +208 -0
- warp/tests/tile/test_tile_mlp.py +402 -0
- warp/tests/tile/test_tile_reduce.py +447 -0
- warp/tests/tile/test_tile_shared_memory.py +247 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +427 -0
- warp/tests/unittest_utils.py +468 -0
- warp/tests/walkthrough_debug.py +93 -0
- warp/thirdparty/__init__.py +0 -0
- warp/thirdparty/appdirs.py +598 -0
- warp/thirdparty/dlpack.py +145 -0
- warp/thirdparty/unittest_parallel.py +570 -0
- warp/torch.py +391 -0
- warp/types.py +5230 -0
- warp/utils.py +1137 -0
- warp_lang-1.7.0.dist-info/METADATA +516 -0
- warp_lang-1.7.0.dist-info/RECORD +429 -0
- warp_lang-1.7.0.dist-info/WHEEL +5 -0
- warp_lang-1.7.0.dist-info/licenses/LICENSE.md +202 -0
- warp_lang-1.7.0.dist-info/top_level.txt +1 -0
warp/tests/test_array.py
ADDED
|
@@ -0,0 +1,2972 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import unittest
|
|
17
|
+
from typing import Any
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
|
|
21
|
+
import warp as wp
|
|
22
|
+
from warp.tests.unittest_utils import *
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@wp.kernel
|
|
26
|
+
def kernel_1d(a: wp.array(dtype=int, ndim=1)):
|
|
27
|
+
i = wp.tid()
|
|
28
|
+
|
|
29
|
+
wp.expect_eq(a[i], wp.tid())
|
|
30
|
+
|
|
31
|
+
a[i] = a[i] * 2
|
|
32
|
+
wp.atomic_add(a, i, 1)
|
|
33
|
+
|
|
34
|
+
wp.expect_eq(a[i], wp.tid() * 2 + 1)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def test_1d(test, device):
|
|
38
|
+
dim_x = 4
|
|
39
|
+
|
|
40
|
+
a = np.arange(0, dim_x, dtype=np.int32)
|
|
41
|
+
|
|
42
|
+
arr = wp.array(a, device=device)
|
|
43
|
+
|
|
44
|
+
test.assertEqual(arr.shape, a.shape)
|
|
45
|
+
test.assertEqual(arr.size, a.size)
|
|
46
|
+
test.assertEqual(arr.ndim, a.ndim)
|
|
47
|
+
|
|
48
|
+
with CheckOutput(test):
|
|
49
|
+
wp.launch(kernel_1d, dim=arr.size, inputs=[arr], device=device)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
@wp.kernel
|
|
53
|
+
def kernel_2d(a: wp.array(dtype=int, ndim=2), m: int, n: int):
|
|
54
|
+
i = wp.tid() // n
|
|
55
|
+
j = wp.tid() % n
|
|
56
|
+
|
|
57
|
+
wp.expect_eq(a[i, j], wp.tid())
|
|
58
|
+
wp.expect_eq(a[i][j], wp.tid())
|
|
59
|
+
|
|
60
|
+
a[i, j] = a[i, j] * 2
|
|
61
|
+
wp.atomic_add(a, i, j, 1)
|
|
62
|
+
|
|
63
|
+
wp.expect_eq(a[i, j], wp.tid() * 2 + 1)
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def test_2d(test, device):
|
|
67
|
+
dim_x = 4
|
|
68
|
+
dim_y = 2
|
|
69
|
+
|
|
70
|
+
a = np.arange(0, dim_x * dim_y, dtype=np.int32)
|
|
71
|
+
a = a.reshape(dim_x, dim_y)
|
|
72
|
+
|
|
73
|
+
arr = wp.array(a, device=device)
|
|
74
|
+
|
|
75
|
+
test.assertEqual(arr.shape, a.shape)
|
|
76
|
+
test.assertEqual(arr.size, a.size)
|
|
77
|
+
test.assertEqual(arr.ndim, a.ndim)
|
|
78
|
+
|
|
79
|
+
with CheckOutput(test):
|
|
80
|
+
wp.launch(kernel_2d, dim=arr.size, inputs=[arr, dim_x, dim_y], device=device)
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
@wp.kernel
|
|
84
|
+
def kernel_3d(a: wp.array(dtype=int, ndim=3), m: int, n: int, o: int):
|
|
85
|
+
i = wp.tid() // (n * o)
|
|
86
|
+
j = wp.tid() % (n * o) // o
|
|
87
|
+
k = wp.tid() % o
|
|
88
|
+
|
|
89
|
+
wp.expect_eq(a[i, j, k], wp.tid())
|
|
90
|
+
wp.expect_eq(a[i][j][k], wp.tid())
|
|
91
|
+
|
|
92
|
+
a[i, j, k] = a[i, j, k] * 2
|
|
93
|
+
a[i][j][k] = a[i][j][k] * 2
|
|
94
|
+
wp.atomic_add(a, i, j, k, 1)
|
|
95
|
+
|
|
96
|
+
wp.expect_eq(a[i, j, k], wp.tid() * 4 + 1)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def test_3d(test, device):
|
|
100
|
+
dim_x = 8
|
|
101
|
+
dim_y = 4
|
|
102
|
+
dim_z = 2
|
|
103
|
+
|
|
104
|
+
a = np.arange(0, dim_x * dim_y * dim_z, dtype=np.int32)
|
|
105
|
+
a = a.reshape(dim_x, dim_y, dim_z)
|
|
106
|
+
|
|
107
|
+
arr = wp.array(a, device=device)
|
|
108
|
+
|
|
109
|
+
test.assertEqual(arr.shape, a.shape)
|
|
110
|
+
test.assertEqual(arr.size, a.size)
|
|
111
|
+
test.assertEqual(arr.ndim, a.ndim)
|
|
112
|
+
|
|
113
|
+
with CheckOutput(test):
|
|
114
|
+
wp.launch(kernel_3d, dim=arr.size, inputs=[arr, dim_x, dim_y, dim_z], device=device)
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
@wp.kernel
|
|
118
|
+
def kernel_4d(a: wp.array(dtype=int, ndim=4), m: int, n: int, o: int, p: int):
|
|
119
|
+
i = wp.tid() // (n * o * p)
|
|
120
|
+
j = wp.tid() % (n * o * p) // (o * p)
|
|
121
|
+
k = wp.tid() % (o * p) / p
|
|
122
|
+
l = wp.tid() % p
|
|
123
|
+
|
|
124
|
+
wp.expect_eq(a[i, j, k, l], wp.tid())
|
|
125
|
+
wp.expect_eq(a[i][j][k][l], wp.tid())
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
def test_4d(test, device):
|
|
129
|
+
dim_x = 16
|
|
130
|
+
dim_y = 8
|
|
131
|
+
dim_z = 4
|
|
132
|
+
dim_w = 2
|
|
133
|
+
|
|
134
|
+
a = np.arange(0, dim_x * dim_y * dim_z * dim_w, dtype=np.int32)
|
|
135
|
+
a = a.reshape(dim_x, dim_y, dim_z, dim_w)
|
|
136
|
+
|
|
137
|
+
arr = wp.array(a, device=device)
|
|
138
|
+
|
|
139
|
+
test.assertEqual(arr.shape, a.shape)
|
|
140
|
+
test.assertEqual(arr.size, a.size)
|
|
141
|
+
test.assertEqual(arr.ndim, a.ndim)
|
|
142
|
+
|
|
143
|
+
with CheckOutput(test):
|
|
144
|
+
wp.launch(kernel_4d, dim=arr.size, inputs=[arr, dim_x, dim_y, dim_z, dim_w], device=device)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
@wp.kernel
|
|
148
|
+
def kernel_4d_transposed(a: wp.array(dtype=int, ndim=4), m: int, n: int, o: int, p: int):
|
|
149
|
+
i = wp.tid() // (n * o * p)
|
|
150
|
+
j = wp.tid() % (n * o * p) // (o * p)
|
|
151
|
+
k = wp.tid() % (o * p) / p
|
|
152
|
+
l = wp.tid() % p
|
|
153
|
+
|
|
154
|
+
wp.expect_eq(a[l, k, j, i], wp.tid())
|
|
155
|
+
wp.expect_eq(a[l][k][j][i], wp.tid())
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
def test_4d_transposed(test, device):
|
|
159
|
+
dim_x = 16
|
|
160
|
+
dim_y = 8
|
|
161
|
+
dim_z = 4
|
|
162
|
+
dim_w = 2
|
|
163
|
+
|
|
164
|
+
a = np.arange(0, dim_x * dim_y * dim_z * dim_w, dtype=np.int32)
|
|
165
|
+
a = a.reshape(dim_x, dim_y, dim_z, dim_w)
|
|
166
|
+
|
|
167
|
+
arr = wp.array(a, device=device)
|
|
168
|
+
|
|
169
|
+
# Transpose the array manually, as using the wp.array() constructor with arr.T would make it contiguous first
|
|
170
|
+
a_T = a.T
|
|
171
|
+
arr_T = wp.array(
|
|
172
|
+
dtype=arr.dtype,
|
|
173
|
+
shape=a_T.shape,
|
|
174
|
+
strides=a_T.__array_interface__["strides"],
|
|
175
|
+
capacity=arr.capacity,
|
|
176
|
+
ptr=arr.ptr,
|
|
177
|
+
requires_grad=arr.requires_grad,
|
|
178
|
+
device=device,
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
test.assertFalse(arr_T.is_contiguous)
|
|
182
|
+
test.assertEqual(arr_T.shape, a_T.shape)
|
|
183
|
+
test.assertEqual(arr_T.strides, a_T.__array_interface__["strides"])
|
|
184
|
+
test.assertEqual(arr_T.size, a_T.size)
|
|
185
|
+
test.assertEqual(arr_T.ndim, a_T.ndim)
|
|
186
|
+
|
|
187
|
+
with CheckOutput(test):
|
|
188
|
+
wp.launch(kernel_4d_transposed, dim=arr_T.size, inputs=[arr_T, dim_x, dim_y, dim_z, dim_w], device=device)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
@wp.kernel
|
|
192
|
+
def lower_bound_kernel(values: wp.array(dtype=float), arr: wp.array(dtype=float), indices: wp.array(dtype=int)):
|
|
193
|
+
tid = wp.tid()
|
|
194
|
+
|
|
195
|
+
indices[tid] = wp.lower_bound(arr, values[tid])
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def test_lower_bound(test, device):
|
|
199
|
+
arr = wp.array(np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0], dtype=float), dtype=float, device=device)
|
|
200
|
+
values = wp.array(np.array([-0.1, 0.0, 2.5, 4.0, 5.0, 5.5], dtype=float), dtype=float, device=device)
|
|
201
|
+
indices = wp.zeros(6, dtype=int, device=device)
|
|
202
|
+
|
|
203
|
+
wp.launch(kernel=lower_bound_kernel, dim=6, inputs=[values, arr, indices], device=device)
|
|
204
|
+
|
|
205
|
+
test.assertTrue((np.array([0, 0, 3, 4, 5, 5]) == indices.numpy()).all())
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
@wp.kernel
|
|
209
|
+
def f1(arr: wp.array(dtype=float)):
|
|
210
|
+
wp.expect_eq(arr.shape[0], 10)
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
@wp.kernel
|
|
214
|
+
def f2(arr: wp.array2d(dtype=float)):
|
|
215
|
+
wp.expect_eq(arr.shape[0], 10)
|
|
216
|
+
wp.expect_eq(arr.shape[1], 20)
|
|
217
|
+
|
|
218
|
+
slice = arr[0]
|
|
219
|
+
wp.expect_eq(slice.shape[0], 20)
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
@wp.kernel
|
|
223
|
+
def f3(arr: wp.array3d(dtype=float)):
|
|
224
|
+
wp.expect_eq(arr.shape[0], 10)
|
|
225
|
+
wp.expect_eq(arr.shape[1], 20)
|
|
226
|
+
wp.expect_eq(arr.shape[2], 30)
|
|
227
|
+
|
|
228
|
+
slice = arr[0, 0]
|
|
229
|
+
wp.expect_eq(slice.shape[0], 30)
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
@wp.kernel
|
|
233
|
+
def f4(arr: wp.array4d(dtype=float)):
|
|
234
|
+
wp.expect_eq(arr.shape[0], 10)
|
|
235
|
+
wp.expect_eq(arr.shape[1], 20)
|
|
236
|
+
wp.expect_eq(arr.shape[2], 30)
|
|
237
|
+
wp.expect_eq(arr.shape[3], 40)
|
|
238
|
+
|
|
239
|
+
slice = arr[0, 0, 0]
|
|
240
|
+
wp.expect_eq(slice.shape[0], 40)
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
def test_shape(test, device):
|
|
244
|
+
with CheckOutput(test):
|
|
245
|
+
a1 = wp.zeros(dtype=float, shape=10, device=device)
|
|
246
|
+
wp.launch(f1, dim=1, inputs=[a1], device=device)
|
|
247
|
+
|
|
248
|
+
a2 = wp.zeros(dtype=float, shape=(10, 20), device=device)
|
|
249
|
+
wp.launch(f2, dim=1, inputs=[a2], device=device)
|
|
250
|
+
|
|
251
|
+
a3 = wp.zeros(dtype=float, shape=(10, 20, 30), device=device)
|
|
252
|
+
wp.launch(f3, dim=1, inputs=[a3], device=device)
|
|
253
|
+
|
|
254
|
+
a4 = wp.zeros(dtype=float, shape=(10, 20, 30, 40), device=device)
|
|
255
|
+
wp.launch(f4, dim=1, inputs=[a4], device=device)
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
def test_negative_shape(test, device):
|
|
259
|
+
with test.assertRaisesRegex(ValueError, "Array shapes must be non-negative"):
|
|
260
|
+
_ = wp.zeros(shape=-1, dtype=int, device=device)
|
|
261
|
+
|
|
262
|
+
with test.assertRaisesRegex(ValueError, "Array shapes must be non-negative"):
|
|
263
|
+
_ = wp.zeros(shape=-(2**32), dtype=int, device=device)
|
|
264
|
+
|
|
265
|
+
with test.assertRaisesRegex(ValueError, "Array shapes must be non-negative"):
|
|
266
|
+
_ = wp.zeros(shape=(10, -1), dtype=int, device=device)
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
@wp.kernel
|
|
270
|
+
def sum_array(arr: wp.array(dtype=float), loss: wp.array(dtype=float)):
|
|
271
|
+
tid = wp.tid()
|
|
272
|
+
wp.atomic_add(loss, 0, arr[tid])
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
def test_flatten(test, device):
|
|
276
|
+
np_arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=float)
|
|
277
|
+
arr = wp.array(np_arr, dtype=float, shape=np_arr.shape, device=device, requires_grad=True)
|
|
278
|
+
arr_flat = arr.flatten()
|
|
279
|
+
arr_comp = wp.array(np_arr.flatten(), dtype=float, device=device)
|
|
280
|
+
assert_array_equal(arr_flat, arr_comp)
|
|
281
|
+
|
|
282
|
+
loss = wp.zeros(1, dtype=float, device=device, requires_grad=True)
|
|
283
|
+
tape = wp.Tape()
|
|
284
|
+
with tape:
|
|
285
|
+
wp.launch(kernel=sum_array, dim=len(arr_flat), inputs=[arr_flat, loss], device=device)
|
|
286
|
+
|
|
287
|
+
tape.backward(loss=loss)
|
|
288
|
+
grad = tape.gradients[arr_flat]
|
|
289
|
+
|
|
290
|
+
ones = wp.array(
|
|
291
|
+
np.ones(
|
|
292
|
+
(8,),
|
|
293
|
+
dtype=float,
|
|
294
|
+
),
|
|
295
|
+
dtype=float,
|
|
296
|
+
device=device,
|
|
297
|
+
)
|
|
298
|
+
assert_array_equal(grad, ones)
|
|
299
|
+
test.assertEqual(loss.numpy()[0], 36)
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
def test_reshape(test, device):
|
|
303
|
+
np_arr = np.arange(6, dtype=float)
|
|
304
|
+
arr = wp.array(np_arr, dtype=float, device=device, requires_grad=True)
|
|
305
|
+
arr_reshaped = arr.reshape((3, 2))
|
|
306
|
+
arr_comp = wp.array(np_arr.reshape((3, 2)), dtype=float, device=device)
|
|
307
|
+
assert_array_equal(arr_reshaped, arr_comp)
|
|
308
|
+
|
|
309
|
+
arr_reshaped = arr_reshaped.reshape(6)
|
|
310
|
+
assert_array_equal(arr_reshaped, arr)
|
|
311
|
+
|
|
312
|
+
loss = wp.zeros(1, dtype=float, device=device, requires_grad=True)
|
|
313
|
+
tape = wp.Tape()
|
|
314
|
+
with tape:
|
|
315
|
+
wp.launch(kernel=sum_array, dim=len(arr_reshaped), inputs=[arr_reshaped, loss], device=device)
|
|
316
|
+
|
|
317
|
+
tape.backward(loss=loss)
|
|
318
|
+
grad = tape.gradients[arr_reshaped]
|
|
319
|
+
|
|
320
|
+
ones = wp.array(
|
|
321
|
+
np.ones(
|
|
322
|
+
(6,),
|
|
323
|
+
dtype=float,
|
|
324
|
+
),
|
|
325
|
+
dtype=float,
|
|
326
|
+
device=device,
|
|
327
|
+
)
|
|
328
|
+
assert_array_equal(grad, ones)
|
|
329
|
+
test.assertEqual(loss.numpy()[0], 15)
|
|
330
|
+
|
|
331
|
+
np_arr = np.arange(6, dtype=float)
|
|
332
|
+
arr = wp.array(np_arr, dtype=float, device=device)
|
|
333
|
+
arr_infer = arr.reshape((-1, 3))
|
|
334
|
+
arr_comp = wp.array(np_arr.reshape((-1, 3)), dtype=float, device=device)
|
|
335
|
+
assert_array_equal(arr_infer, arr_comp)
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
@wp.kernel
|
|
339
|
+
def compare_stepped_window_a(x: wp.array2d(dtype=float)):
|
|
340
|
+
wp.expect_eq(x[0, 0], 1.0)
|
|
341
|
+
wp.expect_eq(x[0, 1], 2.0)
|
|
342
|
+
wp.expect_eq(x[1, 0], 9.0)
|
|
343
|
+
wp.expect_eq(x[1, 1], 10.0)
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
@wp.kernel
|
|
347
|
+
def compare_stepped_window_b(x: wp.array2d(dtype=float)):
|
|
348
|
+
wp.expect_eq(x[0, 0], 3.0)
|
|
349
|
+
wp.expect_eq(x[0, 1], 4.0)
|
|
350
|
+
wp.expect_eq(x[1, 0], 7.0)
|
|
351
|
+
wp.expect_eq(x[1, 1], 8.0)
|
|
352
|
+
wp.expect_eq(x[2, 0], 11.0)
|
|
353
|
+
wp.expect_eq(x[2, 1], 12.0)
|
|
354
|
+
|
|
355
|
+
|
|
356
|
+
def test_slicing(test, device):
|
|
357
|
+
np_arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=float)
|
|
358
|
+
arr = wp.array(np_arr, dtype=float, shape=np_arr.shape, device=device, requires_grad=True)
|
|
359
|
+
|
|
360
|
+
slice_a = arr[1, :, :] # test indexing
|
|
361
|
+
slice_b = arr[1:2, :, :] # test slicing
|
|
362
|
+
slice_c = arr[-1, :, :] # test negative indexing
|
|
363
|
+
slice_d = arr[-2:-1, :, :] # test negative slicing
|
|
364
|
+
slice_e = arr[-1:3, :, :] # test mixed slicing
|
|
365
|
+
slice_e2 = slice_e[0, 0, :] # test 2x slicing
|
|
366
|
+
slice_f = arr[0:3:2, 0, :] # test step
|
|
367
|
+
|
|
368
|
+
assert_array_equal(slice_a, wp.array(np_arr[1, :, :], dtype=float, device=device))
|
|
369
|
+
assert_array_equal(slice_b, wp.array(np_arr[1:2, :, :], dtype=float, device=device))
|
|
370
|
+
assert_array_equal(slice_c, wp.array(np_arr[-1, :, :], dtype=float, device=device))
|
|
371
|
+
assert_array_equal(slice_d, wp.array(np_arr[-2:-1, :, :], dtype=float, device=device))
|
|
372
|
+
assert_array_equal(slice_e, wp.array(np_arr[-1:3, :, :], dtype=float, device=device))
|
|
373
|
+
assert_array_equal(slice_e2, wp.array(np_arr[2, 0, :], dtype=float, device=device))
|
|
374
|
+
|
|
375
|
+
# wp does not support copying from/to non-contiguous arrays
|
|
376
|
+
# stepped windows must read on the device the original array was created on
|
|
377
|
+
wp.launch(kernel=compare_stepped_window_a, dim=1, inputs=[slice_f], device=device)
|
|
378
|
+
|
|
379
|
+
slice_flat = slice_b.flatten()
|
|
380
|
+
loss = wp.zeros(1, dtype=float, device=device, requires_grad=True)
|
|
381
|
+
tape = wp.Tape()
|
|
382
|
+
with tape:
|
|
383
|
+
wp.launch(kernel=sum_array, dim=len(slice_flat), inputs=[slice_flat, loss], device=device)
|
|
384
|
+
|
|
385
|
+
tape.backward(loss=loss)
|
|
386
|
+
grad = tape.gradients[slice_flat]
|
|
387
|
+
|
|
388
|
+
ones = wp.array(
|
|
389
|
+
np.ones(
|
|
390
|
+
(4,),
|
|
391
|
+
dtype=float,
|
|
392
|
+
),
|
|
393
|
+
dtype=float,
|
|
394
|
+
device=device,
|
|
395
|
+
)
|
|
396
|
+
assert_array_equal(grad, ones)
|
|
397
|
+
test.assertEqual(loss.numpy()[0], 26)
|
|
398
|
+
|
|
399
|
+
index_a = arr[1]
|
|
400
|
+
index_b = arr[2, 1]
|
|
401
|
+
index_c = arr[1, :]
|
|
402
|
+
index_d = arr[:, 1]
|
|
403
|
+
|
|
404
|
+
assert_array_equal(index_a, wp.array(np_arr[1], dtype=float, device=device))
|
|
405
|
+
assert_array_equal(index_b, wp.array(np_arr[2, 1], dtype=float, device=device))
|
|
406
|
+
assert_array_equal(index_c, wp.array(np_arr[1, :], dtype=float, device=device))
|
|
407
|
+
wp.launch(kernel=compare_stepped_window_b, dim=1, inputs=[index_d], device=device)
|
|
408
|
+
|
|
409
|
+
np_arr = np.zeros(10, dtype=int)
|
|
410
|
+
wp_arr = wp.array(np_arr, dtype=int, device=device)
|
|
411
|
+
|
|
412
|
+
assert_array_equal(wp_arr[:5], wp.array(np_arr[:5], dtype=int, device=device))
|
|
413
|
+
assert_array_equal(wp_arr[1:5], wp.array(np_arr[1:5], dtype=int, device=device))
|
|
414
|
+
assert_array_equal(wp_arr[-9:-5:1], wp.array(np_arr[-9:-5:1], dtype=int, device=device))
|
|
415
|
+
assert_array_equal(wp_arr[:5,], wp.array(np_arr[:5], dtype=int, device=device)) # noqa: E231
|
|
416
|
+
|
|
417
|
+
|
|
418
|
+
def test_view(test, device):
|
|
419
|
+
np_arr_a = np.arange(1, 10, 1, dtype=np.uint32)
|
|
420
|
+
np_arr_b = np.arange(1, 10, 1, dtype=np.float32)
|
|
421
|
+
np_arr_c = np.arange(1, 10, 1, dtype=np.uint16)
|
|
422
|
+
np_arr_d = np.arange(1, 10, 1, dtype=np.float16)
|
|
423
|
+
np_arr_e = np.ones((4, 4), dtype=np.float32)
|
|
424
|
+
|
|
425
|
+
wp_arr_a = wp.array(np_arr_a, dtype=wp.uint32, device=device)
|
|
426
|
+
wp_arr_b = wp.array(np_arr_b, dtype=wp.float32, device=device)
|
|
427
|
+
wp_arr_c = wp.array(np_arr_a, dtype=wp.uint16, device=device)
|
|
428
|
+
