warp-lang 1.7.0__py3-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +139 -0
- warp/__init__.pyi +1 -0
- warp/autograd.py +1142 -0
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +557 -0
- warp/build_dll.py +405 -0
- warp/builtins.py +6855 -0
- warp/codegen.py +3969 -0
- warp/config.py +158 -0
- warp/constants.py +57 -0
- warp/context.py +6812 -0
- warp/dlpack.py +462 -0
- warp/examples/__init__.py +24 -0
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -0
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nonuniform.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -0
- warp/examples/assets/nv_humanoid.xml +183 -0
- warp/examples/assets/nvidia_logo.png +0 -0
- warp/examples/assets/pixel.jpg +0 -0
- warp/examples/assets/quadruped.urdf +268 -0
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/assets/square_cloth.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +389 -0
- warp/examples/benchmarks/benchmark_cloth.py +296 -0
- warp/examples/benchmarks/benchmark_cloth_cupy.py +96 -0
- warp/examples/benchmarks/benchmark_cloth_jax.py +105 -0
- warp/examples/benchmarks/benchmark_cloth_numba.py +161 -0
- warp/examples/benchmarks/benchmark_cloth_numpy.py +85 -0
- warp/examples/benchmarks/benchmark_cloth_paddle.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +94 -0
- warp/examples/benchmarks/benchmark_cloth_taichi.py +120 -0
- warp/examples/benchmarks/benchmark_cloth_warp.py +153 -0
- warp/examples/benchmarks/benchmark_gemm.py +164 -0
- warp/examples/benchmarks/benchmark_interop_paddle.py +166 -0
- warp/examples/benchmarks/benchmark_interop_torch.py +166 -0
- warp/examples/benchmarks/benchmark_launches.py +301 -0
- warp/examples/benchmarks/benchmark_tile_load_store.py +103 -0
- warp/examples/browse.py +37 -0
- warp/examples/core/example_cupy.py +86 -0
- warp/examples/core/example_dem.py +241 -0
- warp/examples/core/example_fluid.py +299 -0
- warp/examples/core/example_graph_capture.py +150 -0
- warp/examples/core/example_marching_cubes.py +194 -0
- warp/examples/core/example_mesh.py +180 -0
- warp/examples/core/example_mesh_intersect.py +211 -0
- warp/examples/core/example_nvdb.py +182 -0
- warp/examples/core/example_raycast.py +111 -0
- warp/examples/core/example_raymarch.py +205 -0
- warp/examples/core/example_render_opengl.py +193 -0
- warp/examples/core/example_sample_mesh.py +300 -0
- warp/examples/core/example_sph.py +411 -0
- warp/examples/core/example_torch.py +211 -0
- warp/examples/core/example_wave.py +269 -0
- warp/examples/fem/example_adaptive_grid.py +286 -0
- warp/examples/fem/example_apic_fluid.py +423 -0
- warp/examples/fem/example_burgers.py +261 -0
- warp/examples/fem/example_convection_diffusion.py +178 -0
- warp/examples/fem/example_convection_diffusion_dg.py +204 -0
- warp/examples/fem/example_deformed_geometry.py +172 -0
- warp/examples/fem/example_diffusion.py +196 -0
- warp/examples/fem/example_diffusion_3d.py +225 -0
- warp/examples/fem/example_diffusion_mgpu.py +220 -0
- warp/examples/fem/example_distortion_energy.py +228 -0
- warp/examples/fem/example_magnetostatics.py +240 -0
- warp/examples/fem/example_mixed_elasticity.py +291 -0
- warp/examples/fem/example_navier_stokes.py +261 -0
- warp/examples/fem/example_nonconforming_contact.py +298 -0
- warp/examples/fem/example_stokes.py +213 -0
- warp/examples/fem/example_stokes_transfer.py +262 -0
- warp/examples/fem/example_streamlines.py +352 -0
- warp/examples/fem/utils.py +1000 -0
- warp/examples/interop/example_jax_callable.py +116 -0
- warp/examples/interop/example_jax_ffi_callback.py +132 -0
- warp/examples/interop/example_jax_kernel.py +205 -0
- warp/examples/optim/example_bounce.py +266 -0
- warp/examples/optim/example_cloth_throw.py +228 -0
- warp/examples/optim/example_diffray.py +561 -0
- warp/examples/optim/example_drone.py +870 -0
- warp/examples/optim/example_fluid_checkpoint.py +497 -0
- warp/examples/optim/example_inverse_kinematics.py +182 -0
- warp/examples/optim/example_inverse_kinematics_torch.py +191 -0
- warp/examples/optim/example_softbody_properties.py +400 -0
- warp/examples/optim/example_spring_cage.py +245 -0
- warp/examples/optim/example_trajectory.py +227 -0
- warp/examples/sim/example_cartpole.py +143 -0
- warp/examples/sim/example_cloth.py +225 -0
- warp/examples/sim/example_cloth_self_contact.py +322 -0
- warp/examples/sim/example_granular.py +130 -0