wp_arr_d = wp.array(np_arr_b, dtype=wp.float16, device=device)
|
|
429
|
+
wp_arr_e = wp.array(np_arr_e, dtype=wp.vec4, device=device)
|
|
430
|
+
wp_arr_f = wp.array(np_arr_e, dtype=wp.quat, device=device)
|
|
431
|
+
|
|
432
|
+
assert_np_equal(wp_arr_a.view(dtype=wp.float32).numpy(), np_arr_a.view(dtype=np.float32))
|
|
433
|
+
assert_np_equal(wp_arr_b.view(dtype=wp.uint32).numpy(), np_arr_b.view(dtype=np.uint32))
|
|
434
|
+
assert_np_equal(wp_arr_c.view(dtype=wp.float16).numpy(), np_arr_c.view(dtype=np.float16))
|
|
435
|
+
assert_np_equal(wp_arr_d.view(dtype=wp.uint16).numpy(), np_arr_d.view(dtype=np.uint16))
|
|
436
|
+
assert_array_equal(wp_arr_e.view(dtype=wp.quat), wp_arr_f)
|
|
437
|
+
|
|
438
|
+
|
|
439
|
+
def test_clone_adjoint(test, device):
|
|
440
|
+
state_in = wp.from_numpy(
|
|
441
|
+
np.array([1.0, 2.0, 3.0]).astype(np.float32), dtype=wp.float32, requires_grad=True, device=device
|
|
442
|
+
)
|
|
443
|
+
|
|
444
|
+
tape = wp.Tape()
|
|
445
|
+
with tape:
|
|
446
|
+
state_out = wp.clone(state_in)
|
|
447
|
+
|
|
448
|
+
grads = {state_out: wp.from_numpy(np.array([1.0, 1.0, 1.0]).astype(np.float32), dtype=wp.float32, device=device)}
|
|
449
|
+
tape.backward(grads=grads)
|
|
450
|
+
|
|
451
|
+
assert_np_equal(state_in.grad.numpy(), np.array([1.0, 1.0, 1.0]).astype(np.float32))
|
|
452
|
+
|
|
453
|
+
|
|
454
|
+
def test_assign_adjoint(test, device):
|
|
455
|
+
state_in = wp.from_numpy(
|
|
456
|
+
np.array([1.0, 2.0, 3.0]).astype(np.float32), dtype=wp.float32, requires_grad=True, device=device
|
|
457
|
+
)
|
|
458
|
+
state_out = wp.zeros(state_in.shape, dtype=wp.float32, requires_grad=True, device=device)
|
|
459
|
+
|
|
460
|
+
tape = wp.Tape()
|
|
461
|
+
with tape:
|
|
462
|
+
state_out.assign(state_in)
|
|
463
|
+
|
|
464
|
+
grads = {state_out: wp.from_numpy(np.array([1.0, 1.0, 1.0]).astype(np.float32), dtype=wp.float32, device=device)}
|
|
465
|
+
tape.backward(grads=grads)
|
|
466
|
+
|
|
467
|
+
assert_np_equal(state_in.grad.numpy(), np.array([1.0, 1.0, 1.0]).astype(np.float32))
|
|
468
|
+
|
|
469
|
+
|
|
470
|
+
@wp.kernel
|
|
471
|
+
def compare_2darrays(x: wp.array2d(dtype=float), y: wp.array2d(dtype=float), z: wp.array2d(dtype=int)):
|
|
472
|
+
i, j = wp.tid()
|
|
473
|
+
|
|
474
|
+
if x[i, j] == y[i, j]:
|
|
475
|
+
z[i, j] = 1
|
|
476
|
+
|
|
477
|
+
|
|
478
|
+
@wp.kernel
|
|
479
|
+
def compare_3darrays(x: wp.array3d(dtype=float), y: wp.array3d(dtype=float), z: wp.array3d(dtype=int)):
|
|
480
|
+
i, j, k = wp.tid()
|
|
481
|
+
|
|
482
|
+
if x[i, j, k] == y[i, j, k]:
|
|
483
|
+
z[i, j, k] = 1
|
|
484
|
+
|
|
485
|
+
|
|
486
|
+
def test_transpose(test, device):
|
|
487
|
+
# test default transpose in non-square 2d case
|
|
488
|
+
# wp does not support copying from/to non-contiguous arrays so check in kernel
|
|
489
|
+
np_arr = np.array([[1, 2], [3, 4], [5, 6]], dtype=float)
|
|
490
|
+
arr = wp.array(np_arr, dtype=float, device=device)
|
|
491
|
+
arr_transpose = arr.transpose()
|
|
492
|
+
arr_compare = wp.array(np_arr.transpose(), dtype=float, device=device)
|
|
493
|
+
check = wp.zeros(shape=(2, 3), dtype=int, device=device)
|
|
494
|
+
|
|
495
|
+
wp.launch(compare_2darrays, dim=(2, 3), inputs=[arr_transpose, arr_compare, check], device=device)
|
|
496
|
+
assert_np_equal(check.numpy(), np.ones((2, 3), dtype=int))
|
|
497
|
+
|
|
498
|
+
# test transpose in square 3d case
|
|
499
|
+
# wp does not support copying from/to non-contiguous arrays so check in kernel
|
|
500
|
+
np_arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=float)
|
|
501
|
+
arr = wp.array3d(np_arr, dtype=float, shape=np_arr.shape, device=device, requires_grad=True)
|
|
502
|
+
arr_transpose = arr.transpose((0, 2, 1))
|
|
503
|
+
arr_compare = wp.array3d(np_arr.transpose((0, 2, 1)), dtype=float, device=device)
|
|
504
|
+
check = wp.zeros(shape=(3, 2, 2), dtype=int, device=device)
|
|
505
|
+
|
|
506
|
+
wp.launch(compare_3darrays, dim=(3, 2, 2), inputs=[arr_transpose, arr_compare, check], device=device)
|
|
507
|
+
assert_np_equal(check.numpy(), np.ones((3, 2, 2), dtype=int))
|
|
508
|
+
|
|
509
|
+
# test transpose in square 3d case without axes supplied
|
|
510
|
+
arr_transpose = arr.transpose()
|
|
511
|
+
arr_compare = wp.array3d(np_arr.transpose(), dtype=float, device=device)
|
|
512
|
+
check = wp.zeros(shape=(2, 2, 3), dtype=int, device=device)
|
|
513
|
+
|
|
514
|
+
wp.launch(compare_3darrays, dim=(2, 2, 3), inputs=[arr_transpose, arr_compare, check], device=device)
|
|
515
|
+
assert_np_equal(check.numpy(), np.ones((2, 2, 3), dtype=int))
|
|
516
|
+
|
|
517
|
+
# test transpose in 1d case (should be noop)
|
|
518
|
+
np_arr = np.array([1, 2, 3], dtype=float)
|
|
519
|
+
arr = wp.array(np_arr, dtype=float, device=device)
|
|
520
|
+
|
|
521
|
+
assert_np_equal(arr.transpose().numpy(), np_arr.transpose())
|
|
522
|
+
|
|
523
|
+
|
|
524
|
+
def test_fill_scalar(test, device):
|
|
525
|
+
dim_x = 4
|
|
526
|
+
|
|
527
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
528
|
+
a1 = wp.zeros(dim_x, dtype=wptype, device=device)
|
|
529
|
+
a2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device)
|
|
530
|
+
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
531
|
+
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
532
|
+
|
|
533
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
534
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
535
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
536
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
537
|
+
|
|
538
|
+
# fill with int value
|
|
539
|
+
fill_value = 42
|
|
540
|
+
|
|
541
|
+
a1.fill_(fill_value)
|
|
542
|
+
a2.fill_(fill_value)
|
|
543
|
+
a3.fill_(fill_value)
|
|
544
|
+
a4.fill_(fill_value)
|
|
545
|
+
|
|
546
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
547
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
548
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
549
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
550
|
+
|
|
551
|
+
a1.zero_()
|
|
552
|
+
a2.zero_()
|
|
553
|
+
a3.zero_()
|
|
554
|
+
a4.zero_()
|
|
555
|
+
|
|
556
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
557
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
558
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
559
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
560
|
+
|
|
561
|
+
if wptype in wp.types.float_types:
|
|
562
|
+
# fill with float value
|
|
563
|
+
fill_value = 13.37
|
|
564
|
+
|
|
565
|
+
a1.fill_(fill_value)
|
|
566
|
+
a2.fill_(fill_value)
|
|
567
|
+
a3.fill_(fill_value)
|
|
568
|
+
a4.fill_(fill_value)
|
|
569
|
+
|
|
570
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
571
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
572
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
573
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
574
|
+
|
|
575
|
+
# fill with Warp scalar value
|
|
576
|
+
fill_value = wptype(17)
|
|
577
|
+
|
|
578
|
+
a1.fill_(fill_value)
|
|
579
|
+
a2.fill_(fill_value)
|
|
580
|
+
a3.fill_(fill_value)
|
|
581
|
+
a4.fill_(fill_value)
|
|
582
|
+
|
|
583
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value.value, dtype=nptype))
|
|
584
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value.value, dtype=nptype))
|
|
585
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value.value, dtype=nptype))
|
|
586
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value.value, dtype=nptype))
|
|
587
|
+
|
|
588
|
+
|
|
589
|
+
def test_fill_vector(test, device):
|
|
590
|
+
# test filling a vector array with scalar or vector values (vec_type, list, or numpy array)
|
|
591
|
+
|
|
592
|
+
dim_x = 4
|
|
593
|
+
|
|
594
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
595
|
+
# vector types
|
|
596
|
+
vector_types = [
|
|
597
|
+
wp.types.vector(2, wptype),
|
|
598
|
+
wp.types.vector(3, wptype),
|
|
599
|
+
wp.types.vector(4, wptype),
|
|
600
|
+
wp.types.vector(5, wptype),
|
|
601
|
+
]
|
|
602
|
+
|
|
603
|
+
for vec_type in vector_types:
|
|
604
|
+
vec_len = vec_type._length_
|
|
605
|
+
|
|
606
|
+
a1 = wp.zeros(dim_x, dtype=vec_type, device=device)
|
|
607
|
+
a2 = wp.zeros((dim_x, dim_x), dtype=vec_type, device=device)
|
|
608
|
+
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
609
|
+
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
610
|
+
|
|
611
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
612
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
613
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
614
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
615
|
+
|
|
616
|
+
# fill with int scalar
|
|
617
|
+
fill_value = 42
|
|
618
|
+
|
|
619
|
+
a1.fill_(fill_value)
|
|
620
|
+
a2.fill_(fill_value)
|
|
621
|
+
a3.fill_(fill_value)
|
|
622
|
+
a4.fill_(fill_value)
|
|
623
|
+
|
|
624
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
625
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
626
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
627
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
628
|
+
|
|
629
|
+
# test zeroing
|
|
630
|
+
a1.zero_()
|
|
631
|
+
a2.zero_()
|
|
632
|
+
a3.zero_()
|
|
633
|
+
a4.zero_()
|
|
634
|
+
|
|
635
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
636
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
637
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
638
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
639
|
+
|
|
640
|
+
# vector values can be passed as a list, numpy array, or Warp vector instance
|
|
641
|
+
fill_list = [17, 42, 99, 101, 127][:vec_len]
|
|
642
|
+
fill_arr = np.array(fill_list, dtype=nptype)
|
|
643
|
+
fill_vec = vec_type(fill_list)
|
|
644
|
+
|
|
645
|
+
expected1 = np.tile(fill_arr, a1.size).reshape((*a1.shape, vec_len))
|
|
646
|
+
expected2 = np.tile(fill_arr, a2.size).reshape((*a2.shape, vec_len))
|
|
647
|
+
expected3 = np.tile(fill_arr, a3.size).reshape((*a3.shape, vec_len))
|
|
648
|
+
expected4 = np.tile(fill_arr, a4.size).reshape((*a4.shape, vec_len))
|
|
649
|
+
|
|
650
|
+
# fill with list of vector length
|
|
651
|
+
a1.fill_(fill_list)
|
|
652
|
+
a2.fill_(fill_list)
|
|
653
|
+
a3.fill_(fill_list)
|
|
654
|
+
a4.fill_(fill_list)
|
|
655
|
+
|
|
656
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
657
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
658
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
659
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
660
|
+
|
|
661
|
+
# clear
|
|
662
|
+
a1.zero_()
|
|
663
|
+
a2.zero_()
|
|
664
|
+
a3.zero_()
|
|
665
|
+
a4.zero_()
|
|
666
|
+
|
|
667
|
+
# fill with numpy array of vector length
|
|
668
|
+
a1.fill_(fill_arr)
|
|
669
|
+
a2.fill_(fill_arr)
|
|
670
|
+
a3.fill_(fill_arr)
|
|
671
|
+
a4.fill_(fill_arr)
|
|
672
|
+
|
|
673
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
674
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
675
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
676
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
677
|
+
|
|
678
|
+
# clear
|
|
679
|
+
a1.zero_()
|
|
680
|
+
a2.zero_()
|
|
681
|
+
a3.zero_()
|
|
682
|
+
a4.zero_()
|
|
683
|
+
|
|
684
|
+
# fill with vec instance
|
|
685
|
+
a1.fill_(fill_vec)
|
|
686
|
+
a2.fill_(fill_vec)
|
|
687
|
+
a3.fill_(fill_vec)
|
|
688
|
+
a4.fill_(fill_vec)
|
|
689
|
+
|
|
690
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
691
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
692
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
693
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
694
|
+
|
|
695
|
+
if wptype in wp.types.float_types:
|
|
696
|
+
# fill with float scalar
|
|
697
|
+
fill_value = 13.37
|
|
698
|
+
|
|
699
|
+
a1.fill_(fill_value)
|
|
700
|
+
a2.fill_(fill_value)
|
|
701
|
+
a3.fill_(fill_value)
|
|
702
|
+
a4.fill_(fill_value)
|
|
703
|
+
|
|
704
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
705
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
706
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
707
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
708
|
+
|
|
709
|
+
# fill with float list of vector length
|
|
710
|
+
fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len]
|
|
711
|
+
|
|
712
|
+
a1.fill_(fill_list)
|
|
713
|
+
a2.fill_(fill_list)
|
|
714
|
+
a3.fill_(fill_list)
|
|
715
|
+
a4.fill_(fill_list)
|
|
716
|
+
|
|
717
|
+
expected1 = np.tile(np.array(fill_list, dtype=nptype), a1.size).reshape((*a1.shape, vec_len))
|
|
718
|
+
expected2 = np.tile(np.array(fill_list, dtype=nptype), a2.size).reshape((*a2.shape, vec_len))
|
|
719
|
+
expected3 = np.tile(np.array(fill_list, dtype=nptype), a3.size).reshape((*a3.shape, vec_len))
|
|
720
|
+
expected4 = np.tile(np.array(fill_list, dtype=nptype), a4.size).reshape((*a4.shape, vec_len))
|
|
721
|
+
|
|
722
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
723
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
724
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
725
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
726
|
+
|
|
727
|
+
|
|
728
|
+
def test_fill_matrix(test, device):
|
|
729
|
+
# test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array)
|
|
730
|
+
|
|
731
|
+
dim_x = 4
|
|
732
|
+
|
|
733
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
734
|
+
# matrix types
|
|
735
|
+
matrix_types = [
|
|
736
|
+
# square matrices
|
|
737
|
+
wp.types.matrix((2, 2), wptype),
|
|
738
|
+
wp.types.matrix((3, 3), wptype),
|
|
739
|
+
wp.types.matrix((4, 4), wptype),
|
|
740
|
+
wp.types.matrix((5, 5), wptype),
|
|
741
|
+
# non-square matrices
|
|
742
|
+
wp.types.matrix((2, 3), wptype),
|
|
743
|
+
wp.types.matrix((3, 2), wptype),
|
|
744
|
+
wp.types.matrix((3, 4), wptype),
|
|
745
|
+
wp.types.matrix((4, 3), wptype),
|
|
746
|
+
]
|
|
747
|
+
|
|
748
|
+
for mat_type in matrix_types:
|
|
749
|
+
mat_len = mat_type._length_
|
|
750
|
+
mat_shape = mat_type._shape_
|
|
751
|
+
|
|
752
|
+
a1 = wp.zeros(dim_x, dtype=mat_type, device=device)
|
|
753
|
+
a2 = wp.zeros((dim_x, dim_x), dtype=mat_type, device=device)
|
|
754
|
+
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
755
|
+
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
756
|
+
|
|
757
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
758
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
759
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
760
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
761
|
+
|
|
762
|
+
# fill with scalar
|
|
763
|
+
fill_value = 42
|
|
764
|
+
|
|
765
|
+
a1.fill_(fill_value)
|
|
766
|
+
a2.fill_(fill_value)
|
|
767
|
+
a3.fill_(fill_value)
|
|
768
|
+
a4.fill_(fill_value)
|
|
769
|
+
|
|
770
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, *mat_shape), fill_value, dtype=nptype))
|
|
771
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, *mat_shape), fill_value, dtype=nptype))
|
|
772
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, *mat_shape), fill_value, dtype=nptype))
|
|
773
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, *mat_shape), fill_value, dtype=nptype))
|
|
774
|
+
|
|
775
|
+
# test zeroing
|
|
776
|
+
a1.zero_()
|
|
777
|
+
a2.zero_()
|
|
778
|
+
a3.zero_()
|
|
779
|
+
a4.zero_()
|
|
780
|
+
|
|
781
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
782
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
783
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
784
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
785
|
+
|
|
786
|
+
# matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance
|
|
787
|
+
if wptype != wp.bool:
|
|
788
|
+
fill_arr1 = np.arange(mat_len, dtype=nptype)
|
|
789
|
+
else:
|
|
790
|
+
fill_arr1 = np.ones(mat_len, dtype=nptype)
|
|
791
|
+
fill_arr2 = fill_arr1.reshape(mat_shape)
|
|
792
|
+
fill_list1 = list(fill_arr1)
|
|
793
|
+
fill_list2 = [list(row) for row in fill_arr2]
|
|
794
|
+
fill_mat = mat_type(fill_arr1)
|
|
795
|
+
|
|
796
|
+
expected1 = np.tile(fill_arr1, a1.size).reshape((*a1.shape, *mat_shape))
|
|
797
|
+
expected2 = np.tile(fill_arr1, a2.size).reshape((*a2.shape, *mat_shape))
|
|
798
|
+
expected3 = np.tile(fill_arr1, a3.size).reshape((*a3.shape, *mat_shape))
|
|
799
|
+
expected4 = np.tile(fill_arr1, a4.size).reshape((*a4.shape, *mat_shape))
|
|
800
|
+
|
|
801
|
+
# fill with 1d numpy array
|
|
802
|
+
a1.fill_(fill_arr1)
|
|
803
|
+
a2.fill_(fill_arr1)
|
|
804
|
+
a3.fill_(fill_arr1)
|
|
805
|
+
a4.fill_(fill_arr1)
|
|
806
|
+
|
|
807
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
808
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
809
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
810
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
811
|
+
|
|
812
|
+
# clear
|
|
813
|
+
a1.zero_()
|
|
814
|
+
a2.zero_()
|
|
815
|
+
a3.zero_()
|
|
816
|
+
a4.zero_()
|
|
817
|
+
|
|
818
|
+
# fill with 2d numpy array
|
|
819
|
+
a1.fill_(fill_arr2)
|
|
820
|
+
a2.fill_(fill_arr2)
|
|
821
|
+
a3.fill_(fill_arr2)
|
|
822
|
+
a4.fill_(fill_arr2)
|
|
823
|
+
|
|
824
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
825
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
826
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
827
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
828
|
+
|
|
829
|
+
# clear
|
|
830
|
+
a1.zero_()
|
|
831
|
+
a2.zero_()
|
|
832
|
+
a3.zero_()
|
|
833
|
+
a4.zero_()
|
|
834
|
+
|
|
835
|
+
# fill with flat list
|
|
836
|
+
a1.fill_(fill_list1)
|
|
837
|
+
a2.fill_(fill_list1)
|
|
838
|
+
a3.fill_(fill_list1)
|
|
839
|
+
a4.fill_(fill_list1)
|
|
840
|
+
|
|
841
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
842
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
843
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
844
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
845
|
+
|
|
846
|
+
# clear
|
|
847
|
+
a1.zero_()
|
|
848
|
+
a2.zero_()
|
|
849
|
+
a3.zero_()
|
|
850
|
+
a4.zero_()
|
|
851
|
+
|
|
852
|
+
# fill with nested list
|
|
853
|
+
a1.fill_(fill_list2)
|
|
854
|
+
a2.fill_(fill_list2)
|
|
855
|
+
a3.fill_(fill_list2)
|
|
856
|
+
a4.fill_(fill_list2)
|
|
857
|
+
|
|
858
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
859
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
860
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
861
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
862
|
+
|
|
863
|
+
# clear
|
|
864
|
+
a1.zero_()
|
|
865
|
+
a2.zero_()
|
|
866
|
+
a3.zero_()
|
|
867
|
+
a4.zero_()
|
|
868
|
+
|
|
869
|
+
# fill with mat instance
|
|
870
|
+
a1.fill_(fill_mat)
|
|
871
|
+
a2.fill_(fill_mat)
|
|
872
|
+
a3.fill_(fill_mat)
|
|
873
|
+
a4.fill_(fill_mat)
|
|
874
|
+
|
|
875
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
876
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
877
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
878
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
879
|
+
|
|
880
|
+
|
|
881
|
+
@wp.struct
|
|
882
|
+
class FillStruct:
|
|
883
|
+
# scalar members (make sure to test float16)
|
|
884
|
+
i1: wp.int8
|
|
885
|
+
i2: wp.int16
|
|
886
|
+
i4: wp.int32
|
|
887
|
+
i8: wp.int64
|
|
888
|
+
f2: wp.float16
|
|
889
|
+
f4: wp.float32
|
|
890
|
+
f8: wp.float16
|
|
891
|
+
# vector members (make sure to test vectors of float16)
|
|
892
|
+
v2: wp.types.vector(2, wp.int64)
|
|
893
|
+
v3: wp.types.vector(3, wp.float32)
|
|
894
|
+
v4: wp.types.vector(4, wp.float16)
|
|
895
|
+
v5: wp.types.vector(5, wp.uint8)
|
|
896
|
+
# matrix members (make sure to test matrices of float16)
|
|
897
|
+
m2: wp.types.matrix((2, 2), wp.float64)
|
|
898
|
+
m3: wp.types.matrix((3, 3), wp.int32)
|
|
899
|
+
m4: wp.types.matrix((4, 4), wp.float16)
|
|
900
|
+
m5: wp.types.matrix((5, 5), wp.int8)
|
|
901
|
+
# arrays
|
|
902
|
+
a1: wp.array(dtype=float)
|
|
903
|
+
a2: wp.array2d(dtype=float)
|
|
904
|
+
a3: wp.array3d(dtype=float)
|
|
905
|
+
a4: wp.array4d(dtype=float)
|
|
906
|
+
|
|
907
|
+
|
|
908
|
+
def test_fill_struct(test, device):
|
|
909
|
+
dim_x = 4
|
|
910
|
+
|
|
911
|
+
nptype = FillStruct.numpy_dtype()
|
|
912
|
+
|
|
913
|
+
a1 = wp.zeros(dim_x, dtype=FillStruct, device=device)
|
|
914
|
+
a2 = wp.zeros((dim_x, dim_x), dtype=FillStruct, device=device)
|
|
915
|
+
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
916
|
+
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
917
|
+
|
|
918
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
919
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
920
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
921
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
922
|
+
|
|
923
|
+
s = FillStruct()
|
|
924
|
+
|
|
925
|
+
# fill with default struct value (should be all zeros)
|
|
926
|
+
a1.fill_(s)
|
|
927
|
+
a2.fill_(s)
|
|
928
|
+
a3.fill_(s)
|
|
929
|
+
a4.fill_(s)
|
|
930
|
+
|
|
931
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
932
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
933
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
934
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
935
|
+
|
|
936
|
+
# scalars
|
|
937
|
+
s.i1 = -17
|
|
938
|
+
s.i2 = 42
|
|
939
|
+
s.i4 = 99
|
|
940
|
+
s.i8 = 101
|
|
941
|
+
s.f2 = -1.25
|
|
942
|
+
s.f4 = 13.37
|
|
943
|
+
s.f8 = 0.125
|
|
944
|
+
# vectors
|
|
945
|
+
s.v2 = [21, 22]
|
|
946
|
+
s.v3 = [31, 32, 33]
|
|
947
|
+
s.v4 = [41, 42, 43, 44]
|
|
948
|
+
s.v5 = [51, 52, 53, 54, 55]
|
|
949
|
+
# matrices
|
|
950
|
+
s.m2 = [[61, 62]] * 2
|
|
951
|
+
s.m3 = [[71, 72, 73]] * 3
|
|
952
|
+
s.m4 = [[81, 82, 83, 84]] * 4
|
|
953
|
+
s.m5 = [[91, 92, 93, 94, 95]] * 5
|
|
954
|
+
# arrays
|
|
955
|
+
s.a1 = wp.zeros((2,) * 1, dtype=float, device=device)
|
|
956
|
+
s.a2 = wp.zeros((2,) * 2, dtype=float, device=device)
|
|
957
|
+
s.a3 = wp.zeros((2,) * 3, dtype=float, device=device)
|
|
958
|
+
s.a4 = wp.zeros((2,) * 4, dtype=float, device=device)
|
|
959
|
+
|
|
960
|
+
# fill with custom struct value
|
|
961
|
+
a1.fill_(s)
|
|
962
|
+
a2.fill_(s)
|
|
963
|
+
a3.fill_(s)
|
|
964
|
+
a4.fill_(s)
|
|
965
|
+
|
|
966
|
+
ns = s.numpy_value()
|
|
967
|
+
|
|
968
|
+
expected1 = np.empty(a1.shape, dtype=nptype)
|
|
969
|
+
expected2 = np.empty(a2.shape, dtype=nptype)
|
|
970
|
+
expected3 = np.empty(a3.shape, dtype=nptype)
|
|
971
|
+
expected4 = np.empty(a4.shape, dtype=nptype)
|
|
972
|
+
|
|
973
|
+
expected1.fill(ns)
|
|
974
|
+
expected2.fill(ns)
|
|
975
|
+
expected3.fill(ns)
|
|
976
|
+
expected4.fill(ns)
|
|
977
|
+
|
|
978
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
979
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
980
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
981
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
982
|
+
|
|
983
|
+
# test clearing
|
|
984
|
+
a1.zero_()
|
|
985
|
+
a2.zero_()
|
|
986
|
+
a3.zero_()
|
|
987
|
+
a4.zero_()
|
|
988
|
+
|
|
989
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
990
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
991
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
992
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
993
|
+
|
|
994
|
+
|
|
995
|
+
def test_fill_slices(test, device):
|
|
996
|
+
# test fill_ and zero_ for non-contiguous arrays
|
|
997
|
+
# Note: we don't need to test the whole range of dtypes (vectors, matrices, structs) here
|
|
998
|
+
|
|
999
|
+
dim_x = 8
|
|
1000
|
+
|
|
1001
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1002
|
+
a1 = wp.zeros(dim_x, dtype=wptype, device=device)
|
|
1003
|
+
a2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device)
|
|
1004
|
+
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
1005
|
+
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
1006
|
+
|
|
1007
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1008
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1009
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1010
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1011
|
+
|
|
1012
|
+
# partititon each array into even and odd slices
|
|
1013
|
+
a1a = a1[::2]
|
|
1014
|
+
a1b = a1[1::2]
|
|
1015
|
+
a2a = a2[::2]
|
|
1016
|
+
a2b = a2[1::2]
|
|
1017
|
+
a3a = a3[::2]
|
|
1018
|
+
a3b = a3[1::2]
|
|
1019
|
+
a4a = a4[::2]
|
|
1020
|
+
a4b = a4[1::2]
|
|
1021
|
+
|
|
1022
|
+
# fill even slices
|
|
1023
|
+
fill_a = 17
|
|
1024
|
+
a1a.fill_(fill_a)
|
|
1025
|
+
a2a.fill_(fill_a)
|
|
1026
|
+
a3a.fill_(fill_a)
|
|
1027
|
+
a4a.fill_(fill_a)
|
|
1028
|
+
|
|
1029
|
+
# ensure filled slices are correct
|
|
1030
|
+
assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype))
|
|
1031
|
+
assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype))
|
|
1032
|
+
assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype))
|
|
1033
|
+
assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype))
|
|
1034
|
+
|
|
1035
|
+
# ensure unfilled slices are unaffected
|
|
1036
|
+
assert_np_equal(a1b.numpy(), np.zeros(a1b.shape, dtype=nptype))
|
|
1037
|
+
assert_np_equal(a2b.numpy(), np.zeros(a2b.shape, dtype=nptype))
|
|
1038
|
+
assert_np_equal(a3b.numpy(), np.zeros(a3b.shape, dtype=nptype))
|
|
1039
|
+
assert_np_equal(a4b.numpy(), np.zeros(a4b.shape, dtype=nptype))
|
|
1040
|
+
|
|
1041
|
+
# fill odd slices
|
|
1042
|
+
fill_b = 42
|
|
1043
|
+
a1b.fill_(fill_b)
|
|
1044
|
+
a2b.fill_(fill_b)
|
|
1045
|
+
a3b.fill_(fill_b)
|
|
1046
|
+
a4b.fill_(fill_b)
|
|
1047
|
+
|
|
1048
|
+
# ensure filled slices are correct
|
|
1049
|
+
assert_np_equal(a1b.numpy(), np.full(a1b.shape, fill_b, dtype=nptype))
|
|
1050
|
+
assert_np_equal(a2b.numpy(), np.full(a2b.shape, fill_b, dtype=nptype))
|
|
1051
|
+
assert_np_equal(a3b.numpy(), np.full(a3b.shape, fill_b, dtype=nptype))
|
|
1052
|
+
assert_np_equal(a4b.numpy(), np.full(a4b.shape, fill_b, dtype=nptype))
|
|
1053
|
+
|
|
1054
|
+
# ensure unfilled slices are unaffected
|
|
1055
|
+
assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype))
|
|
1056
|
+
assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype))
|
|
1057
|
+
assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype))
|
|
1058
|
+
assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype))
|
|
1059
|
+
|
|
1060
|
+
# clear even slices
|
|
1061
|
+
a1a.zero_()
|
|
1062
|
+
a2a.zero_()
|
|
1063
|
+
a3a.zero_()
|
|
1064
|
+
a4a.zero_()
|
|
1065
|
+
|
|
1066
|
+
# ensure cleared slices are correct
|
|
1067
|
+
assert_np_equal(a1a.numpy(), np.zeros(a1a.shape, dtype=nptype))
|
|
1068
|
+
assert_np_equal(a2a.numpy(), np.zeros(a2a.shape, dtype=nptype))
|
|
1069
|
+
assert_np_equal(a3a.numpy(), np.zeros(a3a.shape, dtype=nptype))
|
|
1070
|
+
assert_np_equal(a4a.numpy(), np.zeros(a4a.shape, dtype=nptype))
|
|
1071
|
+
|
|
1072
|
+
# ensure uncleared slices are unaffected
|
|
1073
|
+
assert_np_equal(a1b.numpy(), np.full(a1b.shape, fill_b, dtype=nptype))
|
|
1074
|
+
assert_np_equal(a2b.numpy(), np.full(a2b.shape, fill_b, dtype=nptype))
|
|
1075
|
+
assert_np_equal(a3b.numpy(), np.full(a3b.shape, fill_b, dtype=nptype))
|
|
1076
|
+
assert_np_equal(a4b.numpy(), np.full(a4b.shape, fill_b, dtype=nptype))
|
|
1077
|
+
|
|
1078
|
+
# re-fill even slices
|
|
1079
|
+
a1a.fill_(fill_a)
|
|
1080
|
+
a2a.fill_(fill_a)
|
|
1081
|
+
a3a.fill_(fill_a)
|
|
1082
|
+
a4a.fill_(fill_a)
|
|
1083
|
+
|
|
1084
|
+
# clear odd slices
|
|
1085
|
+
a1b.zero_()
|
|
1086
|
+
a2b.zero_()
|
|
1087
|
+
a3b.zero_()
|
|
1088
|
+
a4b.zero_()
|
|
1089
|
+
|
|
1090
|
+
# ensure cleared slices are correct
|
|
1091
|
+
assert_np_equal(a1b.numpy(), np.zeros(a1b.shape, dtype=nptype))
|
|
1092
|
+
assert_np_equal(a2b.numpy(), np.zeros(a2b.shape, dtype=nptype))
|
|
1093
|
+
assert_np_equal(a3b.numpy(), np.zeros(a3b.shape, dtype=nptype))
|
|
1094
|
+
assert_np_equal(a4b.numpy(), np.zeros(a4b.shape, dtype=nptype))
|
|
1095
|
+
|
|
1096
|
+
# ensure uncleared slices are unaffected
|
|
1097
|
+
assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype))
|
|
1098
|
+
assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype))
|
|
1099
|
+
assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype))
|
|
1100
|
+
assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype))
|
|
1101
|
+
|
|
1102
|
+
|
|
1103
|
+
def test_full_scalar(test, device):
|
|
1104
|
+
dim = 4
|
|
1105
|
+
|
|
1106
|
+
for ndim in range(1, 5):
|
|
1107
|
+
shape = (dim,) * ndim
|
|
1108
|
+
|
|
1109
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1110
|
+
# fill with int value and specific dtype
|
|
1111
|
+
fill_value = 42
|
|
1112
|
+
a = wp.full(shape, fill_value, dtype=wptype, device=device)
|
|
1113
|
+
na = a.numpy()
|
|
1114
|
+
|
|
1115
|
+
test.assertEqual(a.shape, shape)
|
|
1116
|
+
test.assertEqual(a.dtype, wptype)
|
|
1117
|
+
test.assertEqual(na.shape, shape)
|
|
1118
|
+
test.assertEqual(na.dtype, nptype)
|
|
1119
|
+
assert_np_equal(na, np.full(shape, fill_value, dtype=nptype))
|
|
1120
|
+
|
|
1121
|
+
if wptype in wp.types.float_types:
|
|
1122
|
+
# fill with float value and specific dtype
|
|
1123
|
+
fill_value = 13.37
|
|
1124
|
+
a = wp.full(shape, fill_value, dtype=wptype, device=device)
|
|
1125
|
+
na = a.numpy()
|
|
1126
|
+
|
|
1127
|
+
test.assertEqual(a.shape, shape)
|
|
1128
|
+
test.assertEqual(a.dtype, wptype)
|
|
1129
|
+
test.assertEqual(na.shape, shape)
|
|
1130
|
+
test.assertEqual(na.dtype, nptype)
|
|
1131
|
+
assert_np_equal(na, np.full(shape, fill_value, dtype=nptype))
|
|
1132
|
+
|
|
1133
|
+
# fill with int value and automatically inferred dtype
|
|
1134
|
+
fill_value = 42
|
|
1135
|
+
a = wp.full(shape, fill_value, device=device)
|
|
1136
|
+
na = a.numpy()
|
|
1137
|
+
|
|
1138
|
+
test.assertEqual(a.shape, shape)
|
|
1139
|
+
test.assertEqual(a.dtype, wp.int32)
|
|
1140
|
+
test.assertEqual(na.shape, shape)
|
|
1141
|
+
test.assertEqual(na.dtype, np.int32)
|
|
1142
|
+
assert_np_equal(na, np.full(shape, fill_value, dtype=np.int32))
|
|
1143
|
+
|
|
1144
|
+
# fill with float value and automatically inferred dtype
|
|
1145
|
+
fill_value = 13.37
|
|
1146
|
+
a = wp.full(shape, fill_value, device=device)
|
|
1147
|
+
na = a.numpy()
|
|
1148
|
+
|
|
1149
|
+
test.assertEqual(a.shape, shape)
|
|
1150
|
+
test.assertEqual(a.dtype, wp.float32)
|
|
1151
|
+
test.assertEqual(na.shape, shape)
|
|
1152
|
+
test.assertEqual(na.dtype, np.float32)
|
|
1153
|
+
assert_np_equal(na, np.full(shape, fill_value, dtype=np.float32))
|
|
1154
|
+
|
|
1155
|
+
|
|
1156
|
+
def test_full_vector(test, device):
|
|
1157
|
+
dim = 4
|
|
1158
|
+
|
|
1159
|
+
for ndim in range(1, 5):
|
|
1160
|
+
shape = (dim,) * ndim
|
|
1161
|
+
|
|
1162
|
+
# full from scalar
|
|
1163
|
+
for veclen in [2, 3, 4, 5]:
|
|
1164
|
+
npshape = (*shape, veclen)
|
|
1165
|
+
|
|
1166
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1167
|
+
vectype = wp.types.vector(veclen, wptype)
|
|
1168
|
+
|
|
1169
|
+
# fill with scalar int value and specific dtype
|
|
1170
|
+
fill_value = 42
|
|
1171
|
+
a = wp.full(shape, fill_value, dtype=vectype, device=device)
|
|
1172
|
+
na = a.numpy()
|
|
1173
|
+
|
|
1174
|
+
test.assertEqual(a.shape, shape)
|
|
1175
|
+
test.assertEqual(a.dtype, vectype)
|
|
1176
|
+
test.assertEqual(na.shape, npshape)
|
|
1177
|
+
test.assertEqual(na.dtype, nptype)
|
|
1178
|
+
assert_np_equal(na, np.full(a.size * veclen, fill_value, dtype=nptype).reshape(npshape))
|
|
1179
|
+
|
|
1180
|
+
if wptype in wp.types.float_types:
|
|
1181
|
+
# fill with scalar float value and specific dtype
|
|
1182
|
+
fill_value = 13.37
|
|
1183
|
+
a = wp.full(shape, fill_value, dtype=vectype, device=device)
|
|
1184
|
+
na = a.numpy()
|
|
1185
|
+
|
|
1186
|
+
test.assertEqual(a.shape, shape)
|
|
1187
|
+
test.assertEqual(a.dtype, vectype)
|
|
1188
|
+
test.assertEqual(na.shape, npshape)
|
|
1189
|
+
test.assertEqual(na.dtype, nptype)
|
|
1190
|
+
assert_np_equal(na, np.full(a.size * veclen, fill_value, dtype=nptype).reshape(npshape))
|
|
1191
|
+
|
|
1192
|
+
# fill with vector value and specific dtype
|
|
1193
|
+
fill_vec = vectype(42)
|
|
1194
|
+
a = wp.full(shape, fill_vec, dtype=vectype, device=device)
|
|
1195
|
+
na = a.numpy()
|
|
1196
|
+
|
|
1197
|
+
test.assertEqual(a.shape, shape)
|
|
1198
|
+
test.assertEqual(a.dtype, vectype)
|
|
1199
|
+
test.assertEqual(na.shape, npshape)
|
|
1200
|
+
test.assertEqual(na.dtype, nptype)
|
|
1201
|
+
assert_np_equal(na, np.full(a.size * veclen, 42, dtype=nptype).reshape(npshape))
|
|
1202
|
+
|
|
1203
|
+
# fill with vector value and automatically inferred dtype
|
|
1204
|
+
a = wp.full(shape, fill_vec, device=device)
|
|
1205
|
+
na = a.numpy()
|
|
1206
|
+
|
|
1207
|
+
test.assertEqual(a.shape, shape)
|
|
1208
|
+
test.assertEqual(a.dtype, vectype)
|
|
1209
|
+
test.assertEqual(na.shape, npshape)
|
|
1210
|
+
test.assertEqual(na.dtype, nptype)
|
|
1211
|
+
assert_np_equal(na, np.full(a.size * veclen, 42, dtype=nptype).reshape(npshape))
|
|
1212
|
+
|
|
1213
|
+
fill_lists = [
|
|
1214
|
+
[17, 42],
|
|
1215
|
+
[17, 42, 99],
|
|
1216
|
+
[17, 42, 99, 101],
|
|
1217
|
+
[17, 42, 99, 101, 127],
|
|
1218
|
+
]
|
|
1219
|
+
|
|
1220
|
+
# full from list and numpy array
|
|
1221
|
+
for fill_list in fill_lists:
|
|
1222
|
+
veclen = len(fill_list)
|
|
1223
|
+
npshape = (*shape, veclen)
|
|
1224
|
+
|
|
1225
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1226
|
+
vectype = wp.types.vector(veclen, wptype)
|
|
1227
|
+
|
|
1228
|
+
# fill with list and specific dtype
|
|
1229
|
+
a = wp.full(shape, fill_list, dtype=vectype, device=device)
|
|
1230
|
+
na = a.numpy()
|
|
1231
|
+
|
|
1232
|
+
test.assertEqual(a.shape, shape)
|
|
1233
|
+
test.assertEqual(a.dtype, vectype)
|
|
1234
|
+
test.assertEqual(na.shape, npshape)
|
|
1235
|
+
test.assertEqual(na.dtype, nptype)
|
|
1236
|
+
|
|
1237
|
+
expected = np.tile(np.array(fill_list, dtype=nptype), a.size).reshape(npshape)
|
|
1238
|
+
assert_np_equal(na, expected)
|
|
1239
|
+
|
|
1240
|
+
fill_arr = np.array(fill_list, dtype=nptype)
|
|
1241
|
+
|
|
1242
|
+
# fill with numpy array and specific dtype
|
|
1243
|
+
a = wp.full(shape, fill_arr, dtype=vectype, device=device)
|
|
1244
|
+
na = a.numpy()
|
|
1245
|
+
|
|
1246
|
+
test.assertEqual(a.shape, shape)
|
|
1247
|
+
test.assertEqual(a.dtype, vectype)
|
|
1248
|
+
test.assertEqual(na.shape, npshape)
|
|
1249
|
+
test.assertEqual(na.dtype, nptype)
|
|
1250
|
+
assert_np_equal(na, expected)
|
|
1251
|
+
|
|
1252
|
+
# fill with numpy array and automatically infer dtype
|
|
1253
|
+
a = wp.full(shape, fill_arr, device=device)
|
|
1254
|
+
na = a.numpy()
|
|
1255
|
+
|
|
1256
|
+
test.assertEqual(a.shape, shape)
|
|
1257
|
+
test.assertTrue(wp.types.types_equal(a.dtype, vectype))
|
|
1258
|
+
test.assertEqual(na.shape, npshape)
|
|
1259
|
+
test.assertEqual(na.dtype, nptype)
|
|
1260
|
+
assert_np_equal(na, expected)
|
|
1261
|
+
|
|
1262
|
+
# fill with list and automatically infer dtype
|
|
1263
|
+
a = wp.full(shape, fill_list, device=device)
|
|
1264
|
+
na = a.numpy()
|
|
1265
|
+
|
|
1266
|
+
test.assertEqual(a.shape, shape)