- warp/examples/sim/example_granular_collision_sdf.py +202 -0
- warp/examples/sim/example_jacobian_ik.py +244 -0
- warp/examples/sim/example_particle_chain.py +124 -0
- warp/examples/sim/example_quadruped.py +203 -0
- warp/examples/sim/example_rigid_chain.py +203 -0
- warp/examples/sim/example_rigid_contact.py +195 -0
- warp/examples/sim/example_rigid_force.py +133 -0
- warp/examples/sim/example_rigid_gyroscopic.py +115 -0
- warp/examples/sim/example_rigid_soft_contact.py +140 -0
- warp/examples/sim/example_soft_body.py +196 -0
- warp/examples/tile/example_tile_cholesky.py +87 -0
- warp/examples/tile/example_tile_convolution.py +66 -0
- warp/examples/tile/example_tile_fft.py +55 -0
- warp/examples/tile/example_tile_filtering.py +113 -0
- warp/examples/tile/example_tile_matmul.py +85 -0
- warp/examples/tile/example_tile_mlp.py +383 -0
- warp/examples/tile/example_tile_nbody.py +199 -0
- warp/examples/tile/example_tile_walker.py +327 -0
- warp/fabric.py +355 -0
- warp/fem/__init__.py +106 -0
- warp/fem/adaptivity.py +508 -0
- warp/fem/cache.py +572 -0
- warp/fem/dirichlet.py +202 -0
- warp/fem/domain.py +411 -0
- warp/fem/field/__init__.py +125 -0
- warp/fem/field/field.py +619 -0
- warp/fem/field/nodal_field.py +326 -0
- warp/fem/field/restriction.py +37 -0
- warp/fem/field/virtual.py +848 -0
- warp/fem/geometry/__init__.py +32 -0
- warp/fem/geometry/adaptive_nanogrid.py +857 -0
- warp/fem/geometry/closest_point.py +84 -0
- warp/fem/geometry/deformed_geometry.py +221 -0
- warp/fem/geometry/element.py +776 -0
- warp/fem/geometry/geometry.py +362 -0
- warp/fem/geometry/grid_2d.py +392 -0
- warp/fem/geometry/grid_3d.py +452 -0
- warp/fem/geometry/hexmesh.py +911 -0
- warp/fem/geometry/nanogrid.py +571 -0
- warp/fem/geometry/partition.py +389 -0
- warp/fem/geometry/quadmesh.py +663 -0
- warp/fem/geometry/tetmesh.py +855 -0
- warp/fem/geometry/trimesh.py +806 -0
- warp/fem/integrate.py +2335 -0
- warp/fem/linalg.py +419 -0
- warp/fem/operator.py +293 -0
- warp/fem/polynomial.py +229 -0
- warp/fem/quadrature/__init__.py +17 -0
- warp/fem/quadrature/pic_quadrature.py +299 -0
- warp/fem/quadrature/quadrature.py +591 -0
- warp/fem/space/__init__.py +228 -0
- warp/fem/space/basis_function_space.py +468 -0
- warp/fem/space/basis_space.py +667 -0
- warp/fem/space/dof_mapper.py +251 -0
- warp/fem/space/function_space.py +309 -0
- warp/fem/space/grid_2d_function_space.py +177 -0
- warp/fem/space/grid_3d_function_space.py +227 -0
- warp/fem/space/hexmesh_function_space.py +257 -0
- warp/fem/space/nanogrid_function_space.py +201 -0
- warp/fem/space/partition.py +367 -0
- warp/fem/space/quadmesh_function_space.py +223 -0
- warp/fem/space/restriction.py +179 -0
- warp/fem/space/shape/__init__.py +143 -0
- warp/fem/space/shape/cube_shape_function.py +1105 -0
- warp/fem/space/shape/shape_function.py +133 -0
- warp/fem/space/shape/square_shape_function.py +926 -0
- warp/fem/space/shape/tet_shape_function.py +834 -0
- warp/fem/space/shape/triangle_shape_function.py +672 -0
- warp/fem/space/tetmesh_function_space.py +271 -0
- warp/fem/space/topology.py +424 -0
- warp/fem/space/trimesh_function_space.py +194 -0
- warp/fem/types.py +99 -0
- warp/fem/utils.py +420 -0
- warp/jax.py +187 -0
- warp/jax_experimental/__init__.py +16 -0
- warp/jax_experimental/custom_call.py +351 -0
- warp/jax_experimental/ffi.py +698 -0
- warp/jax_experimental/xla_ffi.py +602 -0
- warp/math.py +244 -0
- warp/native/array.h +1145 -0
- warp/native/builtin.h +1800 -0
- warp/native/bvh.cpp +492 -0
- warp/native/bvh.cu +791 -0
- warp/native/bvh.h +554 -0
- warp/native/clang/clang.cpp +536 -0
- warp/native/coloring.cpp +613 -0
- warp/native/crt.cpp +51 -0
- warp/native/crt.h +362 -0
- warp/native/cuda_crt.h +1058 -0
- warp/native/cuda_util.cpp +646 -0
- warp/native/cuda_util.h +307 -0
- warp/native/error.cpp +77 -0
- warp/native/error.h +36 -0
- warp/native/exports.h +1878 -0
- warp/native/fabric.h +245 -0
- warp/native/hashgrid.cpp +311 -0
- warp/native/hashgrid.cu +87 -0
- warp/native/hashgrid.h +240 -0
- warp/native/initializer_array.h +41 -0
- warp/native/intersect.h +1230 -0
- warp/native/intersect_adj.h +375 -0
- warp/native/intersect_tri.h +339 -0
- warp/native/marching.cpp +19 -0
- warp/native/marching.cu +514 -0
- warp/native/marching.h +19 -0
- warp/native/mat.h +2220 -0
- warp/native/mathdx.cpp +87 -0
- warp/native/matnn.h +343 -0
- warp/native/mesh.cpp +266 -0
- warp/native/mesh.cu +404 -0
- warp/native/mesh.h +1980 -0
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -0
- warp/native/nanovdb/PNanoVDB.h +3390 -0
- warp/native/noise.h +859 -0
- warp/native/quat.h +1371 -0
- warp/native/rand.h +342 -0
- warp/native/range.h +139 -0
- warp/native/reduce.cpp +174 -0
- warp/native/reduce.cu +364 -0
- warp/native/runlength_encode.cpp +79 -0
- warp/native/runlength_encode.cu +61 -0
- warp/native/scan.cpp +47 -0
- warp/native/scan.cu +53 -0
- warp/native/scan.h +23 -0
- warp/native/solid_angle.h +466 -0
- warp/native/sort.cpp +251 -0
- warp/native/sort.cu +277 -0
- warp/native/sort.h +33 -0
- warp/native/sparse.cpp +378 -0
- warp/native/sparse.cu +524 -0
- warp/native/spatial.h +657 -0
- warp/native/svd.h +702 -0
- warp/native/temp_buffer.h +46 -0
- warp/native/tile.h +2584 -0
- warp/native/tile_reduce.h +264 -0
- warp/native/vec.h +1426 -0
- warp/native/volume.cpp +501 -0
- warp/native/volume.cu +67 -0
- warp/native/volume.h +969 -0
- warp/native/volume_builder.cu +477 -0
- warp/native/volume_builder.h +52 -0
- warp/native/volume_impl.h +70 -0
- warp/native/warp.cpp +1082 -0
- warp/native/warp.cu +3636 -0
- warp/native/warp.h +381 -0
- warp/optim/__init__.py +17 -0
- warp/optim/adam.py +163 -0
- warp/optim/linear.py +1137 -0
- warp/optim/sgd.py +112 -0
- warp/paddle.py +407 -0
- warp/render/__init__.py +18 -0
- warp/render/render_opengl.py +3518 -0
- warp/render/render_usd.py +784 -0
- warp/render/utils.py +160 -0
- warp/sim/__init__.py +65 -0
- warp/sim/articulation.py +793 -0
- warp/sim/collide.py +2395 -0
- warp/sim/graph_coloring.py +300 -0
- warp/sim/import_mjcf.py +790 -0
- warp/sim/import_snu.py +227 -0
- warp/sim/import_urdf.py +579 -0
- warp/sim/import_usd.py +894 -0
- warp/sim/inertia.py +324 -0
- warp/sim/integrator.py +242 -0
- warp/sim/integrator_euler.py +1997 -0
- warp/sim/integrator_featherstone.py +2101 -0
- warp/sim/integrator_vbd.py +2048 -0
- warp/sim/integrator_xpbd.py +3292 -0
- warp/sim/model.py +4791 -0
- warp/sim/particles.py +121 -0
- warp/sim/render.py +427 -0
- warp/sim/utils.py +428 -0
- warp/sparse.py +2057 -0
- warp/stubs.py +3333 -0
- warp/tape.py +1203 -0
- warp/tests/__init__.py +1 -0
- warp/tests/__main__.py +4 -0
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/mlp_golden.npy +0 -0
- warp/tests/assets/pixel.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/spiky.usd +0 -0
- warp/tests/assets/test_grid.nvdb +0 -0
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/test_int32_grid.nvdb +0 -0
- warp/tests/assets/test_vec_grid.nvdb +0 -0
- warp/tests/assets/torus.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -0
- warp/tests/aux_test_class_kernel.py +34 -0
- warp/tests/aux_test_compile_consts_dummy.py +18 -0
- warp/tests/aux_test_conditional_unequal_types_kernels.py +29 -0
- warp/tests/aux_test_dependent.py +29 -0
- warp/tests/aux_test_grad_customs.py +29 -0
- warp/tests/aux_test_instancing_gc.py +26 -0
- warp/tests/aux_test_module_unload.py +23 -0
- warp/tests/aux_test_name_clash1.py +40 -0
- warp/tests/aux_test_name_clash2.py +40 -0
- warp/tests/aux_test_reference.py +9 -0
- warp/tests/aux_test_reference_reference.py +8 -0
- warp/tests/aux_test_square.py +16 -0
- warp/tests/aux_test_unresolved_func.py +22 -0
- warp/tests/aux_test_unresolved_symbol.py +22 -0
- warp/tests/cuda/__init__.py +0 -0
- warp/tests/cuda/test_async.py +676 -0
- warp/tests/cuda/test_ipc.py +124 -0
- warp/tests/cuda/test_mempool.py +233 -0
- warp/tests/cuda/test_multigpu.py +169 -0
- warp/tests/cuda/test_peer.py +139 -0
- warp/tests/cuda/test_pinned.py +84 -0
- warp/tests/cuda/test_streams.py +634 -0
- warp/tests/geometry/__init__.py +0 -0
- warp/tests/geometry/test_bvh.py +200 -0
- warp/tests/geometry/test_hash_grid.py +221 -0
- warp/tests/geometry/test_marching_cubes.py +74 -0
- warp/tests/geometry/test_mesh.py +316 -0
- warp/tests/geometry/test_mesh_query_aabb.py +399 -0
- warp/tests/geometry/test_mesh_query_point.py +932 -0
- warp/tests/geometry/test_mesh_query_ray.py +311 -0
- warp/tests/geometry/test_volume.py +1103 -0
- warp/tests/geometry/test_volume_write.py +346 -0
- warp/tests/interop/__init__.py +0 -0
- warp/tests/interop/test_dlpack.py +729 -0
- warp/tests/interop/test_jax.py +371 -0
- warp/tests/interop/test_paddle.py +800 -0