|
|
1267
|
+
|
|
1268
|
+
# check that the inferred dtype is a vector
|
|
1269
|
+
# Note that we cannot guarantee the scalar type, because it depends on numpy and may vary by platform
|
|
1270
|
+
# (e.g. int64 on Linux and int32 on Windows).
|
|
1271
|
+
test.assertEqual(a.dtype._wp_generic_type_str_, "vec_t")
|
|
1272
|
+
test.assertEqual(a.dtype._length_, veclen)
|
|
1273
|
+
|
|
1274
|
+
expected = np.tile(np.array(fill_list), a.size).reshape(npshape)
|
|
1275
|
+
assert_np_equal(na, expected)
|
|
1276
|
+
|
|
1277
|
+
|
|
1278
|
+
def test_full_matrix(test, device):
|
|
1279
|
+
dim = 4
|
|
1280
|
+
|
|
1281
|
+
for ndim in range(1, 5):
|
|
1282
|
+
shape = (dim,) * ndim
|
|
1283
|
+
|
|
1284
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1285
|
+
matrix_types = [
|
|
1286
|
+
# square matrices
|
|
1287
|
+
wp.types.matrix((2, 2), wptype),
|
|
1288
|
+
wp.types.matrix((3, 3), wptype),
|
|
1289
|
+
wp.types.matrix((4, 4), wptype),
|
|
1290
|
+
wp.types.matrix((5, 5), wptype),
|
|
1291
|
+
# non-square matrices
|
|
1292
|
+
wp.types.matrix((2, 3), wptype),
|
|
1293
|
+
wp.types.matrix((3, 2), wptype),
|
|
1294
|
+
wp.types.matrix((3, 4), wptype),
|
|
1295
|
+
wp.types.matrix((4, 3), wptype),
|
|
1296
|
+
]
|
|
1297
|
+
|
|
1298
|
+
for mattype in matrix_types:
|
|
1299
|
+
npshape = (*shape, *mattype._shape_)
|
|
1300
|
+
|
|
1301
|
+
# fill with scalar int value and specific dtype
|
|
1302
|
+
fill_value = 42
|
|
1303
|
+
a = wp.full(shape, fill_value, dtype=mattype, device=device)
|
|
1304
|
+
na = a.numpy()
|
|
1305
|
+
|
|
1306
|
+
test.assertEqual(a.shape, shape)
|
|
1307
|
+
test.assertEqual(a.dtype, mattype)
|
|
1308
|
+
test.assertEqual(na.shape, npshape)
|
|
1309
|
+
test.assertEqual(na.dtype, nptype)
|
|
1310
|
+
assert_np_equal(na, np.full(a.size * mattype._length_, fill_value, dtype=nptype).reshape(npshape))
|
|
1311
|
+
|
|
1312
|
+
if wptype in wp.types.float_types:
|
|
1313
|
+
# fill with scalar float value and specific dtype
|
|
1314
|
+
fill_value = 13.37
|
|
1315
|
+
a = wp.full(shape, fill_value, dtype=mattype, device=device)
|
|
1316
|
+
na = a.numpy()
|
|
1317
|
+
|
|
1318
|
+
test.assertEqual(a.shape, shape)
|
|
1319
|
+
test.assertEqual(a.dtype, mattype)
|
|
1320
|
+
test.assertEqual(na.shape, npshape)
|
|
1321
|
+
test.assertEqual(na.dtype, nptype)
|
|
1322
|
+
assert_np_equal(na, np.full(a.size * mattype._length_, fill_value, dtype=nptype).reshape(npshape))
|
|
1323
|
+
|
|
1324
|
+
# fill with matrix value and specific dtype
|
|
1325
|
+
fill_mat = mattype(42)
|
|
1326
|
+
a = wp.full(shape, fill_mat, dtype=mattype, device=device)
|
|
1327
|
+
na = a.numpy()
|
|
1328
|
+
|
|
1329
|
+
test.assertEqual(a.shape, shape)
|
|
1330
|
+
test.assertEqual(a.dtype, mattype)
|
|
1331
|
+
test.assertEqual(na.shape, npshape)
|
|
1332
|
+
test.assertEqual(na.dtype, nptype)
|
|
1333
|
+
assert_np_equal(na, np.full(a.size * mattype._length_, 42, dtype=nptype).reshape(npshape))
|
|
1334
|
+
|
|
1335
|
+
# fill with matrix value and automatically inferred dtype
|
|
1336
|
+
fill_mat = mattype(42)
|
|
1337
|
+
a = wp.full(shape, fill_mat, device=device)
|
|
1338
|
+
na = a.numpy()
|
|
1339
|
+
|
|
1340
|
+
test.assertEqual(a.shape, shape)
|
|
1341
|
+
test.assertEqual(a.dtype, mattype)
|
|
1342
|
+
test.assertEqual(na.shape, npshape)
|
|
1343
|
+
test.assertEqual(na.dtype, nptype)
|
|
1344
|
+
assert_np_equal(na, np.full(a.size * mattype._length_, 42, dtype=nptype).reshape(npshape))
|
|
1345
|
+
|
|
1346
|
+
# fill with 1d numpy array and specific dtype
|
|
1347
|
+
if wptype != wp.bool:
|
|
1348
|
+
fill_arr1d = np.arange(mattype._length_, dtype=nptype)
|
|
1349
|
+
else:
|
|
1350
|
+
fill_arr1d = np.ones(mattype._length_, dtype=nptype)
|
|
1351
|
+
a = wp.full(shape, fill_arr1d, dtype=mattype, device=device)
|
|
1352
|
+
na = a.numpy()
|
|
1353
|
+
|
|
1354
|
+
test.assertEqual(a.shape, shape)
|
|
1355
|
+
test.assertEqual(a.dtype, mattype)
|
|
1356
|
+
test.assertEqual(na.shape, npshape)
|
|
1357
|
+
test.assertEqual(na.dtype, nptype)
|
|
1358
|
+
|
|
1359
|
+
expected = np.tile(fill_arr1d, a.size).reshape(npshape)
|
|
1360
|
+
assert_np_equal(na, expected)
|
|
1361
|
+
|
|
1362
|
+
# fill with 2d numpy array and specific dtype
|
|
1363
|
+
fill_arr2d = fill_arr1d.reshape(mattype._shape_)
|
|
1364
|
+
a = wp.full(shape, fill_arr2d, dtype=mattype, device=device)
|
|
1365
|
+
na = a.numpy()
|
|
1366
|
+
|
|
1367
|
+
test.assertEqual(a.shape, shape)
|
|
1368
|
+
test.assertEqual(a.dtype, mattype)
|
|
1369
|
+
test.assertEqual(na.shape, npshape)
|
|
1370
|
+
test.assertEqual(na.dtype, nptype)
|
|
1371
|
+
assert_np_equal(na, expected)
|
|
1372
|
+
|
|
1373
|
+
# fill with 2d numpy array and automatically infer dtype
|
|
1374
|
+
a = wp.full(shape, fill_arr2d, device=device)
|
|
1375
|
+
na = a.numpy()
|
|
1376
|
+
|
|
1377
|
+
test.assertEqual(a.shape, shape)
|
|
1378
|
+
test.assertTrue(wp.types.types_equal(a.dtype, mattype))
|
|
1379
|
+
test.assertEqual(na.shape, npshape)
|
|
1380
|
+
test.assertEqual(na.dtype, nptype)
|
|
1381
|
+
assert_np_equal(na, expected)
|
|
1382
|
+
|
|
1383
|
+
# fill with flat list and specific dtype
|
|
1384
|
+
fill_list1d = list(fill_arr1d)
|
|
1385
|
+
a = wp.full(shape, fill_list1d, dtype=mattype, device=device)
|
|
1386
|
+
na = a.numpy()
|
|
1387
|
+
|
|
1388
|
+
test.assertEqual(a.shape, shape)
|
|
1389
|
+
test.assertEqual(a.dtype, mattype)
|
|
1390
|
+
test.assertEqual(na.shape, npshape)
|
|
1391
|
+
test.assertEqual(na.dtype, nptype)
|
|
1392
|
+
assert_np_equal(na, expected)
|
|
1393
|
+
|
|
1394
|
+
# fill with nested list and specific dtype
|
|
1395
|
+
fill_list2d = [list(row) for row in fill_arr2d]
|
|
1396
|
+
a = wp.full(shape, fill_list2d, dtype=mattype, device=device)
|
|
1397
|
+
na = a.numpy()
|
|
1398
|
+
|
|
1399
|
+
test.assertEqual(a.shape, shape)
|
|
1400
|
+
test.assertEqual(a.dtype, mattype)
|
|
1401
|
+
test.assertEqual(na.shape, npshape)
|
|
1402
|
+
test.assertEqual(na.dtype, nptype)
|
|
1403
|
+
assert_np_equal(na, expected)
|
|
1404
|
+
|
|
1405
|
+
mat_lists = [
|
|
1406
|
+
# square matrices
|
|
1407
|
+
[[1, 2], [3, 4]],
|
|
1408
|
+
[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
|
1409
|
+
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]],
|
|
1410
|
+
# non-square matrices
|
|
1411
|
+
[[1, 2, 3, 4], [5, 6, 7, 8]],
|
|
1412
|
+
[[1, 2], [3, 4], [5, 6], [7, 8]],
|
|
1413
|
+
]
|
|
1414
|
+
|
|
1415
|
+
# fill with nested lists and automatically infer dtype
|
|
1416
|
+
for fill_list in mat_lists:
|
|
1417
|
+
num_rows = len(fill_list)
|
|
1418
|
+
num_cols = len(fill_list[0])
|
|
1419
|
+
npshape = (*shape, num_rows, num_cols)
|
|
1420
|
+
|
|
1421
|
+
a = wp.full(shape, fill_list, device=device)
|
|
1422
|
+
na = a.numpy()
|
|
1423
|
+
|
|
1424
|
+
test.assertEqual(a.shape, shape)
|
|
1425
|
+
|
|
1426
|
+
# check that the inferred dtype is a correctly shaped matrix
|
|
1427
|
+
# Note that we cannot guarantee the scalar type, because it depends on numpy and may vary by platform
|
|
1428
|
+
# (e.g. int64 on Linux and int32 on Windows).
|
|
1429
|
+
test.assertEqual(a.dtype._wp_generic_type_str_, "mat_t")
|
|
1430
|
+
test.assertEqual(a.dtype._shape_, (num_rows, num_cols))
|
|
1431
|
+
|
|
1432
|
+
expected = np.tile(np.array(fill_list).flatten(), a.size).reshape(npshape)
|
|
1433
|
+
assert_np_equal(na, expected)
|
|
1434
|
+
|
|
1435
|
+
|
|
1436
|
+
def test_full_struct(test, device):
|
|
1437
|
+
dim = 4
|
|
1438
|
+
|
|
1439
|
+
for ndim in range(1, 5):
|
|
1440
|
+
shape = (dim,) * ndim
|
|
1441
|
+
|
|
1442
|
+
s = FillStruct()
|
|
1443
|
+
|
|
1444
|
+
# fill with default struct (should be zeros)
|
|
1445
|
+
a = wp.full(shape, s, dtype=FillStruct, device=device)
|
|
1446
|
+
na = a.numpy()
|
|
1447
|
+
|
|
1448
|
+
test.assertEqual(a.shape, shape)
|
|
1449
|
+
test.assertEqual(a.dtype, FillStruct)
|
|
1450
|
+
test.assertEqual(na.shape, shape)
|
|
1451
|
+
test.assertEqual(na.dtype, FillStruct.numpy_dtype())
|
|
1452
|
+
assert_np_equal(na, np.zeros(a.shape, dtype=FillStruct.numpy_dtype()))
|
|
1453
|
+
|
|
1454
|
+
# scalars
|
|
1455
|
+
s.i1 = -17
|
|
1456
|
+
s.i2 = 42
|
|
1457
|
+
s.i4 = 99
|
|
1458
|
+
s.i8 = 101
|
|
1459
|
+
s.f2 = -1.25
|
|
1460
|
+
s.f4 = 13.37
|
|
1461
|
+
s.f8 = 0.125
|
|
1462
|
+
# vectors
|
|
1463
|
+
s.v2 = [21, 22]
|
|
1464
|
+
s.v3 = [31, 32, 33]
|
|
1465
|
+
s.v4 = [41, 42, 43, 44]
|
|
1466
|
+
s.v5 = [51, 52, 53, 54, 55]
|
|
1467
|
+
# matrices
|
|
1468
|
+
s.m2 = [[61, 62]] * 2
|
|
1469
|
+
s.m3 = [[71, 72, 73]] * 3
|
|
1470
|
+
s.m4 = [[81, 82, 83, 84]] * 4
|
|
1471
|
+
s.m5 = [[91, 92, 93, 94, 95]] * 5
|
|
1472
|
+
# arrays
|
|
1473
|
+
s.a1 = wp.zeros((2,) * 1, dtype=float, device=device)
|
|
1474
|
+
s.a2 = wp.zeros((2,) * 2, dtype=float, device=device)
|
|
1475
|
+
s.a3 = wp.zeros((2,) * 3, dtype=float, device=device)
|
|
1476
|
+
s.a4 = wp.zeros((2,) * 4, dtype=float, device=device)
|
|
1477
|
+
|
|
1478
|
+
# fill with initialized struct and explicit dtype
|
|
1479
|
+
a = wp.full(shape, s, dtype=FillStruct, device=device)
|
|
1480
|
+
na = a.numpy()
|
|
1481
|
+
|
|
1482
|
+
test.assertEqual(a.shape, shape)
|
|
1483
|
+
test.assertEqual(a.dtype, FillStruct)
|
|
1484
|
+
test.assertEqual(na.shape, shape)
|
|
1485
|
+
test.assertEqual(na.dtype, FillStruct.numpy_dtype())
|
|
1486
|
+
|
|
1487
|
+
expected = np.empty(shape, dtype=FillStruct.numpy_dtype())
|
|
1488
|
+
expected.fill(s.numpy_value())
|
|
1489
|
+
assert_np_equal(na, expected)
|
|
1490
|
+
|
|
1491
|
+
# fill with initialized struct and automatically inferred dtype
|
|
1492
|
+
a = wp.full(shape, s, device=device)
|
|
1493
|
+
na = a.numpy()
|
|
1494
|
+
|
|
1495
|
+
test.assertEqual(a.shape, shape)
|
|
1496
|
+
test.assertEqual(a.dtype, FillStruct)
|
|
1497
|
+
test.assertEqual(na.shape, shape)
|
|
1498
|
+
test.assertEqual(na.dtype, FillStruct.numpy_dtype())
|
|
1499
|
+
assert_np_equal(na, expected)
|
|
1500
|
+
|
|
1501
|
+
|
|
1502
|
+
def test_ones_scalar(test, device):
|
|
1503
|
+
dim = 4
|
|
1504
|
+
|
|
1505
|
+
for ndim in range(1, 5):
|
|
1506
|
+
shape = (dim,) * ndim
|
|
1507
|
+
|
|
1508
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1509
|
+
a = wp.ones(shape, dtype=wptype, device=device)
|
|
1510
|
+
na = a.numpy()
|
|
1511
|
+
|
|
1512
|
+
test.assertEqual(a.shape, shape)
|
|
1513
|
+
test.assertEqual(a.dtype, wptype)
|
|
1514
|
+
test.assertEqual(na.shape, shape)
|
|
1515
|
+
test.assertEqual(na.dtype, nptype)
|
|
1516
|
+
assert_np_equal(na, np.ones(shape, dtype=nptype))
|
|
1517
|
+
|
|
1518
|
+
|
|
1519
|
+
def test_ones_vector(test, device):
|
|
1520
|
+
dim = 4
|
|
1521
|
+
|
|
1522
|
+
for ndim in range(1, 5):
|
|
1523
|
+
shape = (dim,) * ndim
|
|
1524
|
+
|
|
1525
|
+
for veclen in [2, 3, 4, 5]:
|
|
1526
|
+
npshape = (*shape, veclen)
|
|
1527
|
+
|
|
1528
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1529
|
+
vectype = wp.types.vector(veclen, wptype)
|
|
1530
|
+
|
|
1531
|
+
a = wp.ones(shape, dtype=vectype, device=device)
|
|
1532
|
+
na = a.numpy()
|
|
1533
|
+
|
|
1534
|
+
test.assertEqual(a.shape, shape)
|
|
1535
|
+
test.assertEqual(a.dtype, vectype)
|
|
1536
|
+
test.assertEqual(na.shape, npshape)
|
|
1537
|
+
test.assertEqual(na.dtype, nptype)
|
|
1538
|
+
assert_np_equal(na, np.ones(npshape, dtype=nptype))
|
|
1539
|
+
|
|
1540
|
+
|
|
1541
|
+
def test_ones_matrix(test, device):
|
|
1542
|
+
dim = 4
|
|
1543
|
+
|
|
1544
|
+
for ndim in range(1, 5):
|
|
1545
|
+
shape = (dim,) * ndim
|
|
1546
|
+
|
|
1547
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1548
|
+
matrix_types = [
|
|
1549
|
+
# square matrices
|
|
1550
|
+
wp.types.matrix((2, 2), wptype),
|
|
1551
|
+
wp.types.matrix((3, 3), wptype),
|
|
1552
|
+
wp.types.matrix((4, 4), wptype),
|
|
1553
|
+
wp.types.matrix((5, 5), wptype),
|
|
1554
|
+
# non-square matrices
|
|
1555
|
+
wp.types.matrix((2, 3), wptype),
|
|
1556
|
+
wp.types.matrix((3, 2), wptype),
|
|
1557
|
+
wp.types.matrix((3, 4), wptype),
|
|
1558
|
+
wp.types.matrix((4, 3), wptype),
|
|
1559
|
+
]
|
|
1560
|
+
|
|
1561
|
+
for mattype in matrix_types:
|
|
1562
|
+
npshape = (*shape, *mattype._shape_)
|
|
1563
|
+
|
|
1564
|
+
a = wp.ones(shape, dtype=mattype, device=device)
|
|
1565
|
+
na = a.numpy()
|
|
1566
|
+
|
|
1567
|
+
test.assertEqual(a.shape, shape)
|
|
1568
|
+
test.assertEqual(a.dtype, mattype)
|
|
1569
|
+
test.assertEqual(na.shape, npshape)
|
|
1570
|
+
test.assertEqual(na.dtype, nptype)
|
|
1571
|
+
assert_np_equal(na, np.ones(npshape, dtype=nptype))
|
|
1572
|
+
|
|
1573
|
+
|
|
1574
|
+
def test_ones_like_scalar(test, device):
|
|
1575
|
+
dim = 4
|
|
1576
|
+
|
|
1577
|
+
for ndim in range(1, 5):
|
|
1578
|
+
shape = (dim,) * ndim
|
|
1579
|
+
|
|
1580
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1581
|
+
# source array
|
|
1582
|
+
a = wp.zeros(shape, dtype=wptype, device=device)
|
|
1583
|
+
na = a.numpy()
|
|
1584
|
+
test.assertEqual(a.shape, shape)
|
|
1585
|
+
test.assertEqual(a.dtype, wptype)
|
|
1586
|
+
test.assertEqual(na.shape, shape)
|
|
1587
|
+
test.assertEqual(na.dtype, nptype)
|
|
1588
|
+
assert_np_equal(na, np.zeros(shape, dtype=nptype))
|
|
1589
|
+
|
|
1590
|
+
# ones array
|
|
1591
|
+
b = wp.ones_like(a)
|
|
1592
|
+
nb = b.numpy()
|
|
1593
|
+
test.assertEqual(b.shape, shape)
|
|
1594
|
+
test.assertEqual(b.dtype, wptype)
|
|
1595
|
+
test.assertEqual(nb.shape, shape)
|
|
1596
|
+
test.assertEqual(nb.dtype, nptype)
|
|
1597
|
+
assert_np_equal(nb, np.ones(shape, dtype=nptype))
|
|
1598
|
+
|
|
1599
|
+
|
|
1600
|
+
def test_ones_like_vector(test, device):
|
|
1601
|
+
dim = 4
|
|
1602
|
+
|
|
1603
|
+
for ndim in range(1, 5):
|
|
1604
|
+
shape = (dim,) * ndim
|
|
1605
|
+
|
|
1606
|
+
for veclen in [2, 3, 4, 5]:
|
|
1607
|
+