- warp/tests/interop/test_torch.py +1001 -0
- warp/tests/run_coverage_serial.py +39 -0
- warp/tests/sim/__init__.py +0 -0
- warp/tests/sim/disabled_kinematics.py +244 -0
- warp/tests/sim/flaky_test_sim_grad.py +290 -0
- warp/tests/sim/test_collision.py +604 -0
- warp/tests/sim/test_coloring.py +258 -0
- warp/tests/sim/test_model.py +224 -0
- warp/tests/sim/test_sim_grad_bounce_linear.py +212 -0
- warp/tests/sim/test_sim_kinematics.py +98 -0
- warp/tests/sim/test_vbd.py +597 -0
- warp/tests/test_adam.py +163 -0
- warp/tests/test_arithmetic.py +1096 -0
- warp/tests/test_array.py +2972 -0
- warp/tests/test_array_reduce.py +156 -0
- warp/tests/test_assert.py +250 -0
- warp/tests/test_atomic.py +153 -0
- warp/tests/test_bool.py +220 -0
- warp/tests/test_builtins_resolution.py +1298 -0
- warp/tests/test_closest_point_edge_edge.py +327 -0
- warp/tests/test_codegen.py +810 -0
- warp/tests/test_codegen_instancing.py +1495 -0
- warp/tests/test_compile_consts.py +215 -0
- warp/tests/test_conditional.py +252 -0
- warp/tests/test_context.py +42 -0
- warp/tests/test_copy.py +238 -0
- warp/tests/test_ctypes.py +638 -0
- warp/tests/test_dense.py +73 -0
- warp/tests/test_devices.py +97 -0
- warp/tests/test_examples.py +482 -0
- warp/tests/test_fabricarray.py +996 -0
- warp/tests/test_fast_math.py +74 -0
- warp/tests/test_fem.py +2003 -0
- warp/tests/test_fp16.py +136 -0
- warp/tests/test_func.py +454 -0
- warp/tests/test_future_annotations.py +98 -0
- warp/tests/test_generics.py +656 -0
- warp/tests/test_grad.py +893 -0
- warp/tests/test_grad_customs.py +339 -0
- warp/tests/test_grad_debug.py +341 -0
- warp/tests/test_implicit_init.py +411 -0
- warp/tests/test_import.py +45 -0
- warp/tests/test_indexedarray.py +1140 -0
- warp/tests/test_intersect.py +73 -0
- warp/tests/test_iter.py +76 -0
- warp/tests/test_large.py +177 -0
- warp/tests/test_launch.py +411 -0
- warp/tests/test_lerp.py +151 -0
- warp/tests/test_linear_solvers.py +193 -0
- warp/tests/test_lvalue.py +427 -0
- warp/tests/test_mat.py +2089 -0
- warp/tests/test_mat_lite.py +122 -0
- warp/tests/test_mat_scalar_ops.py +2913 -0
- warp/tests/test_math.py +178 -0
- warp/tests/test_mlp.py +282 -0
- warp/tests/test_module_hashing.py +258 -0
- warp/tests/test_modules_lite.py +44 -0
- warp/tests/test_noise.py +252 -0
- warp/tests/test_operators.py +299 -0
- warp/tests/test_options.py +129 -0
- warp/tests/test_overwrite.py +551 -0
- warp/tests/test_print.py +339 -0
- warp/tests/test_quat.py +2315 -0
- warp/tests/test_rand.py +339 -0
- warp/tests/test_reload.py +302 -0
- warp/tests/test_rounding.py +185 -0
- warp/tests/test_runlength_encode.py +196 -0
- warp/tests/test_scalar_ops.py +105 -0
- warp/tests/test_smoothstep.py +108 -0
- warp/tests/test_snippet.py +318 -0
- warp/tests/test_sparse.py +582 -0
- warp/tests/test_spatial.py +2229 -0
- warp/tests/test_special_values.py +361 -0
- warp/tests/test_static.py +592 -0
- warp/tests/test_struct.py +734 -0
- warp/tests/test_tape.py +204 -0
- warp/tests/test_transient_module.py +93 -0
- warp/tests/test_triangle_closest_point.py +145 -0
- warp/tests/test_types.py +562 -0
- warp/tests/test_utils.py +588 -0
- warp/tests/test_vec.py +1487 -0
- warp/tests/test_vec_lite.py +80 -0
- warp/tests/test_vec_scalar_ops.py +2327 -0
- warp/tests/test_verify_fp.py +100 -0
- warp/tests/tile/__init__.py +0 -0
- warp/tests/tile/test_tile.py +780 -0
- warp/tests/tile/test_tile_load.py +407 -0
- warp/tests/tile/test_tile_mathdx.py +208 -0
- warp/tests/tile/test_tile_mlp.py +402 -0
- warp/tests/tile/test_tile_reduce.py +447 -0
- warp/tests/tile/test_tile_shared_memory.py +247 -0
- warp/tests/tile/test_tile_view.py +173 -0
- warp/tests/unittest_serial.py +47 -0
- warp/tests/unittest_suites.py +427 -0
- warp/tests/unittest_utils.py +468 -0
- warp/tests/walkthrough_debug.py +93 -0
- warp/thirdparty/__init__.py +0 -0
- warp/thirdparty/appdirs.py +598 -0
- warp/thirdparty/dlpack.py +145 -0
- warp/thirdparty/unittest_parallel.py +570 -0
- warp/torch.py +391 -0
- warp/types.py +5230 -0
- warp/utils.py +1137 -0
- warp_lang-1.7.0.dist-info/METADATA +516 -0
- warp_lang-1.7.0.dist-info/RECORD +429 -0
- warp_lang-1.7.0.dist-info/WHEEL +5 -0
- warp_lang-1.7.0.dist-info/licenses/LICENSE.md +202 -0
- warp_lang-1.7.0.dist-info/top_level.txt +1 -0
warp/tests/test_fem.py
ADDED
|
@@ -0,0 +1,2003 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import math