npshape = (*shape, veclen)
|
|
1608
|
+
|
|
1609
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1610
|
+
vectype = wp.types.vector(veclen, wptype)
|
|
1611
|
+
|
|
1612
|
+
# source array
|
|
1613
|
+
a = wp.zeros(shape, dtype=vectype, device=device)
|
|
1614
|
+
na = a.numpy()
|
|
1615
|
+
test.assertEqual(a.shape, shape)
|
|
1616
|
+
test.assertEqual(a.dtype, vectype)
|
|
1617
|
+
test.assertEqual(na.shape, npshape)
|
|
1618
|
+
test.assertEqual(na.dtype, nptype)
|
|
1619
|
+
assert_np_equal(na, np.zeros(npshape, dtype=nptype))
|
|
1620
|
+
|
|
1621
|
+
# ones array
|
|
1622
|
+
b = wp.ones_like(a)
|
|
1623
|
+
nb = b.numpy()
|
|
1624
|
+
test.assertEqual(b.shape, shape)
|
|
1625
|
+
test.assertEqual(b.dtype, vectype)
|
|
1626
|
+
test.assertEqual(nb.shape, npshape)
|
|
1627
|
+
test.assertEqual(nb.dtype, nptype)
|
|
1628
|
+
assert_np_equal(nb, np.ones(npshape, dtype=nptype))
|
|
1629
|
+
|
|
1630
|
+
|
|
1631
|
+
def test_ones_like_matrix(test, device):
|
|
1632
|
+
dim = 4
|
|
1633
|
+
|
|
1634
|
+
for ndim in range(1, 5):
|
|
1635
|
+
shape = (dim,) * ndim
|
|
1636
|
+
|
|
1637
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1638
|
+
matrix_types = [
|
|
1639
|
+
# square matrices
|
|
1640
|
+
wp.types.matrix((2, 2), wptype),
|
|
1641
|
+
wp.types.matrix((3, 3), wptype),
|
|
1642
|
+
wp.types.matrix((4, 4), wptype),
|
|
1643
|
+
wp.types.matrix((5, 5), wptype),
|
|
1644
|
+
# non-square matrices
|
|
1645
|
+
wp.types.matrix((2, 3), wptype),
|
|
1646
|
+
wp.types.matrix((3, 2), wptype),
|
|
1647
|
+
wp.types.matrix((3, 4), wptype),
|
|
1648
|
+
wp.types.matrix((4, 3), wptype),
|
|
1649
|
+
]
|
|
1650
|
+
|
|
1651
|
+
for mattype in matrix_types:
|
|
1652
|
+
npshape = (*shape, *mattype._shape_)
|
|
1653
|
+
|
|
1654
|
+
# source array
|
|
1655
|
+
a = wp.zeros(shape, dtype=mattype, device=device)
|
|
1656
|
+
na = a.numpy()
|
|
1657
|
+
test.assertEqual(a.shape, shape)
|
|
1658
|
+
test.assertEqual(a.dtype, mattype)
|
|
1659
|
+
test.assertEqual(na.shape, npshape)
|
|
1660
|
+
test.assertEqual(na.dtype, nptype)
|
|
1661
|
+
assert_np_equal(na, np.zeros(npshape, dtype=nptype))
|
|
1662
|
+
|
|
1663
|
+
# ones array
|
|
1664
|
+
b = wp.ones_like(a)
|
|
1665
|
+
nb = b.numpy()
|
|
1666
|
+
test.assertEqual(b.shape, shape)
|
|
1667
|
+
test.assertEqual(b.dtype, mattype)
|
|
1668
|
+
test.assertEqual(nb.shape, npshape)
|
|
1669
|
+
test.assertEqual(nb.dtype, nptype)
|
|
1670
|
+
assert_np_equal(nb, np.ones(npshape, dtype=nptype))
|
|
1671
|
+
|
|
1672
|
+
|
|
1673
|
+
def test_round_trip(test, device):
|
|
1674
|
+
rng = np.random.default_rng(123)
|
|
1675
|
+
dim_x = 4
|
|
1676
|
+
|
|
1677
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1678
|
+
a_np = rng.standard_normal(size=dim_x).astype(nptype)
|
|
1679
|
+
a = wp.array(a_np, device=device)
|
|
1680
|
+
test.assertEqual(a.dtype, wptype)
|
|
1681
|
+
|
|
1682
|
+
assert_np_equal(a.numpy(), a_np)
|
|
1683
|
+
|
|
1684
|
+
v_np = rng.standard_normal(size=(dim_x, 3)).astype(nptype)
|
|
1685
|
+
v = wp.array(v_np, dtype=wp.types.vector(3, wptype), device=device)
|
|
1686
|
+
|
|
1687
|
+
assert_np_equal(v.numpy(), v_np)
|
|
1688
|
+
|
|
1689
|
+
|
|
1690
|
+
def test_empty_array(test, device):
|
|
1691
|
+
# Test whether common operations work with empty (zero-sized) arrays
|
|
1692
|
+
# without throwing exceptions.
|
|
1693
|
+
|
|
1694
|
+
def test_empty_ops(ndim, nrows, ncols, wptype, nptype):
|
|
1695
|
+
shape = (0,) * ndim
|
|
1696
|
+
dtype_shape = ()
|
|
1697
|
+
|
|
1698
|
+
if wptype in wp.types.scalar_types:
|
|
1699
|
+
# scalar, vector, or matrix
|
|
1700
|
+
if ncols > 0:
|
|
1701
|
+
if nrows > 0:
|
|
1702
|
+
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
1703
|
+
else:
|
|
1704
|
+
wptype = wp.types.vector(ncols, wptype)
|
|
1705
|
+
dtype_shape = wptype._shape_
|
|
1706
|
+
fill_value = wptype(42)
|
|
1707
|
+
else:
|
|
1708
|
+
# struct
|
|
1709
|
+
fill_value = wptype()
|
|
1710
|
+
|
|
1711
|
+
# create a zero-sized array
|
|
1712
|
+
a = wp.empty(shape, dtype=wptype, device=device, requires_grad=True)
|
|
1713
|
+
|
|
1714
|
+
test.assertEqual(a.ptr, None)
|
|
1715
|
+
test.assertEqual(a.size, 0)
|
|
1716
|
+
test.assertEqual(a.shape, shape)
|
|
1717
|
+
test.assertEqual(a.grad.ptr, None)
|
|
1718
|
+
test.assertEqual(a.grad.size, 0)
|
|
1719
|
+
test.assertEqual(a.grad.shape, shape)
|
|
1720
|
+
|
|
1721
|
+
# all of these methods should succeed with zero-sized arrays
|
|
1722
|
+
a.zero_()
|
|
1723
|
+
a.fill_(fill_value)
|
|
1724
|
+
b = a.flatten()
|
|
1725
|
+
b = a.reshape((0,))
|
|
1726
|
+
b = a.transpose()
|
|
1727
|
+
b = a.contiguous()
|
|
1728
|
+
|
|
1729
|
+
b = wp.empty_like(a)
|
|
1730
|
+
b = wp.zeros_like(a)
|
|
1731
|
+
b = wp.full_like(a, fill_value)
|
|
1732
|
+
b = wp.clone(a)
|
|
1733
|
+
|
|
1734
|
+
wp.copy(a, b)
|
|
1735
|
+
a.assign(b)
|
|
1736
|
+
|
|
1737
|
+
na = a.numpy()
|
|
1738
|
+
test.assertEqual(na.size, 0)
|
|
1739
|
+
test.assertEqual(na.shape, (*shape, *dtype_shape))
|
|
1740
|
+
test.assertEqual(na.dtype, nptype)
|
|
1741
|
+
|
|
1742
|
+
test.assertEqual(a.list(), [])
|
|
1743
|
+
|
|
1744
|
+
for ndim in range(1, 5):
|
|
1745
|
+
# test with scalars, vectors, and matrices
|
|
1746
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1747
|
+
# scalars
|
|
1748
|
+
test_empty_ops(ndim, 0, 0, wptype, nptype)
|
|
1749
|
+
|
|
1750
|
+
for ncols in [2, 3, 4, 5]:
|
|
1751
|
+
# vectors
|
|
1752
|
+
test_empty_ops(ndim, 0, ncols, wptype, nptype)
|
|
1753
|
+
# square matrices
|
|
1754
|
+
test_empty_ops(ndim, ncols, ncols, wptype, nptype)
|
|
1755
|
+
|
|
1756
|
+
# non-square matrices
|
|
1757
|
+
test_empty_ops(ndim, 2, 3, wptype, nptype)
|
|
1758
|
+
test_empty_ops(ndim, 3, 2, wptype, nptype)
|
|
1759
|
+
test_empty_ops(ndim, 3, 4, wptype, nptype)
|
|
1760
|
+
test_empty_ops(ndim, 4, 3, wptype, nptype)
|
|
1761
|
+
|
|
1762
|
+
# test with structs
|
|
1763
|
+
test_empty_ops(ndim, 0, 0, FillStruct, FillStruct.numpy_dtype())
|
|
1764
|
+
|
|
1765
|
+
|
|
1766
|
+
def test_empty_from_numpy(test, device):
|
|
1767
|
+
# Test whether wrapping an empty (zero-sized) numpy array works correctly
|
|
1768
|
+
|
|
1769
|
+
def test_empty_from_data(ndim, nrows, ncols, wptype, nptype):
|
|
1770
|
+
shape = (0,) * ndim
|
|
1771
|
+
dtype_shape = ()
|
|
1772
|
+
|
|
1773
|
+
if ncols > 0:
|
|
1774
|
+
if nrows > 0:
|
|
1775
|
+
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
1776
|
+
else:
|
|
1777
|
+
wptype = wp.types.vector(ncols, wptype)
|
|
1778
|
+
dtype_shape = wptype._shape_
|
|
1779
|
+
|
|
1780
|
+
npshape = (*shape, *dtype_shape)
|
|
1781
|
+
|
|
1782
|
+
na = np.empty(npshape, dtype=nptype)
|
|
1783
|
+
a = wp.array(na, dtype=wptype, device=device)
|
|
1784
|
+
test.assertEqual(a.size, 0)
|
|
1785
|
+
test.assertEqual(a.shape, shape)
|
|
1786
|
+
|
|
1787
|
+
for ndim in range(1, 5):
|
|
1788
|
+
# test with scalars, vectors, and matrices
|
|
1789
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1790
|
+
# scalars
|
|
1791
|
+
test_empty_from_data(ndim, 0, 0, wptype, nptype)
|
|
1792
|
+
|
|
1793
|
+
for ncols in [2, 3, 4, 5]:
|
|
1794
|
+
# vectors
|
|
1795
|
+
test_empty_from_data(ndim, 0, ncols, wptype, nptype)
|
|
1796
|
+
# square matrices
|
|
1797
|
+
test_empty_from_data(ndim, ncols, ncols, wptype, nptype)
|
|
1798
|
+
|
|
1799
|
+
# non-square matrices
|
|
1800
|
+
test_empty_from_data(ndim, 2, 3, wptype, nptype)
|
|
1801
|
+
test_empty_from_data(ndim, 3, 2, wptype, nptype)
|
|
1802
|
+
test_empty_from_data(ndim, 3, 4, wptype, nptype)
|
|
1803
|
+
test_empty_from_data(ndim, 4, 3, wptype, nptype)
|
|
1804
|
+
|
|
1805
|
+
|
|
1806
|
+
def test_empty_from_list(test, device):
|
|
1807
|
+
# Test whether creating an array from an empty Python list works correctly
|
|
1808
|
+
|
|
1809
|
+
def test_empty_from_data(nrows, ncols, wptype):
|
|
1810
|
+
if ncols > 0:
|
|
1811
|
+
if nrows > 0:
|
|
1812
|
+
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
1813
|
+
else:
|
|
1814
|
+
wptype = wp.types.vector(ncols, wptype)
|
|
1815
|
+
|
|
1816
|
+
a = wp.array([], dtype=wptype, device=device)
|
|
1817
|
+
test.assertEqual(a.size, 0)
|
|
1818
|
+
test.assertEqual(a.shape, (0,))
|
|
1819
|
+
|
|
1820
|
+
# test with scalars, vectors, and matrices
|
|
1821
|
+
for wptype in wp.types.scalar_types:
|
|
1822
|
+
# scalars
|
|
1823
|
+
test_empty_from_data(0, 0, wptype)
|
|
1824
|
+
|
|
1825
|
+
for ncols in [2, 3, 4, 5]:
|
|
1826
|
+
# vectors
|
|
1827
|
+
test_empty_from_data(0, ncols, wptype)
|
|
1828
|
+
# square matrices
|
|
1829
|
+
test_empty_from_data(ncols, ncols, wptype)
|
|
1830
|
+
|
|
1831
|
+
# non-square matrices
|
|
1832
|
+
test_empty_from_data(2, 3, wptype)
|
|
1833
|
+
test_empty_from_data(3, 2, wptype)
|
|
1834
|
+
test_empty_from_data(3, 4, wptype)
|
|
1835
|
+
test_empty_from_data(4, 3, wptype)
|
|
1836
|
+
|
|
1837
|
+
|
|
1838
|
+
def test_to_list_scalar(test, device):
|
|
1839
|
+
dim = 3
|
|
1840
|
+
fill_value = 42
|
|
1841
|
+
|
|
1842
|
+
for ndim in range(1, 5):
|
|
1843
|
+
shape = (dim,) * ndim
|
|
1844
|
+
|
|
1845
|
+
for wptype in wp.types.scalar_types:
|
|
1846
|
+
a = wp.full(shape, fill_value, dtype=wptype, device=device)
|
|
1847
|
+
l = a.list()
|
|
1848
|
+
|
|
1849
|
+
test.assertEqual(len(l), a.size)
|
|
1850
|
+
test.assertTrue(all(x == fill_value for x in l))
|
|
1851
|
+
|
|
1852
|
+
|
|
1853
|
+
def test_to_list_vector(test, device):
|
|
1854
|
+
dim = 3
|
|
1855
|
+
|
|
1856
|
+
for ndim in range(1, 5):
|
|
1857
|
+
shape = (dim,) * ndim
|
|
1858
|
+
|
|
1859
|
+
for veclen in [2, 3, 4, 5]:
|
|
1860
|
+
for wptype in wp.types.scalar_types:
|
|
1861
|
+
vectype = wp.types.vector(veclen, wptype)
|
|
1862
|
+
fill_value = vectype(42)
|
|
1863
|
+
|
|
1864
|
+
a = wp.full(shape, fill_value, dtype=vectype, device=device)
|
|
1865
|
+
l = a.list()
|
|
1866
|
+
|
|
1867
|
+
test.assertEqual(len(l), a.size)
|
|
1868
|
+
test.assertTrue(all(x == fill_value for x in l))
|
|
1869
|
+
|
|
1870
|
+
|
|
1871
|
+
def test_to_list_matrix(test, device):
|
|
1872
|
+
dim = 3
|
|
1873
|
+
|
|
1874
|
+
for ndim in range(1, 5):
|
|
1875
|
+
shape = (dim,) * ndim
|
|
1876
|
+
|
|
1877
|
+
for wptype in wp.types.scalar_types:
|
|
1878
|
+
matrix_types = [
|
|
1879
|
+
# square matrices
|
|
1880
|
+
wp.types.matrix((2, 2), wptype),
|
|
1881
|
+
wp.types.matrix((3, 3), wptype),
|
|
1882
|
+
wp.types.matrix((4, 4), wptype),
|
|
1883
|
+
wp.types.matrix((5, 5), wptype),
|
|
1884
|
+
# non-square matrices
|
|
1885
|
+
wp.types.matrix((2, 3), wptype),
|
|
1886
|
+
wp.types.matrix((3, 2), wptype),
|
|
1887
|
+
wp.types.matrix((3, 4), wptype),
|
|
1888
|
+
wp.types.matrix((4, 3), wptype),
|
|
1889
|
+
]
|
|
1890
|
+
|
|
1891
|
+
for mattype in matrix_types:
|
|
1892
|
+
fill_value = mattype(42)
|
|
1893
|
+
|
|
1894
|
+
a = wp.full(shape, fill_value, dtype=mattype, device=device)
|
|
1895
|
+
l = a.list()
|
|
1896
|
+
|
|
1897
|
+
test.assertEqual(len(l), a.size)
|
|
1898
|
+
test.assertTrue(all(x == fill_value for x in l))
|
|
1899
|
+
|
|
1900
|
+
|
|
1901
|
+
def test_to_list_struct(test, device):
|
|
1902
|
+
@wp.struct
|
|
1903
|
+
class Inner:
|
|
1904
|
+
h: wp.float16
|
|
1905
|
+
v: wp.vec3
|
|
1906
|
+
|
|
1907
|
+
@wp.struct
|
|
1908
|
+
class ListStruct:
|
|
1909
|
+
i: int
|
|
1910
|
+
f: float
|
|
1911
|
+
h: wp.float16
|
|
1912
|
+
vi: wp.vec2i
|
|
1913
|
+
vf: wp.vec3f
|
|
1914
|
+
vh: wp.vec4h
|
|
1915
|
+
mi: wp.types.matrix((2, 2), int)
|
|
1916
|
+
mf: wp.types.matrix((3, 3), float)
|
|
1917
|
+
mh: wp.types.matrix((4, 4), wp.float16)
|
|
1918
|
+
inner: Inner
|
|
1919
|
+
a1: wp.array(dtype=int)
|
|
1920
|
+
a2: wp.array2d(dtype=float)
|
|
1921
|
+
a3: wp.array3d(dtype=wp.float16)
|
|
1922
|
+
bool: wp.bool
|
|
1923
|
+
|
|
1924
|
+
dim = 3
|
|
1925
|
+
|
|
1926
|
+
s = ListStruct()
|
|
1927
|
+
s.i = 42
|
|
1928
|
+
s.f = 2.5
|
|
1929
|
+
s.h = -1.25
|
|
1930
|
+
s.vi = wp.vec2i(1, 2)
|
|
1931
|
+
s.vf = wp.vec3f(0.1, 0.2, 0.3)
|
|
1932
|
+
s.vh = wp.vec4h(1.0, 2.0, 3.0, 4.0)
|
|
1933
|
+
s.mi = [[1, 2], [3, 4]]
|
|
1934
|
+
s.mf = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
|
1935
|
+
s.mh = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]
|
|
1936
|
+
s.inner = Inner()
|
|
1937
|
+
s.inner.h = 1.5
|
|
1938
|
+
s.inner.v = [1, 2, 3]
|
|
1939
|
+
s.a1 = wp.empty(1, dtype=int, device=device)
|
|
1940
|
+
s.a2 = wp.empty((1, 1), dtype=float, device=device)
|
|
1941
|
+
s.a3 = wp.empty((1, 1, 1), dtype=wp.float16, device=device)
|
|
1942
|
+
s.bool = True
|
|
1943
|
+
|
|
1944
|
+
for ndim in range(1, 5):
|
|
1945
|
+
shape = (dim,) * ndim
|
|
1946
|
+
|
|
1947
|
+
a = wp.full(shape, s, dtype=ListStruct, device=device)
|
|
1948
|
+
l = a.list()
|
|
1949
|
+
|
|
1950
|
+
for i in range(a.size):
|
|
1951
|
+
test.assertEqual(l[i].i, s.i)
|
|
1952
|
+
test.assertEqual(l[i].f, s.f)
|
|
1953
|
+
test.assertEqual(l[i].h, s.h)
|
|
1954
|
+
test.assertEqual(l[i].vi, s.vi)
|
|
1955
|
+
test.assertEqual(l[i].vf, s.vf)
|
|
1956
|
+
test.assertEqual(l[i].vh, s.vh)
|
|
1957
|
+
test.assertEqual(l[i].mi, s.mi)
|
|
1958
|
+
test.assertEqual(l[i].mf, s.mf)
|
|
1959
|
+
test.assertEqual(l[i].mh, s.mh)
|
|
1960
|
+
test.assertEqual(l[i].bool, s.bool)
|
|
1961
|
+
test.assertEqual(l[i].inner.h, s.inner.h)
|
|
1962
|
+
test.assertEqual(l[i].inner.v, s.inner.v)
|
|
1963
|
+
test.assertEqual(l[i].a1.dtype, s.a1.dtype)
|
|
1964
|
+
test.assertEqual(l[i].a1.ndim, s.a1.ndim)
|
|
1965
|
+
test.assertEqual(l[i].a2.dtype, s.a2.dtype)
|
|
1966
|
+
test.assertEqual(l[i].a2.ndim, s.a2.ndim)
|
|
1967
|
+
test.assertEqual(l[i].a3.dtype, s.a3.dtype)
|
|
1968
|
+
test.assertEqual(l[i].a3.ndim, s.a3.ndim)
|
|
1969
|
+
|
|
1970
|
+
|
|
1971
|
+
@wp.kernel
|
|
1972
|
+