|
|
17
|
+
import unittest
|
|
18
|
+
from typing import Any
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
|
|
22
|
+
import warp as wp
|
|
23
|
+
import warp.fem as fem
|
|
24
|
+
from warp.fem import Coords, D, Domain, Field, Sample, curl, div, grad, integrand, normal
|
|
25
|
+
from warp.fem.cache import dynamic_kernel
|
|
26
|
+
from warp.fem.geometry.closest_point import project_on_tet_at_origin, project_on_tri_at_origin
|
|
27
|
+
from warp.fem.linalg import inverse_qr, spherical_part, symmetric_eigenvalues_qr, symmetric_part
|
|
28
|
+
from warp.fem.space import shape
|
|
29
|
+
from warp.fem.types import make_free_sample
|
|
30
|
+
from warp.fem.utils import (
|
|
31
|
+
grid_to_hexes,
|
|
32
|
+
grid_to_quads,
|
|
33
|
+
grid_to_tets,
|
|
34
|
+
grid_to_tris,
|
|
35
|
+
)
|
|
36
|
+
from warp.sparse import bsr_zeros
|
|
37
|
+
from warp.tests.unittest_utils import *
|
|
38
|
+
|
|
39
|
+
vec6f = wp.vec(length=6, dtype=float)
|
|
40
|
+
mat66f = wp.mat(shape=(6, 6), dtype=float)
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
@integrand
|
|
44
|
+
def linear_form(s: Sample, u: Field):
|
|
45
|
+
return u(s)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
@integrand
|
|
49
|
+
def scaled_linear_form(s: Sample, u: Field, scale: wp.array(dtype=float)):
|
|
50
|
+
return u(s) * scale[0]
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
@wp.kernel
|
|
54
|
+
def atomic_sum(v: wp.array(dtype=float), sum: wp.array(dtype=float)):
|
|
55
|
+
i = wp.tid()
|
|
56
|
+
wp.atomic_add(sum, 0, v[i])
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def test_integrate_gradient(test, device):
|
|
60
|
+
with wp.ScopedDevice(device):
|
|
61
|
+
# Grid geometry
|
|
62
|
+
geo = fem.Grid2D(res=wp.vec2i(5))
|
|
63
|
+
|
|
64
|
+
# Domain and function spaces
|
|
65
|
+
domain = fem.Cells(geometry=geo)
|
|
66
|
+
quadrature = fem.RegularQuadrature(domain=domain, order=3)
|
|
67
|
+
|
|
68
|
+
scalar_space = fem.make_polynomial_space(geo, degree=3)
|
|
69
|
+
|
|
70
|
+
u = scalar_space.make_field()
|
|
71
|
+
u.dof_values = wp.zeros_like(u.dof_values, requires_grad=True)
|
|
72
|
+
|
|
73
|
+
result = wp.empty(dtype=wp.float32, shape=(1), requires_grad=True)
|
|
74
|
+
tape = wp.Tape()
|
|
75
|
+
|
|
76
|
+
# forward pass
|
|
77
|
+
with tape:
|
|
78
|
+
fem.integrate(linear_form, quadrature=quadrature, fields={"u": u}, output=result)
|
|
79
|
+
tape.backward(result)
|
|
80
|
+
|
|
81
|
+
test_field = fem.make_test(space=scalar_space, domain=domain)
|
|
82
|
+
|
|
83
|
+
u_adj = wp.empty_like(u.dof_values, requires_grad=True)
|
|
84
|
+
scale = wp.ones(1, requires_grad=True)
|
|
85
|
+
loss = wp.zeros(1, requires_grad=True)
|
|
86
|
+
|
|
87
|
+
tape2 = wp.Tape()
|
|
88
|
+
with tape2:
|
|
89
|
+
fem.integrate(
|
|
90
|
+
scaled_linear_form,
|
|
91
|
+
quadrature=quadrature,
|
|
92
|
+
fields={"u": test_field},
|
|
93
|
+
values={"scale": scale},
|
|
94
|
+
assembly="generic",
|
|
95
|
+
output=u_adj,
|
|
96
|
+
)
|
|
97
|
+
wp.launch(atomic_sum, dim=u_adj.shape, inputs=[u_adj, loss])
|
|
98
|
+
|
|
99
|
+
# gradient of scalar integral w.r.t dofs should be equal to linear form vector
|
|
100
|
+
assert_np_equal(u_adj.numpy(), u.dof_values.grad.numpy(), tol=1.0e-8)
|
|
101
|
+
test.assertAlmostEqual(loss.numpy()[0], 1.0, places=4)
|
|
102
|
+
|
|
103
|
+
# Check gradient of linear form vec w.r.t value params
|
|
104
|
+
tape.zero()
|
|
105
|
+
tape2.backward(loss=loss)
|
|
106
|
+
|
|
107
|
+
test.assertAlmostEqual(loss.numpy()[0], scale.grad.numpy()[0], places=4)
|
|
108
|
+
tape2.zero()
|
|
109
|
+
test.assertEqual(scale.grad.numpy()[0], 0.0)
|
|
110
|
+
|
|
111
|
+
# Same, with dispatched assembly
|
|
112
|
+
tape2.reset()
|
|
113
|
+
loss.zero_()
|
|
114
|
+
with tape2:
|
|
115
|
+
fem.integrate(
|
|
116
|
+
scaled_linear_form,
|
|
117
|
+
quadrature=quadrature,
|
|
118
|
+
fields={"u": test_field},
|
|
119
|
+
values={"scale": scale},
|
|
120
|
+
assembly="dispatch",
|
|
121
|
+
output=u_adj,
|
|
122
|
+
)
|
|
123
|
+
wp.launch(atomic_sum, dim=u_adj.shape, inputs=[u_adj, loss])
|
|
124
|
+
tape2.backward(loss=loss)
|
|
125
|
+
test.assertAlmostEqual(loss.numpy()[0], scale.grad.numpy()[0], places=4)
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
@fem.integrand
|
|
129
|
+
def bilinear_field(s: fem.Sample, domain: fem.Domain):