def kernel_array_to_bool(array_null: wp.array(dtype=float), array_valid: wp.array(dtype=float)):
|
|
1973
|
+
if not array_null:
|
|
1974
|
+
# always succeed
|
|
1975
|
+
wp.expect_eq(0, 0)
|
|
1976
|
+
else:
|
|
1977
|
+
# force failure
|
|
1978
|
+
wp.expect_eq(1, 2)
|
|
1979
|
+
|
|
1980
|
+
if array_valid:
|
|
1981
|
+
# always succeed
|
|
1982
|
+
wp.expect_eq(0, 0)
|
|
1983
|
+
else:
|
|
1984
|
+
# force failure
|
|
1985
|
+
wp.expect_eq(1, 2)
|
|
1986
|
+
|
|
1987
|
+
|
|
1988
|
+
def test_array_to_bool(test, device):
|
|
1989
|
+
arr = wp.zeros(8, dtype=float, device=device)
|
|
1990
|
+
|
|
1991
|
+
wp.launch(kernel_array_to_bool, dim=1, inputs=[None, arr], device=device)
|
|
1992
|
+
|
|
1993
|
+
|
|
1994
|
+
@wp.struct
|
|
1995
|
+
class InputStruct:
|
|
1996
|
+
param1: int
|
|
1997
|
+
param2: float
|
|
1998
|
+
param3: wp.vec3
|
|
1999
|
+
param4: wp.array(dtype=float)
|
|
2000
|
+
|
|
2001
|
+
|
|
2002
|
+
@wp.struct
|
|
2003
|
+
class OutputStruct:
|
|
2004
|
+
param1: int
|
|
2005
|
+
param2: float
|
|
2006
|
+
param3: wp.vec3
|
|
2007
|
+
|
|
2008
|
+
|
|
2009
|
+
@wp.kernel
|
|
2010
|
+
def struct_array_kernel(inputs: wp.array(dtype=InputStruct), outputs: wp.array(dtype=OutputStruct)):
|
|
2011
|
+
tid = wp.tid()
|
|
2012
|
+
|
|
2013
|
+
wp.expect_eq(inputs[tid].param1, tid)
|
|
2014
|
+
wp.expect_eq(inputs[tid].param2, float(tid * tid))
|
|
2015
|
+
|
|
2016
|
+
wp.expect_eq(inputs[tid].param3[0], 1.0)
|
|
2017
|
+
wp.expect_eq(inputs[tid].param3[1], 2.0)
|
|
2018
|
+
wp.expect_eq(inputs[tid].param3[2], 3.0)
|
|
2019
|
+
|
|
2020
|
+
wp.expect_eq(inputs[tid].param4[0], 1.0)
|
|
2021
|
+
wp.expect_eq(inputs[tid].param4[1], 2.0)
|
|
2022
|
+
wp.expect_eq(inputs[tid].param4[2], 3.0)
|
|
2023
|
+
|
|
2024
|
+
o = OutputStruct()
|
|
2025
|
+
o.param1 = inputs[tid].param1
|
|
2026
|
+
o.param2 = inputs[tid].param2
|
|
2027
|
+
o.param3 = inputs[tid].param3
|
|
2028
|
+
|
|
2029
|
+
outputs[tid] = o
|
|
2030
|
+
|
|
2031
|
+
|
|
2032
|
+
def test_array_of_structs(test, device):
|
|
2033
|
+
num_items = 10
|
|
2034
|
+
|
|
2035
|
+
l = []
|
|
2036
|
+
for i in range(num_items):
|
|
2037
|
+
s = InputStruct()
|
|
2038
|
+
s.param1 = i
|
|
2039
|
+
s.param2 = float(i * i)
|
|
2040
|
+
s.param3 = wp.vec3(1.0, 2.0, 3.0)
|
|
2041
|
+
s.param4 = wp.array([1.0, 2.0, 3.0], dtype=float, device=device)
|
|
2042
|
+
|
|
2043
|
+
l.append(s)
|
|
2044
|
+
|
|
2045
|
+
# initialize array from list of structs
|
|
2046
|
+
inputs = wp.array(l, dtype=InputStruct, device=device)
|
|
2047
|
+
outputs = wp.zeros(num_items, dtype=OutputStruct, device=device)
|
|
2048
|
+
|
|
2049
|
+
# pass to our compute kernel
|
|
2050
|
+
wp.launch(struct_array_kernel, dim=num_items, inputs=[inputs, outputs], device=device)
|
|
2051
|
+
|
|
2052
|
+
out_numpy = outputs.numpy()
|
|
2053
|
+
out_list = outputs.list()
|
|
2054
|
+
out_cptr = outputs.to("cpu").cptr()
|
|
2055
|
+
|
|
2056
|
+
for i in range(num_items):
|
|
2057
|
+
test.assertEqual(out_numpy[i][0], l[i].param1)
|
|
2058
|
+
test.assertEqual(out_numpy[i][1], l[i].param2)
|
|
2059
|
+
assert_np_equal(out_numpy[i][2], np.array(l[i].param3))
|
|
2060
|
+
|
|
2061
|
+
# test named slices of numpy structured array
|
|
2062
|
+
test.assertEqual(out_numpy["param1"][i], l[i].param1)
|
|
2063
|
+
test.assertEqual(out_numpy["param2"][i], l[i].param2)
|
|
2064
|
+
assert_np_equal(out_numpy["param3"][i], np.array(l[i].param3))
|
|
2065
|
+
|
|
2066
|
+
test.assertEqual(out_list[i].param1, l[i].param1)
|
|
2067
|
+
test.assertEqual(out_list[i].param2, l[i].param2)
|
|
2068
|
+
test.assertEqual(out_list[i].param3, l[i].param3)
|
|
2069
|
+
|
|
2070
|
+
test.assertEqual(out_cptr[i].param1, l[i].param1)
|
|
2071
|
+
test.assertEqual(out_cptr[i].param2, l[i].param2)
|
|
2072
|
+
test.assertEqual(out_cptr[i].param3, l[i].param3)
|
|
2073
|
+
|
|
2074
|
+
|
|
2075
|
+
@wp.struct
|
|
2076
|
+
class GradStruct:
|
|
2077
|
+
param1: int
|
|
2078
|
+
param2: float
|
|
2079
|
+
param3: wp.vec3
|
|
2080
|
+
|
|
2081
|
+
|
|
2082
|
+
@wp.kernel
|
|
2083
|
+
def test_array_of_structs_grad_kernel(inputs: wp.array(dtype=GradStruct), loss: wp.array(dtype=float)):
|
|
2084
|
+
tid = wp.tid()
|
|
2085
|
+
|
|
2086
|
+
wp.atomic_add(loss, 0, inputs[tid].param2 * 2.0)
|
|
2087
|
+
|
|
2088
|
+
|
|
2089
|
+
def test_array_of_structs_grad(test, device):
|
|
2090
|
+
num_items = 10
|
|
2091
|
+
|
|
2092
|
+
l = []
|
|
2093
|
+
for i in range(num_items):
|
|
2094
|
+
g = GradStruct()
|
|
2095
|
+
g.param2 = float(i)
|
|
2096
|
+
|
|
2097
|
+
l.append(g)
|
|
2098
|
+
|
|
2099
|
+
a = wp.array(l, dtype=GradStruct, device=device, requires_grad=True)
|
|
2100
|
+
loss = wp.zeros(1, dtype=float, device=device, requires_grad=True)
|
|
2101
|
+
|
|
2102
|
+
with wp.Tape() as tape:
|
|
2103
|
+
wp.launch(test_array_of_structs_grad_kernel, dim=num_items, inputs=[a, loss], device=device)
|
|
2104
|
+
|
|
2105
|
+
tape.backward(loss)
|
|
2106
|
+
|
|
2107
|
+
grads = a.grad.numpy()
|
|
2108
|
+
assert_np_equal(grads["param2"], np.full(num_items, 2.0, dtype=np.float32))
|
|
2109
|
+
|
|
2110
|
+
|
|
2111
|
+
@wp.struct
|
|
2112
|
+
class NumpyStruct:
|
|
2113
|
+
x: int
|
|
2114
|
+
v: wp.vec3
|
|
2115
|
+
|
|
2116
|
+
|
|
2117
|
+
def test_array_of_structs_from_numpy(test, device):
|
|
2118
|
+
num_items = 10
|
|
2119
|
+
|
|
2120
|
+
na = np.zeros(num_items, dtype=NumpyStruct.numpy_dtype())
|
|
2121
|
+
na["x"] = 17
|
|
2122
|
+
na["v"] = (1, 2, 3)
|
|
2123
|
+
|
|
2124
|
+
a = wp.array(data=na, dtype=NumpyStruct, device=device)
|
|
2125
|
+
|
|
2126
|
+
assert_np_equal(a.numpy(), na)
|
|
2127
|
+
|
|
2128
|
+
|
|
2129
|
+
def test_array_of_structs_roundtrip(test, device):
|
|
2130
|
+
num_items = 10
|
|
2131
|
+
|
|
2132
|
+
value = NumpyStruct()
|
|
2133
|
+
value.x = 17
|
|
2134
|
+
value.v = wp.vec3(1.0, 2.0, 3.0)
|
|
2135
|
+
|
|
2136
|
+
# create Warp structured array
|
|
2137
|
+
a = wp.full(num_items, value, device=device)
|
|
2138
|
+
|
|
2139
|
+
# convert to NumPy structured array
|
|
2140
|
+
na = a.numpy()
|
|
2141
|
+
|
|
2142
|
+
expected = np.zeros(num_items, dtype=NumpyStruct.numpy_dtype())
|
|
2143
|
+
expected["x"] = value.x
|
|
2144
|
+
expected["v"] = value.v
|
|
2145
|
+
|
|
2146
|
+
assert_np_equal(na, expected)
|
|
2147
|
+
|
|
2148
|
+
# modify a field
|
|
2149
|
+
na["x"] = 42
|
|
2150
|
+
|
|
2151
|
+
# convert back to Warp array
|
|
2152
|
+
a = wp.from_numpy(na, NumpyStruct, device=device)
|
|
2153
|
+
|
|
2154
|
+
expected["x"] = 42
|
|
2155
|
+
|
|
2156
|
+
assert_np_equal(a.numpy(), expected)
|
|
2157
|
+
|
|
2158
|
+
|
|
2159
|
+
def test_array_from_numpy(test, device):
|
|
2160
|
+
arr = np.array((1.0, 2.0, 3.0), dtype=float)
|
|
2161
|
+
|
|
2162
|
+
result = wp.from_numpy(arr, device=device)
|
|
2163
|
+
expected = wp.array((1.0, 2.0, 3.0), dtype=wp.float32, shape=(3,))
|
|
2164
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2165
|
+
|
|
2166
|
+
result = wp.from_numpy(arr, dtype=wp.vec3, device=device)
|
|
2167
|
+
expected = wp.array(((1.0, 2.0, 3.0),), dtype=wp.vec3, shape=(1,))
|
|
2168
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2169
|
+
|
|
2170
|
+
# --------------------------------------------------------------------------
|
|
2171
|
+
|
|
2172
|
+
arr = np.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=float)
|
|
2173
|
+
|
|
2174
|
+
result = wp.from_numpy(arr, device=device)
|
|
2175
|
+
expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.vec3, shape=(2,))
|
|
2176
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2177
|
+
|
|
2178
|
+
result = wp.from_numpy(arr, dtype=wp.float32, device=device)
|
|
2179
|
+
expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.float32, shape=(2, 3))
|
|
2180
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2181
|
+
|
|
2182
|
+
result = wp.from_numpy(arr, dtype=wp.float32, shape=(6,), device=device)
|
|
2183
|
+
expected = wp.array((1.0, 2.0, 3.0, 4.0, 5.0, 6.0), dtype=wp.float32, shape=(6,))
|
|
2184
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2185
|
+
|
|
2186
|
+
# --------------------------------------------------------------------------
|
|
2187
|
+
|
|
2188
|
+
arr = np.array(
|
|
2189
|
+
(
|
|
2190
|
+
(
|
|
2191
|
+
(1.0, 2.0, 3.0, 4.0),
|
|
2192
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2193
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2194
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2195
|
+
),
|
|
2196
|
+
(
|
|
2197
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2198
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2199
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2200
|
+
(5.0, 6.0, 7.0, 8.0),
|
|
2201
|
+
),
|
|
2202
|
+
),
|
|
2203
|
+
dtype=float,
|
|
2204
|
+
)
|
|
2205
|
+
|
|
2206
|
+
result = wp.from_numpy(arr, device=device)
|
|
2207
|
+
expected = wp.array(
|
|
2208
|
+
(
|
|
2209
|
+
(
|
|
2210
|
+
(1.0, 2.0, 3.0, 4.0),
|
|
2211
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2212
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2213
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2214
|
+
),
|
|
2215
|
+
(
|
|
2216
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2217
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2218
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2219
|
+
(5.0, 6.0, 7.0, 8.0),
|
|
2220
|
+
),
|
|
2221
|
+
),
|
|
2222
|
+
dtype=wp.mat44,
|
|
2223
|
+
shape=(2,),
|
|
2224
|
+
)
|
|
2225
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2226
|
+
|
|
2227
|
+
result = wp.from_numpy(arr, dtype=wp.float32, device=device)
|
|
2228
|
+
expected = wp.array(
|
|
2229
|
+
(
|
|
2230
|
+
(
|
|
2231
|
+
(1.0, 2.0, 3.0, 4.0),
|
|
2232
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2233
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2234
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2235
|
+
),
|
|
2236
|
+
(
|
|
2237
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2238
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2239
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2240
|
+
(5.0, 6.0, 7.0, 8.0),
|
|
2241
|
+
),
|
|
2242
|
+
),
|
|
2243
|
+
dtype=wp.float32,
|
|
2244
|
+
shape=(2, 4, 4),
|
|
2245
|
+
)
|
|
2246
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2247
|
+
|
|
2248
|
+
result = wp.from_numpy(arr, dtype=wp.vec4, device=device).reshape((8,)) # Reshape from (2, 4)
|
|
2249
|
+
expected = wp.array(
|
|
2250
|
+
(
|
|
2251
|
+
(1.0, 2.0, 3.0, 4.0),
|
|
2252
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2253
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2254
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2255
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2256
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2257
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2258
|
+
(5.0, 6.0, 7.0, 8.0),
|
|
2259
|
+
),
|
|
2260
|
+
dtype=wp.vec4,
|
|
2261
|
+
shape=(8,),
|
|
2262
|
+
)
|
|
2263
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2264
|
+
|
|
2265
|
+
result = wp.from_numpy(arr, dtype=wp.float32, shape=(32,), device=device)
|
|
2266
|
+
expected = wp.array(
|
|
2267
|
+
(
|
|
2268
|
+
1.0,
|
|
2269
|
+
2.0,
|
|
2270
|
+
3.0,
|
|
2271
|
+
4.0,
|
|
2272
|
+
2.0,
|
|
2273
|
+
3.0,
|
|
2274
|
+
4.0,
|
|
2275
|
+
5.0,
|
|
2276
|
+
3.0,
|
|
2277
|
+
4.0,
|
|
2278
|
+
5.0,
|
|
2279
|
+
6.0,
|
|
2280
|
+
4.0,
|
|
2281
|
+
5.0,
|
|
2282
|
+
6.0,
|
|
2283
|
+
7.0,
|
|
2284
|
+
2.0,
|
|
2285
|
+
3.0,
|
|
2286
|
+
4.0,
|
|
2287
|
+
5.0,
|
|
2288
|
+
3.0,
|
|
2289
|
+
4.0,
|
|
2290
|
+
5.0,
|
|
2291
|
+
6.0,
|
|
2292
|
+
4.0,
|
|
2293
|
+
5.0,
|
|
2294
|
+
6.0,
|
|
2295
|
+
7.0,
|
|
2296
|
+
5.0,
|
|
2297
|
+
6.0,
|
|
2298
|
+
7.0,
|
|
2299
|
+
8.0,
|
|
2300
|
+
),
|
|
2301
|
+
dtype=wp.float32,
|
|
2302
|
+
shape=(32,),
|
|
2303
|
+
)
|
|
2304
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2305
|
+
|
|
2306
|
+
|
|
2307
|
+
def test_array_aliasing_from_numpy(test, device):
|
|
2308
|
+
device = wp.get_device(device)
|
|
2309
|
+
assert device.is_cpu
|
|
2310
|
+
|
|
2311
|
+
a_np = np.ones(8, dtype=np.int32)
|
|
2312
|
+
a_wp = wp.array(a_np, dtype=int, copy=False, device=device)
|
|
2313
|
+
test.assertIs(a_wp._ref, a_np) # check that some ref is kept to original array
|
|
2314
|
+
test.assertEqual(a_wp.ptr, a_np.ctypes.data)
|
|
2315
|
+
|
|
2316
|
+
a_np_2 = a_wp.numpy()
|
|
2317
|
+
test.assertTrue((a_np_2 == 1).all())
|
|
2318
|
+
|
|
2319
|
+
# updating source array should update aliased array
|
|
2320
|
+
a_np.fill(2)
|
|
2321
|
+
test.assertTrue((a_np_2 == 2).all())
|
|
2322
|
+
|
|
2323
|
+
# trying to alias from a different type should do a copy
|
|
2324
|
+
# do it twice to check that the copy buffer is not being reused for different arrays
|
|
2325
|
+
|
|
2326
|
+
b_np = np.ones(8, dtype=np.int64)
|
|
2327
|
+
c_np = np.zeros(8, dtype=np.int64)
|
|
2328
|
+
b_wp = wp.array(b_np, dtype=int, copy=False, device=device)
|
|
2329
|
+
c_wp = wp.array(c_np, dtype=int, copy=False, device=device)
|
|
2330
|
+
|
|
2331
|
+
test.assertNotEqual(b_wp.ptr, b_np.ctypes.data)
|
|
2332
|
+
test.assertNotEqual(b_wp.ptr, c_wp.ptr)
|
|
2333
|
+
|
|
2334
|
+
b_np_2 = b_wp.numpy()
|
|
2335
|
+
c_np_2 = c_wp.numpy()
|
|
2336
|
+
test.assertTrue((b_np_2 == 1).all())
|
|
2337
|
+
test.assertTrue((c_np_2 == 0).all())
|
|
2338
|
+
|
|
2339
|
+
|
|
2340
|
+
def test_array_from_cai(test, device):
|
|
2341
|
+
import torch
|
|
2342
|
+
|
|
2343
|
+
@wp.kernel
|
|
2344
|
+
def first_row_plus_one(x: wp.array2d(dtype=float)):
|
|
2345
|
+
i, j = wp.tid()
|
|
2346
|
+
if i == 0:
|
|
2347
|
+
x[i, j] += 1.0
|
|
2348
|
+
|
|
2349
|
+
# start with torch tensor
|
|
2350
|
+
arr = torch.zeros((3, 3))
|
|
2351
|
+
torch_device = wp.device_to_torch(device)
|
|
2352
|
+
arr_torch = arr.to(torch_device)
|
|
2353
|
+
|
|
2354
|
+
# wrap as warp array via __cuda_array_interface__
|
|
2355
|
+
arr_warp = wp.array(arr_torch, device=device)
|
|
2356
|
+
|
|
2357
|
+
wp.launch(kernel=first_row_plus_one, dim=(3, 3), inputs=[arr_warp], device=device)
|
|
2358
|
+
|
|
2359
|
+
# re-wrap as torch array
|
|
2360
|
+
arr_torch = wp.to_torch(arr_warp)
|
|
2361
|
+
|
|
2362
|
+
# transpose
|
|
2363
|
+
arr_torch = torch.as_strided(arr_torch, size=(3, 3), stride=(arr_torch.stride(1), arr_torch.stride(0)))
|
|
2364
|
+
|
|
2365
|
+
# re-wrap as warp array with new strides
|
|
2366
|
+
arr_warp = wp.array(arr_torch, device=device)
|
|
2367
|
+
|
|
2368
|
+
wp.launch(kernel=first_row_plus_one, dim=(3, 3), inputs=[arr_warp], device=device)
|
|
2369
|
+
|
|
2370
|
+
assert_np_equal(arr_warp.numpy(), np.array([[2, 1, 1], [1, 0, 0], [1, 0, 0]]))
|
|
2371
|
+
|
|
2372
|
+
|
|
2373
|
+
@wp.kernel
|
|
2374
|
+
def inplace_add_1d(x: wp.array(dtype=float), y: wp.array(dtype=float)):
|
|
2375
|
+
i = wp.tid()
|
|
2376
|
+
x[i] += y[i]
|
|
2377
|
+
|
|
2378
|
+
|
|
2379
|
+
@wp.kernel
|
|
2380
|
+
def inplace_add_2d(x: wp.array2d(dtype=float), y: wp.array2d(dtype=float)):
|
|
2381
|
+
i, j = wp.tid()
|
|
2382
|
+
x[i, j] += y[i, j]
|
|
2383
|
+
|
|
2384
|
+
|
|
2385
|
+
@wp.kernel
|
|
2386
|
+
def inplace_add_3d(x: wp.array3d(dtype=float), y: wp.array3d(dtype=float)):
|
|
2387
|
+
i, j, k = wp.tid()
|
|
2388
|
+
x[i, j, k] += y[i, j, k]
|
|
2389
|
+
|
|
2390
|
+
|
|
2391
|
+
@wp.kernel
|
|
2392
|
+
def inplace_add_4d(x: wp.array4d(dtype=float), y: wp.array4d(dtype=float)):
|
|
2393
|
+
i, j, k, l = wp.tid()
|
|
2394
|
+
x[i, j, k, l] += y[i, j, k, l]
|
|
2395
|
+
|
|
2396
|
+
|
|
2397
|
+
@wp.kernel
|
|
2398
|
+
def inplace_sub_1d(x: wp.array(dtype=float), y: wp.array(dtype=float)):
|
|
2399
|
+
i = wp.tid()
|
|
2400
|
+
x[i] -= y[i]
|
|
2401
|
+
|
|
2402
|
+
|
|
2403
|
+
@wp.kernel
|
|
2404
|
+
def inplace_sub_2d(x: wp.array2d(dtype=float), y: wp.array2d(dtype=float)):
|
|
2405
|
+
i, j = wp.tid()
|
|
2406
|
+
x[i, j] -= y[i, j]
|
|
2407
|
+
|
|
2408
|
+
|
|
2409
|
+
@wp.kernel
|
|
2410
|
+
def inplace_sub_3d(x: wp.array3d(dtype=float), y: wp.array3d(dtype=float)):
|
|
2411
|
+
i, j, k = wp.tid()
|
|
2412
|
+
x[i, j, k] -= y[i, j, k]
|
|
2413
|
+
|
|
2414
|
+
|
|
2415
|
+
@wp.kernel
|
|
2416
|
+
def inplace_sub_4d(x: wp.array4d(dtype=float), y: wp.array4d(dtype=float)):
|
|
2417
|
+
i, j, k, l = wp.tid()
|
|
2418
|
+
x[i, j, k, l] -= y[i, j, k, l]
|
|
2419
|
+
|
|
2420
|
+
|
|
2421
|
+
@wp.kernel
|
|
2422
|
+
def inplace_add_vecs(x: wp.array(dtype=wp.vec3), y: wp.array(dtype=wp.vec3)):
|
|
2423
|
+
i = wp.tid()
|
|
2424
|
+
x[i] += y[i]
|
|
2425
|
+
|
|
2426
|
+
|
|
2427
|
+
@wp.kernel
|
|
2428
|
+
def inplace_add_mats(x: wp.array(dtype=wp.mat33), y: wp.array(dtype=wp.mat33)):
|
|
2429
|
+
i = wp.tid()
|
|
2430
|
+
x[i] += y[i]
|
|
2431
|
+
|
|
2432
|
+
|
|
2433
|
+
@wp.kernel
|
|
2434
|
+
def inplace_add_rhs(x: wp.array(dtype=float), y: wp.array(dtype=float), z: wp.array(dtype=float)):
|
|
2435
|
+
i = wp.tid()
|
|
2436
|
+
a = y[i]
|
|
2437
|
+
a += x[i]
|
|
2438
|
+
wp.atomic_add(z, 0, a)
|
|
2439
|
+
|
|
2440
|
+
|
|
2441
|
+
vec9 = wp.vec(length=9, dtype=float)
|
|
2442
|
+
|
|
2443
|
+
|
|
2444
|
+
@wp.kernel
|
|
2445
|
+
def inplace_add_custom_vec(x: wp.array(dtype=vec9), y: wp.array(dtype=vec9)):
|
|
2446
|
+
i = wp.tid()
|
|
2447
|
+
x[i] += y[i]
|
|
2448
|
+
x[i] += y[i]
|
|
2449
|
+
|
|
2450
|
+
|
|
2451
|
+
def test_array_inplace_diff_ops(test, device):
|
|
2452
|
+
N = 3
|
|
2453
|
+
x1 = wp.ones(N, dtype=float, requires_grad=True, device=device)
|
|
2454
|
+
x2 = wp.ones((N, N), dtype=float, requires_grad=True, device=device)
|
|
2455
|
+
x3 = wp.ones((N, N, N), dtype=float, requires_grad=True, device=device)
|
|
2456
|
+
x4 = wp.ones((N, N, N, N), dtype=float, requires_grad=True, device=device)
|
|
2457
|
+
|
|
2458
|
+
y1 = wp.clone(x1, requires_grad=True, device=device)
|
|
2459
|
+
y2 = wp.clone(x2, requires_grad=True, device=device)
|
|
2460
|
+
y3 = wp.clone(x3, requires_grad=True, device=device)
|
|
2461
|
+
y4 = wp.clone(x4, requires_grad=True, device=device)
|
|
2462
|
+
|
|
2463
|
+
v1 = wp.ones(1, dtype=wp.vec3, requires_grad=True, device=device)
|
|
2464
|
+
v2 = wp.clone(v1, requires_grad=True, device=device)
|
|
2465
|
+
|
|
2466
|
+
m1 = wp.ones(1, dtype=wp.mat33, requires_grad=True, device=device)
|
|
2467
|
+
m2 = wp.clone(m1, requires_grad=True, device=device)
|
|
2468
|
+
|
|
2469
|
+
x = wp.ones(1, dtype=float, requires_grad=True, device=device)
|
|
2470
|
+
y = wp.clone(x, requires_grad=True, device=device)
|
|
2471
|
+
z = wp.zeros(1, dtype=float, requires_grad=True, device=device)
|
|
2472
|
+
|
|
2473
|
+
np_ones_1d = np.ones(N, dtype=float)
|
|
2474
|
+
np_ones_2d = np.ones((N, N), dtype=float)
|
|
2475
|
+
np_ones_3d = np.ones((N, N, N), dtype=float)
|
|
2476
|
+
np_ones_4d = np.ones((N, N, N, N), dtype=float)
|
|
2477
|
+
|
|
2478
|
+
np_twos_1d = np.full(N, 2.0, dtype=float)
|
|
2479
|
+
np_twos_2d = np.full((N, N), 2.0, dtype=float)
|
|
2480
|
+
np_twos_3d = np.full((N, N, N), 2.0, dtype=float)
|
|
2481
|
+
np_twos_4d = np.full((N, N, N, N), 2.0, dtype=float)
|
|
2482
|
+
|
|
2483
|
+
tape = wp.Tape()
|
|
2484
|
+
with tape:
|
|
2485
|
+
wp.launch(inplace_add_1d, N, inputs=[x1, y1], device=device)
|
|
2486
|
+
wp.launch(inplace_add_2d, (N, N), inputs=[x2, y2], device=device)
|
|
2487
|
+
wp.launch(inplace_add_3d, (N, N, N), inputs=[x3, y3], device=device)
|
|
2488
|
+
wp.launch(inplace_add_4d, (N, N, N, N), inputs=[x4, y4], device=device)
|
|
2489
|
+
|
|
2490
|
+
tape.backward(grads={x1: wp.ones_like(x1), x2: wp.ones_like(x2), x3: wp.ones_like(x3), x4: wp.ones_like(x4)})
|
|
2491
|
+
|
|
2492
|
+
assert_np_equal(x1.grad.numpy(), np_ones_1d)
|
|
2493
|
+
assert_np_equal(x2.grad.numpy(), np_ones_2d)
|
|
2494
|
+
assert_np_equal(x3.grad.numpy(), np_ones_3d)
|
|
2495
|
+
assert_np_equal(x4.grad.numpy(), np_ones_4d)
|
|
2496
|
+
|
|
2497
|
+
assert_np_equal(y1.grad.numpy(), np_ones_1d)
|
|
2498
|
+
assert_np_equal(y2.grad.numpy(), np_ones_2d)
|
|
2499
|
+
assert_np_equal(y3.grad.numpy(), np_ones_3d)
|
|
2500
|
+
assert_np_equal(y4.grad.numpy(), np_ones_4d)
|
|
2501
|
+
|
|
2502
|
+
assert_np_equal(x1.numpy(), np_twos_1d)
|
|
2503
|
+
assert_np_equal(x2.numpy(), np_twos_2d)
|
|
2504
|
+
assert_np_equal(x3.numpy(), np_twos_3d)
|
|
2505
|
+
assert_np_equal(x4.numpy(), np_twos_4d)
|
|
2506
|
+
|
|
2507
|
+
x1.grad.zero_()
|
|
2508
|
+
x2.grad.zero_()
|
|
2509
|
+
x3.grad.zero_()
|
|
2510
|
+
x4.grad.zero_()
|
|
2511
|
+
tape.reset()
|
|
2512
|
+
|
|
2513
|
+
with tape:
|
|
2514
|
+
wp.launch(inplace_sub_1d, N, inputs=[x1, y1], device=device)
|
|
2515
|
+
wp.launch(inplace_sub_2d, (N, N), inputs=[x2, y2], device=device)
|
|
2516
|
+
wp.launch(inplace_sub_3d, (N, N, N), inputs=[x3, y3], device=device)
|
|
2517
|
+
wp.launch(inplace_sub_4d, (N, N, N, N), inputs=[x4, y4], device=device)
|
|
2518
|
+
|
|
2519
|
+
tape.backward(grads={x1: wp.ones_like(x1), x2: wp.ones_like(x2), x3: wp.ones_like(x3), x4: wp.ones_like(x4)})
|
|
2520
|
+
|
|
2521
|
+
assert_np_equal(x1.grad.numpy(), np_ones_1d)
|
|
2522
|
+
assert_np_equal(x2.grad.numpy(), np_ones_2d)
|
|
2523
|
+
assert_np_equal(x3.grad.numpy(), np_ones_3d)
|
|
2524
|
+
assert_np_equal(x4.grad.numpy(), np_ones_4d)
|
|
2525
|
+
|
|
2526
|
+
assert_np_equal(y1.grad.numpy(), -np_ones_1d)
|
|
2527
|
+
assert_np_equal(y2.grad.numpy(), -np_ones_2d)
|
|
2528
|
+
assert_np_equal(y3.grad.numpy(), -np_ones_3d)
|
|
2529
|
+
assert_np_equal(y4.grad.numpy(), -np_ones_4d)
|
|
2530
|
+
|
|
2531
|
+
assert_np_equal(x1.numpy(), np_ones_1d)
|
|
2532
|
+
assert_np_equal(x2.numpy(), np_ones_2d)
|
|
2533
|
+
assert_np_equal(x3.numpy(), np_ones_3d)
|
|
2534
|
+
assert_np_equal(x4.numpy(), np_ones_4d)
|
|
2535
|
+
|
|
2536
|
+
x1.grad.zero_()
|
|
2537
|
+
x2.grad.zero_()
|
|
2538
|
+
x3.grad.zero_()
|
|
2539
|
+
x4.grad.zero_()
|
|
2540
|
+
tape.reset()
|
|
2541
|
+
|
|
2542
|
+
with tape:
|
|
2543
|
+
wp.launch(inplace_add_vecs, 1, inputs=[v1, v2], device=device)
|
|
2544
|
+
wp.launch(inplace_add_mats, 1, inputs=[m1, m2], device=device)
|
|
2545
|
+
wp.launch(inplace_add_rhs, 1, inputs=[x, y, z], device=device)
|
|
2546
|
+
|
|
2547
|
+
tape.backward(loss=z, grads={v1: wp.ones_like(v1, requires_grad=False), m1: wp.ones_like(m1, requires_grad=False)})
|
|
2548
|
+
|
|
2549
|
+
assert_np_equal(v1.numpy(), np.full(shape=(1, 3), fill_value=2.0, dtype=float))
|
|
2550
|
+
assert_np_equal(v1.grad.numpy(), np.ones(shape=(1, 3), dtype=float))
|
|
2551
|
+
assert_np_equal(v2.grad.numpy(), np.ones(shape=(1, 3), dtype=float))
|
|
2552
|
+
|
|
2553
|
+
assert_np_equal(m1.numpy(), np.full(shape=(1, 3, 3), fill_value=2.0, dtype=float))
|
|
2554
|
+
assert_np_equal(m1.grad.numpy(), np.ones(shape=(1, 3, 3), dtype=float))
|
|
2555
|
+
assert_np_equal(m2.grad.numpy(), np.ones(shape=(1, 3, 3), dtype=float))
|
|
2556
|
+
|
|
2557
|
+
assert_np_equal(x.grad.numpy(), np.ones(1, dtype=float))
|
|
2558
|
+
assert_np_equal(y.grad.numpy(), np.ones(1, dtype=float))
|
|
2559
|
+
tape.reset()
|
|
2560
|
+
|
|
2561
|
+
x = wp.zeros(1, dtype=vec9, requires_grad=True, device=device)
|
|
2562
|
+
y = wp.ones(1, dtype=vec9, requires_grad=True, device=device)
|
|
2563
|
+
|
|
2564
|
+
with tape:
|
|
2565
|
+
wp.launch(inplace_add_custom_vec, 1, inputs=[x, y], device=device)
|
|
2566
|
+
|
|
2567
|
+
tape.backward(grads={x: wp.ones_like(x)})
|
|
2568
|
+
|
|
2569
|
+
assert_np_equal(x.numpy(), np.full((1, 9), 2.0, dtype=float))
|
|
2570
|
+
assert_np_equal(y.grad.numpy(), np.full((1, 9), 2.0, dtype=float))
|
|
2571
|
+
|
|
2572
|
+
|
|
2573
|
+
@wp.kernel
|
|
2574
|
+
def inplace_mul_1d(x: wp.array(dtype=float), y: wp.array(dtype=float)):
|
|
2575
|
+
i = wp.tid()
|
|
2576
|
+
x[i] *= y[i]
|
|
2577
|
+
|
|
2578
|
+
|
|
2579
|
+
@wp.kernel
|
|
2580
|
+
def inplace_div_1d(x: wp.array(dtype=float), y: wp.array(dtype=float)):
|
|
2581
|
+
i = wp.tid()
|
|
2582
|
+
x[i] /= y[i]
|
|
2583
|
+
|
|
2584
|
+
|
|
2585
|
+
@wp.kernel
|
|
2586
|
+
def inplace_add_non_atomic_types(x: wp.array(dtype=Any), y: wp.array(dtype=Any)):
|
|
2587
|
+
i = wp.tid()
|
|
2588
|
+
x[i] += y[i]
|
|
2589
|
+
|
|
2590
|
+
|
|
2591
|
+
uint16vec3 = wp.vec(length=3, dtype=wp.uint16)
|
|
2592
|
+
|
|
2593
|
+
|
|
2594
|
+
def test_array_inplace_non_diff_ops(test, device):
|
|
2595
|
+
N = 3
|
|
2596
|
+
x1 = wp.full(N, value=10.0, dtype=float, device=device)
|
|
2597
|
+
y1 = wp.full(N, value=5.0, dtype=float, device=device)
|
|
2598
|
+
|
|
2599
|
+
wp.launch(inplace_mul_1d, N, inputs=[x1, y1], device=device)
|
|
2600
|
+
assert_np_equal(x1.numpy(), np.full(N, fill_value=50.0, dtype=float))
|
|
2601
|
+
|
|
2602
|
+
x1.fill_(10.0)
|
|
2603
|
+
y1.fill_(5.0)
|
|
2604
|
+
wp.launch(inplace_div_1d, N, inputs=[x1, y1], device=device)
|
|
2605
|
+
assert_np_equal(x1.numpy(), np.full(N, fill_value=2.0, dtype=float))
|
|
2606
|
+
|
|
2607
|
+
for dtype in wp.types.non_atomic_types + (wp.vec2b, wp.vec2ub, wp.vec2s, wp.vec2us, uint16vec3):
|
|
2608
|
+
x = wp.full(N, value=0, dtype=dtype, device=device)
|
|
2609
|
+
y = wp.full(N, value=1, dtype=dtype, device=device)
|
|
2610
|
+
|
|
2611
|
+
wp.launch(inplace_add_non_atomic_types, N, inputs=[x, y], device=device)
|
|
2612
|
+
assert_np_equal(x.numpy(), y.numpy())
|
|
2613
|
+
|
|
2614
|
+
|
|
2615
|
+
@wp.kernel
|
|
2616
|
+
def inc_scalar(a: wp.array(dtype=float)):
|
|
2617
|
+
tid = wp.tid()
|
|
2618
|
+
a[tid] = a[tid] + 1.0
|
|
2619
|
+
|
|
2620
|
+
|
|
2621
|
+
@wp.kernel
|
|
2622
|
+
def inc_vector(a: wp.array(dtype=wp.vec3f)):
|
|
2623
|
+
tid = wp.tid()
|
|
2624
|
+
a[tid] = a[tid] + wp.vec3f(1.0)
|
|
2625
|
+
|
|
2626
|
+
|
|
2627
|
+
@wp.kernel
|
|
2628
|
+
def inc_matrix(a: wp.array(dtype=wp.mat22f)):
|
|
2629
|
+
tid = wp.tid()
|
|
2630
|
+
a[tid] = a[tid] + wp.mat22f(1.0)
|
|
2631
|
+
|
|
2632
|
+
|
|
2633
|
+
def test_direct_from_numpy(test, device):
|
|
2634
|
+
"""Pass NumPy arrays to Warp kernels directly"""
|
|
2635
|
+
|
|
2636
|
+
n = 12
|
|
2637
|
+
|
|
2638
|
+
s = np.arange(n, dtype=np.float32)
|
|
2639
|
+
v = np.arange(n, dtype=np.float32).reshape((n // 3, 3))
|
|
2640
|
+
m = np.arange(n, dtype=np.float32).reshape((n // 4, 2, 2))
|
|
2641
|
+
|
|
2642
|
+
wp.launch(inc_scalar, dim=n, inputs=[s], device=device)
|
|
2643
|
+
wp.launch(inc_vector, dim=n // 3, inputs=[v], device=device)
|
|
2644
|
+
wp.launch(inc_matrix, dim=n // 4, inputs=[m], device=device)
|
|
2645
|
+
|
|
2646
|
+
expected = np.arange(1, n + 1, dtype=np.float32)
|
|
2647
|
+
|
|
2648
|
+
assert_np_equal(s, expected)
|
|
2649
|
+
assert_np_equal(v.reshape(n), expected)
|
|
2650
|
+
assert_np_equal(m.reshape(n), expected)
|
|
2651
|
+
|
|
2652
|
+
|
|
2653
|
+
@wp.kernel
|
|
2654
|
+
def kernel_array_from_ptr(
|
|
2655
|
+
ptr: wp.uint64,
|
|
2656
|
+
):
|
|
2657
|
+
arr = wp.array(ptr=ptr, shape=(2, 3), dtype=wp.float32)
|
|
2658
|
+
arr[0, 0] = 1.0
|
|
2659
|
+
arr[0, 1] = 2.0
|
|
2660
|
+
arr[0, 2] = 3.0
|
|
2661
|
+
|
|
2662
|
+
|
|
2663
|
+
def test_kernel_array_from_ptr(test, device):
|
|
2664
|
+
arr = wp.zeros(shape=(2, 3), dtype=wp.float32, device=device)
|
|
2665
|
+
wp.launch(kernel_array_from_ptr, dim=(1,), inputs=(arr.ptr,), device=device)
|
|
2666
|
+
assert_np_equal(arr.numpy(), np.array(((1.0, 2.0, 3.0), (0.0, 0.0, 0.0))))
|
|
2667
|
+
|
|
2668
|
+
|
|
2669
|
+
def test_array_from_int32_domain(test, device):
|
|
2670
|
+
wp.zeros(np.array([1504, 1080, 520], dtype=np.int32), dtype=wp.float32, device=device)
|
|
2671
|
+
|
|
2672
|
+
|
|
2673
|
+
def test_array_from_int64_domain(test, device):
|
|
2674
|
+
wp.zeros(np.array([1504, 1080, 520], dtype=np.int64), dtype=wp.float32, device=device)
|
|
2675
|
+
|
|
2676
|
+
|
|
2677
|
+
def test_numpy_array_interface(test, device):