|
|
130
|
+
x = domain(s)
|
|
131
|
+
return x[0] * x[1]
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
@fem.integrand
|
|
135
|
+
def grad_field(s: fem.Sample, p: fem.Field):
|
|
136
|
+
return fem.grad(p, s)
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
def test_interpolate_gradient(test, device):
|
|
140
|
+
with wp.ScopedDevice(device):
|
|
141
|
+
# Quad mesh with single element
|
|
142
|
+
# so we can test gradient with respect to vertex positions
|
|
143
|
+
positions = wp.array([[0.0, 0.0], [0.0, 2.0], [2.0, 0.0], [2.0, 2.0]], dtype=wp.vec2, requires_grad=True)
|
|
144
|
+
quads = wp.array([[0, 2, 3, 1]], dtype=int)
|
|
145
|
+
geo = fem.Quadmesh2D(quads, positions)
|
|
146
|
+
|
|
147
|
+
# Quadratic scalar space
|
|
148
|
+
scalar_space = fem.make_polynomial_space(geo, degree=2)
|
|
149
|
+
|
|
150
|
+
# Point-based vector space
|
|
151
|
+
# So we can test gradient with respect to interpolation point position
|
|
152
|
+
point_coords = wp.array([[[0.5, 0.5, 0.0]]], dtype=fem.Coords, requires_grad=True)
|
|
153
|
+
point_quadrature = fem.ExplicitQuadrature(
|
|
154
|
+
domain=fem.Cells(geo), points=point_coords, weights=wp.array([[1.0]], dtype=float)
|
|
155
|
+
)
|
|
156
|
+
interpolation_nodes = fem.PointBasisSpace(point_quadrature)
|
|
157
|
+
vector_space = fem.make_collocated_function_space(interpolation_nodes, dtype=wp.vec2)
|
|
158
|
+
|
|
159
|
+
# Initialize scalar field with known function
|
|
160
|
+
scalar_field = scalar_space.make_field()
|
|
161
|
+
scalar_field.dof_values.requires_grad = True
|
|
162
|
+
fem.interpolate(bilinear_field, dest=scalar_field)
|
|
163
|
+
|
|
164
|
+
# Interpolate gradient at center point
|
|
165
|
+
vector_field = vector_space.make_field()
|
|
166
|
+
vector_field.dof_values.requires_grad = True
|
|
167
|
+
vector_field_restriction = fem.make_restriction(vector_field)
|
|
168
|
+
tape = wp.Tape()
|
|
169
|
+
with tape:
|
|
170
|
+
fem.interpolate(
|
|
171
|
+
grad_field,
|
|
172
|
+
dest=vector_field_restriction,
|
|
173
|
+
fields={"p": scalar_field},
|
|
174
|
+
kernel_options={"enable_backward": True},
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
assert_np_equal(vector_field.dof_values.numpy(), np.array([[1.0, 1.0]]))
|
|
178
|
+
|
|
179
|
+
vector_field.dof_values.grad.assign([1.0, 0.0])
|
|
180
|
+
tape.backward()
|
|
181
|
+
|
|
182
|
+
assert_np_equal(scalar_field.dof_values.grad.numpy(), np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.5]))
|
|
183
|
+
assert_np_equal(
|
|
184
|
+
geo.positions.grad.numpy(),
|
|
185
|
+
np.array(
|
|
186
|
+
[
|
|
187
|
+
[0.25, 0.25],
|
|
188
|
+
[0.25, 0.25],
|
|
189
|
+
[-0.25, -0.25],
|
|
190
|
+
[-0.25, -0.25],
|
|
191
|
+
]
|
|
192
|
+
),
|
|
193
|
+
)
|
|
194
|
+
assert_np_equal(point_coords.grad.numpy(), np.array([[[0.0, 2.0, 0.0]]]))
|
|
195
|
+
|
|
196
|
+
tape.zero()
|
|
197
|
+
scalar_field.dof_values.grad.zero_()
|
|
198
|
+
geo.positions.grad.zero_()
|
|
199
|
+
point_coords.grad.zero_()
|
|
200
|
+
|
|
201
|
+
vector_field.dof_values.grad.assign([0.0, 1.0])
|
|
202
|
+
tape.backward()
|
|
203
|
+
|
|
204
|
+
assert_np_equal(scalar_field.dof_values.grad.numpy(), np.array([0.0, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.5, 0.0]))
|
|
205
|
+
assert_np_equal(
|
|
206
|
+
geo.positions.grad.numpy(),
|
|
207
|
+
np.array(
|
|
208
|
+
[
|
|
209
|
+
[0.25, 0.25],
|
|
210
|
+
[-0.25, -0.25],
|
|
211
|
+
[0.25, 0.25],
|
|
212
|
+
[-0.25, -0.25],
|
|
213
|
+
]
|
|
214
|
+
),
|
|
215
|
+
)
|
|
216
|
+
assert_np_equal(point_coords.grad.numpy(), np.array([[[2.0, 0.0, 0.0]]]))
|
|
217
|
+
|
|
218
|
+
# Compare against jacobian
|
|
219
|
+
scalar_trial = fem.make_trial(scalar_space)
|
|
220
|
+
jacobian = bsr_zeros(
|
|
221
|
+
rows_of_blocks=point_quadrature.total_point_count(),
|
|
222
|
+
cols_of_blocks=scalar_space.node_count(),
|
|
223
|
+
block_type=wp.mat(shape=(2, 1), dtype=float),
|
|
224
|
+
)
|
|
225
|
+
fem.interpolate(
|
|
226
|
+
grad_field,
|
|
227
|
+
dest=jacobian,
|
|
228
|
+
quadrature=point_quadrature,
|
|
229
|
+
fields={"p": scalar_trial},
|
|
230
|
+
kernel_options={"enable_backward": False},
|
|
231
|
+
)
|
|
232
|
+
assert jacobian.nnz_sync() == 4 # one non-zero per edge center
|
|
233
|
+
assert_np_equal((jacobian @ scalar_field.dof_values.grad).numpy(), [[0.0, 0.5]])
|
|
234
|
+
|
|
235
|
+
|
|
236
|
+
@integrand
|
|
237
|
+
def vector_divergence_form(s: Sample, u: Field, q: Field):
|
|
238
|
+
return div(u, s) * q(s)
|
|
239
|
+
|
|
240
|
+
|
|
241
|
+
@integrand
|
|
242
|
+
def vector_grad_form(s: Sample, u: Field, q: Field):
|
|
243
|
+
return wp.dot(u(s), grad(q, s))
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+
@integrand
|
|
247
|
+
def vector_boundary_form(domain: Domain, s: Sample, u: Field, q: Field):
|
|
248
|
+
return wp.dot(u(s) * q(s), normal(domain, s))
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def test_vector_divergence_theorem(test, device):
|
|
252
|
+
rng = np.random.default_rng(123)
|
|
253
|
+
|
|
254
|
+
with wp.ScopedDevice(device):
|
|
255
|
+
# Grid geometry
|
|
256
|
+
geo = fem.Grid2D(res=wp.vec2i(5))
|
|
257
|
+
|
|
258
|
+
# Domain and function spaces
|
|
259
|
+
interior = fem.Cells(geometry=geo)
|
|
260
|
+
boundary = fem.BoundarySides(geometry=geo)
|
|
261
|
+
|
|
262
|
+
vector_space = fem.make_polynomial_space(geo, degree=2, dtype=wp.vec2)
|
|
263
|
+
scalar_space = fem.make_polynomial_space(geo, degree=1, dtype=float)
|
|
264
|
+
|
|
265
|
+
u = vector_space.make_field()
|
|
266
|
+
u.dof_values = rng.random(size=(u.dof_values.shape[0], 2))
|
|
267
|
+
|
|
268
|
+
# Divergence theorem
|
|
269
|
+
constant_one = scalar_space.make_field()
|
|
270
|
+
constant_one.dof_values.fill_(1.0)
|
|
271
|
+
|
|
272
|
+
interior_quadrature = fem.RegularQuadrature(domain=interior, order=vector_space.degree)
|
|
273
|
+
boundary_quadrature = fem.RegularQuadrature(domain=boundary, order=vector_space.degree)
|
|
274
|
+
div_int = fem.integrate(
|
|
275
|
+
vector_divergence_form,
|
|
276
|
+
quadrature=interior_quadrature,
|
|
277
|
+
fields={"u": u, "q": constant_one},
|
|
278
|
+
kernel_options={"enable_backward": False},
|
|
279
|
+
)
|
|
280
|
+
boundary_int = fem.integrate(
|
|
281
|
+
vector_boundary_form,
|
|
282
|
+
quadrature=boundary_quadrature,
|
|
283
|
+
fields={"u": u.trace(), "q": constant_one.trace()},
|
|
284
|
+
kernel_options={"enable_backward": False},
|
|
285
|
+
)
|
|
286
|
+
|
|
287
|
+
test.assertAlmostEqual(div_int, boundary_int, places=5)
|
|
288
|
+
|
|
289
|
+
# Integration by parts
|
|
290
|
+
q = scalar_space.make_field()
|
|
291
|
+
q.dof_values = rng.random(size=q.dof_values.shape[0])
|
|
292
|
+
|
|
293
|
+
interior_quadrature = fem.RegularQuadrature(domain=interior, order=vector_space.degree + scalar_space.degree)
|
|
294
|
+
boundary_quadrature = fem.RegularQuadrature(domain=boundary, order=vector_space.degree + scalar_space.degree)
|
|
295
|
+
div_int = fem.integrate(
|
|
296
|
+
vector_divergence_form,
|
|
297
|
+
quadrature=interior_quadrature,
|
|
298
|
+
fields={"u": u, "q": q},
|
|
299
|
+
kernel_options={"enable_backward": False},
|
|
300
|
+
)
|
|
301
|
+
grad_int = fem.integrate(
|
|
302
|
+
vector_grad_form,
|
|
303
|
+
quadrature=interior_quadrature,
|
|
304
|
+
fields={"u": u, "q": q},
|
|
305
|
+
kernel_options={"enable_backward": False},
|
|
306
|
+
)
|
|
307
|
+
boundary_int = fem.integrate(
|
|
308
|
+
vector_boundary_form,
|
|
309
|
+
quadrature=boundary_quadrature,
|
|
310
|
+
fields={"u": u.trace(), "q": q.trace()},
|
|
311
|
+
kernel_options={"enable_backward": False},
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
test.assertAlmostEqual(div_int + grad_int, boundary_int, places=5)
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
@integrand
|
|
318
|
+
def tensor_divergence_form(s: Sample, tau: Field, v: Field):
|
|
319
|
+
return wp.dot(div(tau, s), v(s))
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
@integrand
|
|
323
|
+
def tensor_grad_form(s: Sample, tau: Field, v: Field):
|
|
324
|
+
return wp.ddot(wp.transpose(tau(s)), grad(v, s))
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
@integrand
|
|
328
|
+
def tensor_boundary_form(domain: Domain, s: Sample, tau: Field, v: Field):
|
|
329
|
+
return wp.dot(tau(s) * v(s), normal(domain, s))
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
def test_tensor_divergence_theorem(test, device):
|
|
333
|
+
rng = np.random.default_rng(123)
|
|
334
|
+
|
|
335
|
+
with wp.ScopedDevice(device):
|
|
336
|
+
# Grid geometry
|
|
337
|
+
geo = fem.Grid2D(res=wp.vec2i(5))
|
|
338
|
+
|
|
339
|
+
# Domain and function spaces
|
|
340
|
+
interior = fem.Cells(geometry=geo)
|
|
341
|
+