|
|
2678
|
+
# We should be able to convert between NumPy and Warp arrays using __array_interface__ on CPU.
|
|
2679
|
+
# This tests all scalar types supported by both.
|
|
2680
|
+
|
|
2681
|
+
n = 10
|
|
2682
|
+
|
|
2683
|
+
scalar_types = wp.types.scalar_types
|
|
2684
|
+
|
|
2685
|
+
for dtype in scalar_types:
|
|
2686
|
+
# test round trip
|
|
2687
|
+
a1 = wp.zeros(n, dtype=dtype, device="cpu")
|
|
2688
|
+
na = np.array(a1)
|
|
2689
|
+
a2 = wp.array(na, device="cpu")
|
|
2690
|
+
|
|
2691
|
+
assert a1.dtype == a2.dtype
|
|
2692
|
+
assert a1.shape == a2.shape
|
|
2693
|
+
assert a1.strides == a2.strides
|
|
2694
|
+
|
|
2695
|
+
|
|
2696
|
+
@wp.kernel
|
|
2697
|
+
def kernel_indexing_types(
|
|
2698
|
+
arr_1d: wp.array(dtype=wp.int32, ndim=1),
|
|
2699
|
+
arr_2d: wp.array(dtype=wp.int32, ndim=2),
|
|
2700
|
+
arr_3d: wp.array(dtype=wp.int32, ndim=3),
|
|
2701
|
+
arr_4d: wp.array(dtype=wp.int32, ndim=4),
|
|
2702
|
+
):
|
|
2703
|
+
x = arr_1d[wp.uint8(0)]
|
|
2704
|
+
y = arr_1d[wp.int16(1)]
|
|
2705
|
+
z = arr_1d[wp.uint32(2)]
|
|
2706
|
+
w = arr_1d[wp.int64(3)]
|
|
2707
|
+
|
|
2708
|
+
x = arr_2d[wp.uint8(0), wp.uint8(0)]
|
|
2709
|
+
y = arr_2d[wp.int16(1), wp.int16(1)]
|
|
2710
|
+
z = arr_2d[wp.uint32(2), wp.uint32(2)]
|
|
2711
|
+
w = arr_2d[wp.int64(3), wp.int64(3)]
|
|
2712
|
+
|
|
2713
|
+
x = arr_3d[wp.uint8(0), wp.uint8(0), wp.uint8(0)]
|
|
2714
|
+
y = arr_3d[wp.int16(1), wp.int16(1), wp.int16(1)]
|
|
2715
|
+
z = arr_3d[wp.uint32(2), wp.uint32(2), wp.uint32(2)]
|
|
2716
|
+
w = arr_3d[wp.int64(3), wp.int64(3), wp.int64(3)]
|
|
2717
|
+
|
|
2718
|
+
x = arr_4d[wp.uint8(0), wp.uint8(0), wp.uint8(0), wp.uint8(0)]
|
|
2719
|
+
y = arr_4d[wp.int16(1), wp.int16(1), wp.int16(1), wp.int16(1)]
|
|
2720
|
+
z = arr_4d[wp.uint32(2), wp.uint32(2), wp.uint32(2), wp.uint32(2)]
|
|
2721
|
+
w = arr_4d[wp.int64(3), wp.int64(3), wp.int64(3), wp.int64(3)]
|
|
2722
|
+
|
|
2723
|
+
arr_1d[wp.uint8(0)] = 123
|
|
2724
|
+
arr_1d[wp.int16(1)] = 123
|
|
2725
|
+
arr_1d[wp.uint32(2)] = 123
|
|
2726
|
+
arr_1d[wp.int64(3)] = 123
|
|
2727
|
+
|
|
2728
|
+
arr_2d[wp.uint8(0), wp.uint8(0)] = 123
|
|
2729
|
+
arr_2d[wp.int16(1), wp.int16(1)] = 123
|
|
2730
|
+
arr_2d[wp.uint32(2), wp.uint32(2)] = 123
|
|
2731
|
+
arr_2d[wp.int64(3), wp.int64(3)] = 123
|
|
2732
|
+
|
|
2733
|
+
arr_3d[wp.uint8(0), wp.uint8(0), wp.uint8(0)] = 123
|
|
2734
|
+
arr_3d[wp.int16(1), wp.int16(1), wp.int16(1)] = 123
|
|
2735
|
+
arr_3d[wp.uint32(2), wp.uint32(2), wp.uint32(2)] = 123
|
|
2736
|
+
arr_3d[wp.int64(3), wp.int64(3), wp.int64(3)] = 123
|
|
2737
|
+
|
|
2738
|
+
arr_4d[wp.uint8(0), wp.uint8(0), wp.uint8(0), wp.uint8(0)] = 123
|
|
2739
|
+
arr_4d[wp.int16(1), wp.int16(1), wp.int16(1), wp.int16(1)] = 123
|
|
2740
|
+
arr_4d[wp.uint32(2), wp.uint32(2), wp.uint32(2), wp.uint32(2)] = 123
|
|
2741
|
+
arr_4d[wp.int64(3), wp.int64(3), wp.int64(3), wp.int64(3)] = 123
|
|
2742
|
+
|
|
2743
|
+
wp.atomic_add(arr_1d, wp.uint8(0), 123)
|
|
2744
|
+
wp.atomic_sub(arr_1d, wp.int16(1), 123)
|
|
2745
|
+
wp.atomic_min(arr_1d, wp.uint32(2), 123)
|
|
2746
|
+
wp.atomic_max(arr_1d, wp.int64(3), 123)
|
|
2747
|
+
|
|
2748
|
+
wp.atomic_add(arr_2d, wp.uint8(0), wp.uint8(0), 123)
|
|
2749
|
+
wp.atomic_sub(arr_2d, wp.int16(1), wp.int16(1), 123)
|
|
2750
|
+
wp.atomic_min(arr_2d, wp.uint32(2), wp.uint32(2), 123)
|
|
2751
|
+
wp.atomic_max(arr_2d, wp.int64(3), wp.int64(3), 123)
|
|
2752
|
+
|
|
2753
|
+
wp.atomic_add(arr_3d, wp.uint8(0), wp.uint8(0), wp.uint8(0), 123)
|
|
2754
|
+
wp.atomic_sub(arr_3d, wp.int16(1), wp.int16(1), wp.int16(1), 123)
|
|
2755
|
+
wp.atomic_min(arr_3d, wp.uint32(2), wp.uint32(2), wp.uint32(2), 123)
|
|
2756
|
+
wp.atomic_max(arr_3d, wp.int64(3), wp.int64(3), wp.int64(3), 123)
|
|
2757
|
+
|
|
2758
|
+
wp.atomic_add(arr_4d, wp.uint8(0), wp.uint8(0), wp.uint8(0), wp.uint8(0), 123)
|
|
2759
|
+
wp.atomic_sub(arr_4d, wp.int16(1), wp.int16(1), wp.int16(1), wp.int16(1), 123)
|
|
2760
|
+
wp.atomic_min(arr_4d, wp.uint32(2), wp.uint32(2), wp.uint32(2), wp.uint32(2), 123)
|
|
2761
|
+
wp.atomic_max(arr_4d, wp.int64(3), wp.int64(3), wp.int64(3), wp.int64(3), 123)
|
|
2762
|
+
|
|
2763
|
+
|
|
2764
|
+
def test_indexing_types(test, device):
|
|
2765
|
+
arr_1d = wp.zeros(shape=(4,), dtype=wp.int32, device=device)
|
|
2766
|
+
arr_2d = wp.zeros(shape=(4, 4), dtype=wp.int32, device=device)
|
|
2767
|
+
arr_3d = wp.zeros(shape=(4, 4, 4), dtype=wp.int32, device=device)
|
|
2768
|
+
arr_4d = wp.zeros(shape=(4, 4, 4, 4), dtype=wp.int32, device=device)
|
|
2769
|
+
wp.launch(
|
|
2770
|
+
kernel=kernel_indexing_types,
|
|
2771
|
+
dim=1,
|
|
2772
|
+
inputs=(arr_1d, arr_2d, arr_3d, arr_4d),
|
|
2773
|
+
device=device,
|
|
2774
|
+
)
|
|
2775
|
+
|
|
2776
|
+
|
|
2777
|
+
def test_alloc_strides(test, device):
|
|
2778
|
+
def test_transposed(shape, dtype):
|
|
2779
|
+
# allocate without specifying strides
|
|
2780
|
+
a1 = wp.zeros(shape, dtype=dtype)
|
|
2781
|
+
|
|
2782
|
+
# allocate with contiguous strides
|
|
2783
|
+
strides = wp.types.strides_from_shape(shape, dtype)
|
|
2784
|
+
a2 = wp.zeros(shape, dtype=dtype, strides=strides)
|
|
2785
|
+
|
|
2786
|
+
# allocate with transposed (reversed) shape/strides
|
|
2787
|
+
rshape = shape[::-1]
|
|
2788
|
+
rstrides = strides[::-1]
|
|
2789
|
+
a3 = wp.zeros(rshape, dtype=dtype, strides=rstrides)
|
|
2790
|
+
|
|
2791
|
+
# ensure that correct capacity was allocated
|
|
2792
|
+
assert a2.capacity == a1.capacity
|
|
2793
|
+
assert a3.capacity == a1.capacity
|
|
2794
|
+
|
|
2795
|
+
with wp.ScopedDevice(device):
|
|
2796
|
+
shapes = [(5, 5), (5, 3), (3, 5), (2, 3, 4), (4, 2, 3), (3, 2, 4)]
|
|
2797
|
+
for shape in shapes:
|
|
2798
|
+
with test.subTest(msg=f"shape={shape}"):
|
|
2799
|
+
test_transposed(shape, wp.int8)
|
|
2800
|
+
test_transposed(shape, wp.float32)
|
|
2801
|
+
test_transposed(shape, wp.vec3)
|
|
2802
|
+
|
|
2803
|
+
|
|
2804
|
+
def test_casting(test, device):
|
|
2805
|
+
idxs = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
|
|
2806
|
+
idxs = wp.array(idxs, device=device).reshape((-1, 3))
|
|
2807
|
+
idxs = wp.array(idxs, shape=idxs.shape[0], dtype=wp.vec3i, device=device)
|
|
2808
|
+
assert idxs.dtype is wp.vec3i
|
|
2809
|
+
assert idxs.shape == (4,)
|
|
2810
|
+
assert idxs.strides == (12,)
|
|
2811
|
+
|
|
2812
|
+
|
|
2813
|
+
@wp.kernel
|
|
2814
|
+
def array_len_kernel(
|
|
2815
|
+
a1: wp.array(dtype=int),
|
|
2816
|
+
a2: wp.array(dtype=float, ndim=3),
|
|
2817
|
+
out: wp.array(dtype=int),
|
|
2818
|
+
):
|
|
2819
|
+
length = len(a1)
|
|
2820
|
+
wp.expect_eq(len(a1), 123)
|
|
2821
|
+
out[0] = len(a1)
|
|
2822
|
+
|
|
2823
|
+
length = len(a2)
|
|
2824
|
+
wp.expect_eq(len(a2), 2)
|
|
2825
|
+
out[1] = len(a2)
|
|
2826
|
+
|
|
2827
|
+
|
|
2828
|
+
def test_array_len(test, device):
|
|
2829
|
+
a1 = wp.zeros(123, dtype=int, device=device)
|
|
2830
|
+
a2 = wp.zeros((2, 3, 4), dtype=float, device=device)
|
|
2831
|
+
out = wp.empty(2, dtype=int, device=device)
|
|
2832
|
+
wp.launch(
|
|
2833
|
+
array_len_kernel,
|
|
2834
|
+
dim=(1,),
|
|
2835
|
+
inputs=(
|
|
2836
|
+
a1,
|
|
2837
|
+
a2,
|
|
2838
|
+
),
|
|
2839
|
+
outputs=(out,),
|
|
2840
|
+
device=device,
|
|
2841
|
+
)
|
|
2842
|
+
|
|
2843
|
+
test.assertEqual(out.numpy()[0], 123)
|
|
2844
|
+
test.assertEqual(out.numpy()[1], 2)
|
|
2845
|
+
|
|
2846
|
+
|
|
2847
|
+
def test_cuda_interface_conversion(test, device):
|
|
2848
|
+
class MyArrayInterface:
|
|
2849
|
+
def __init__(self, data):
|
|
2850
|
+
self.data = np.array(data)
|
|
2851
|
+
self.__array_interface__ = self.data.__array_interface__
|
|
2852
|
+
self.__cuda_array_interface__ = self.data.__array_interface__
|
|
2853
|
+
self.__len__ = self.data.__len__
|
|
2854
|
+
|
|
2855
|
+
array = MyArrayInterface((1, 2, 3))
|
|
2856
|
+
wp_array = wp.array(array, dtype=wp.int8, device=device)
|
|
2857
|
+
assert wp_array.ptr != 0
|
|
2858
|
+
|
|
2859
|
+
array = MyArrayInterface((1, 2, 3))
|
|
2860
|
+
wp_array = wp.array(array, dtype=wp.float32, device=device)
|
|
2861
|
+
assert wp_array.ptr != 0
|
|
2862
|
+
|
|
2863
|
+
array = MyArrayInterface((1, 2, 3))
|
|
2864
|
+
wp_array = wp.array(array, dtype=wp.vec3, device=device)
|
|
2865
|
+
assert wp_array.ptr != 0
|
|
2866
|
+
|
|
2867
|
+
array = MyArrayInterface((1, 2, 3, 4))
|
|
2868
|
+
wp_array = wp.array(array, dtype=wp.mat22, device=device)
|
|
2869
|
+
assert wp_array.ptr != 0
|
|
2870
|
+
|
|
2871
|
+
|
|
2872
|
+
devices = get_test_devices()
|
|
2873
|
+
|
|
2874
|
+
|
|
2875
|
+
class TestArray(unittest.TestCase):
|
|
2876
|
+
def test_array_new_del(self):
|
|
2877
|
+
# test the scenario in which an array instance is created but not initialized before gc
|
|
2878
|
+
instance = wp.array.__new__(wp.array)
|
|
2879
|
+
instance.__del__()
|
|
2880
|
+
|
|
2881
|
+
|
|
2882
|
+
add_function_test(TestArray, "test_shape", test_shape, devices=devices)
|
|
2883
|
+
add_function_test(TestArray, "test_negative_shape", test_negative_shape, devices=devices)
|
|
2884
|
+
add_function_test(TestArray, "test_flatten", test_flatten, devices=devices)
|
|
2885
|
+
add_function_test(TestArray, "test_reshape", test_reshape, devices=devices)
|
|
2886
|
+
add_function_test(TestArray, "test_slicing", test_slicing, devices=devices)
|
|
2887
|
+
add_function_test(TestArray, "test_transpose", test_transpose, devices=devices)
|
|
2888
|
+
add_function_test(TestArray, "test_view", test_view, devices=devices)
|
|
2889
|
+
add_function_test(TestArray, "test_clone_adjoint", test_clone_adjoint, devices=devices)
|
|
2890
|
+
add_function_test(TestArray, "test_assign_adjoint", test_assign_adjoint, devices=devices)
|
|
2891
|
+
|
|
2892
|
+
add_function_test(TestArray, "test_1d_array", test_1d, devices=devices)
|
|
2893
|
+
add_function_test(TestArray, "test_2d_array", test_2d, devices=devices)
|
|
2894
|
+
add_function_test(TestArray, "test_3d_array", test_3d, devices=devices)
|
|
2895
|
+
add_function_test(TestArray, "test_4d_array", test_4d, devices=devices)
|
|
2896
|
+
add_function_test(TestArray, "test_4d_array_transposed", test_4d_transposed, devices=devices)
|
|
2897
|
+
|
|
2898
|
+
add_function_test(TestArray, "test_fill_scalar", test_fill_scalar, devices=devices)
|
|
2899
|
+
add_function_test(TestArray, "test_fill_vector", test_fill_vector, devices=devices)
|
|
2900
|
+
add_function_test(TestArray, "test_fill_matrix", test_fill_matrix, devices=devices)
|
|
2901
|
+
add_function_test(TestArray, "test_fill_struct", test_fill_struct, devices=devices)
|
|
2902
|
+
add_function_test(TestArray, "test_fill_slices", test_fill_slices, devices=devices)
|
|
2903
|
+
add_function_test(TestArray, "test_full_scalar", test_full_scalar, devices=devices)
|
|
2904
|
+
add_function_test(TestArray, "test_full_vector", test_full_vector, devices=devices)
|
|
2905
|
+
add_function_test(TestArray, "test_full_matrix", test_full_matrix, devices=devices)
|
|
2906
|
+
add_function_test(TestArray, "test_full_struct", test_full_struct, devices=devices)
|
|
2907
|
+
add_function_test(TestArray, "test_ones_scalar", test_ones_scalar, devices=devices)
|
|
2908
|
+
add_function_test(TestArray, "test_ones_vector", test_ones_vector, devices=devices)
|
|
2909
|
+
add_function_test(TestArray, "test_ones_matrix", test_ones_matrix, devices=devices)
|
|
2910
|
+
add_function_test(TestArray, "test_ones_like_scalar", test_ones_like_scalar, devices=devices)
|
|
2911
|
+
add_function_test(TestArray, "test_ones_like_vector", test_ones_like_vector, devices=devices)
|
|
2912
|
+
add_function_test(TestArray, "test_ones_like_matrix", test_ones_like_matrix, devices=devices)
|
|
2913
|
+
add_function_test(TestArray, "test_empty_array", test_empty_array, devices=devices)
|
|
2914
|
+
add_function_test(TestArray, "test_empty_from_numpy", test_empty_from_numpy, devices=devices)
|
|
2915
|
+
add_function_test(TestArray, "test_empty_from_list", test_empty_from_list, devices=devices)
|
|
2916
|
+
add_function_test(TestArray, "test_to_list_scalar", test_to_list_scalar, devices=devices)
|
|
2917
|
+
add_function_test(TestArray, "test_to_list_vector", test_to_list_vector, devices=devices)
|
|
2918
|
+
add_function_test(TestArray, "test_to_list_matrix", test_to_list_matrix, devices=devices)
|
|
2919
|
+
add_function_test(TestArray, "test_to_list_struct", test_to_list_struct, devices=devices)
|
|
2920
|
+
|
|
2921
|
+
add_function_test(TestArray, "test_lower_bound", test_lower_bound, devices=devices)
|
|
2922
|
+
add_function_test(TestArray, "test_round_trip", test_round_trip, devices=devices)
|
|
2923
|
+
add_function_test(TestArray, "test_array_to_bool", test_array_to_bool, devices=devices)
|
|
2924
|
+
add_function_test(TestArray, "test_array_of_structs", test_array_of_structs, devices=devices)
|
|
2925
|
+
add_function_test(TestArray, "test_array_of_structs_grad", test_array_of_structs_grad, devices=devices)
|
|
2926
|
+
add_function_test(TestArray, "test_array_of_structs_from_numpy", test_array_of_structs_from_numpy, devices=devices)
|
|
2927
|
+
add_function_test(TestArray, "test_array_of_structs_roundtrip", test_array_of_structs_roundtrip, devices=devices)
|
|
2928
|
+
add_function_test(TestArray, "test_array_from_numpy", test_array_from_numpy, devices=devices)
|
|
2929
|
+
add_function_test(TestArray, "test_array_aliasing_from_numpy", test_array_aliasing_from_numpy, devices=["cpu"])
|
|
2930
|
+
add_function_test(TestArray, "test_numpy_array_interface", test_numpy_array_interface, devices=["cpu"])
|
|
2931
|
+
|
|
2932
|
+
add_function_test(TestArray, "test_array_inplace_diff_ops", test_array_inplace_diff_ops, devices=devices)
|
|
2933
|
+
add_function_test(TestArray, "test_array_inplace_non_diff_ops", test_array_inplace_non_diff_ops, devices=devices)
|
|
2934
|
+
add_function_test(TestArray, "test_direct_from_numpy", test_direct_from_numpy, devices=["cpu"])
|
|
2935
|
+
add_function_test(TestArray, "test_kernel_array_from_ptr", test_kernel_array_from_ptr, devices=devices)
|
|
2936
|
+
|
|
2937
|
+
add_function_test(TestArray, "test_array_from_int32_domain", test_array_from_int32_domain, devices=devices)
|
|
2938
|
+
add_function_test(TestArray, "test_array_from_int64_domain", test_array_from_int64_domain, devices=devices)
|
|
2939
|
+
add_function_test(TestArray, "test_indexing_types", test_indexing_types, devices=devices)
|
|
2940
|
+
|
|
2941
|
+
add_function_test(TestArray, "test_alloc_strides", test_alloc_strides, devices=devices)
|
|
2942
|
+
add_function_test(TestArray, "test_casting", test_casting, devices=devices)
|
|
2943
|
+
add_function_test(TestArray, "test_array_len", test_array_len, devices=devices)
|
|
2944
|
+
add_function_test(TestArray, "test_cuda_interface_conversion", test_cuda_interface_conversion, devices=devices)
|
|
2945
|
+
|
|
2946
|
+
try:
|
|
2947
|
+
import torch
|
|
2948
|
+
|
|
2949
|
+
# check which Warp devices work with Torch
|
|
2950
|
+
# CUDA devices may fail if Torch was not compiled with CUDA support
|
|
2951
|
+
torch_compatible_devices = []
|
|
2952
|
+
torch_compatible_cuda_devices = []
|
|
2953
|
+
|
|
2954
|
+
for d in devices:
|
|
2955
|
+
try:
|
|
2956
|
+
t = torch.arange(10, device=wp.device_to_torch(d))
|
|
2957
|
+
t += 1
|
|
2958
|
+
torch_compatible_devices.append(d)
|
|
2959
|
+
if d.is_cuda:
|
|
2960
|
+
torch_compatible_cuda_devices.append(d)
|
|
2961
|
+
except Exception as e:
|
|
2962
|
+
print(f"Skipping Array tests that use Torch on device '{d}' due to exception: {e}")
|
|
2963
|
+
|
|
2964
|
+
add_function_test(TestArray, "test_array_from_cai", test_array_from_cai, devices=torch_compatible_cuda_devices)
|
|
2965
|
+
|
|
2966
|
+
except Exception as e:
|
|
2967
|
+
print(f"Skipping Array tests that use Torch due to exception: {e}")
|
|
2968
|
+
|
|
2969
|
+
|
|
2970
|
+
if __name__ == "__main__":
|
|
2971
|
+
wp.clear_kernel_cache()
|
|
2972
|
+
unittest.main(verbosity=2)
|