boundary = fem.BoundarySides(geometry=geo)
|
|
342
|
+
|
|
343
|
+
tensor_space = fem.make_polynomial_space(geo, degree=2, dtype=wp.mat22)
|
|
344
|
+
vector_space = fem.make_polynomial_space(geo, degree=1, dtype=wp.vec2)
|
|
345
|
+
|
|
346
|
+
tau = tensor_space.make_field()
|
|
347
|
+
tau.dof_values = rng.random(size=(tau.dof_values.shape[0], 2, 2))
|
|
348
|
+
|
|
349
|
+
# Divergence theorem
|
|
350
|
+
constant_vec = vector_space.make_field()
|
|
351
|
+
constant_vec.dof_values.fill_(wp.vec2(0.5, 2.0))
|
|
352
|
+
|
|
353
|
+
interior_quadrature = fem.RegularQuadrature(domain=interior, order=tensor_space.degree)
|
|
354
|
+
boundary_quadrature = fem.RegularQuadrature(domain=boundary, order=tensor_space.degree)
|
|
355
|
+
div_int = fem.integrate(
|
|
356
|
+
tensor_divergence_form,
|
|
357
|
+
quadrature=interior_quadrature,
|
|
358
|
+
fields={"tau": tau, "v": constant_vec},
|
|
359
|
+
kernel_options={"enable_backward": False},
|
|
360
|
+
)
|
|
361
|
+
boundary_int = fem.integrate(
|
|
362
|
+
tensor_boundary_form,
|
|
363
|
+
quadrature=boundary_quadrature,
|
|
364
|
+
fields={"tau": tau.trace(), "v": constant_vec.trace()},
|
|
365
|
+
kernel_options={"enable_backward": False},
|
|
366
|
+
)
|
|
367
|
+
|
|
368
|
+
test.assertAlmostEqual(div_int, boundary_int, places=5)
|
|
369
|
+
|
|
370
|
+
# Integration by parts
|
|
371
|
+
v = vector_space.make_field()
|
|
372
|
+
v.dof_values = rng.random(size=(v.dof_values.shape[0], 2))
|
|
373
|
+
|
|
374
|
+
interior_quadrature = fem.RegularQuadrature(domain=interior, order=tensor_space.degree + vector_space.degree)
|
|
375
|
+
boundary_quadrature = fem.RegularQuadrature(domain=boundary, order=tensor_space.degree + vector_space.degree)
|
|
376
|
+
div_int = fem.integrate(
|
|
377
|
+
tensor_divergence_form,
|
|
378
|
+
quadrature=interior_quadrature,
|
|
379
|
+
fields={"tau": tau, "v": v},
|
|
380
|
+
kernel_options={"enable_backward": False},
|
|
381
|
+
)
|
|
382
|
+
grad_int = fem.integrate(
|
|
383
|
+
tensor_grad_form,
|
|
384
|
+
quadrature=interior_quadrature,
|
|
385
|
+
fields={"tau": tau, "v": v},
|
|
386
|
+
kernel_options={"enable_backward": False},
|
|
387
|
+
)
|
|
388
|
+
boundary_int = fem.integrate(
|
|
389
|
+
tensor_boundary_form,
|
|
390
|
+
quadrature=boundary_quadrature,
|
|
391
|
+
fields={"tau": tau.trace(), "v": v.trace()},
|
|
392
|
+
kernel_options={"enable_backward": False},
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
test.assertAlmostEqual(div_int + grad_int, boundary_int, places=5)
|
|
396
|
+
|
|
397
|
+
|
|
398
|
+
@integrand
|
|
399
|
+
def grad_decomposition(s: Sample, u: Field, v: Field):
|
|
400
|
+
return wp.length_sq(grad(u, s) * v(s) - D(u, s) * v(s) - wp.cross(curl(u, s), v(s)))
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
def test_grad_decomposition(test, device):
|
|
404
|
+
rng = np.random.default_rng(123)
|
|
405
|
+
|
|
406
|
+
with wp.ScopedDevice(device):
|
|
407
|
+
# Grid geometry
|
|
408
|
+
geo = fem.Grid3D(res=wp.vec3i(5))
|
|
409
|
+
|
|
410
|
+
# Domain and function spaces
|
|
411
|
+
domain = fem.Cells(geometry=geo)
|
|
412
|
+
quadrature = fem.RegularQuadrature(domain=domain, order=4)
|
|
413
|
+
|
|
414
|
+
vector_space = fem.make_polynomial_space(geo, degree=2, dtype=wp.vec3)
|
|
415
|
+
u = vector_space.make_field()
|
|
416
|
+
|
|
417
|
+
u.dof_values = rng.random(size=(u.dof_values.shape[0], 3))
|
|
418
|
+
|
|
419
|
+
err = fem.integrate(grad_decomposition, quadrature=quadrature, fields={"u": u, "v": u})
|
|
420
|
+
test.assertLess(err, 1.0e-8)
|
|
421
|
+
|
|
422
|
+
|
|
423
|
+
def _gen_trimesh(Nx, Ny):
|
|
424
|
+
x = np.linspace(0.0, 1.0, Nx + 1)
|
|
425
|
+
y = np.linspace(0.0, 1.0, Ny + 1)
|
|
426
|
+
|
|
427
|
+
positions = np.transpose(np.meshgrid(x, y, indexing="ij"), axes=(1, 2, 0)).reshape(-1, 2)
|
|
428
|
+
|
|
429
|
+
vidx = grid_to_tris(Nx, Ny)
|
|
430
|
+
|
|
431
|
+
return wp.array(positions, dtype=wp.vec2), wp.array(vidx, dtype=int)
|
|
432
|
+
|
|
433
|
+
|
|
434
|
+
def _gen_quadmesh(N):
|
|
435
|
+
x = np.linspace(0.0, 1.0, N + 1)
|
|
436
|
+
y = np.linspace(0.0, 1.0, N + 1)
|
|
437
|
+
|
|
438
|
+
positions = np.transpose(np.meshgrid(x, y, indexing="ij"), axes=(1, 2, 0)).reshape(-1, 2)
|
|
439
|
+
|
|
440
|
+
vidx = grid_to_quads(N, N)
|
|
441
|
+
|
|
442
|
+
return wp.array(positions, dtype=wp.vec2), wp.array(vidx, dtype=int)
|
|
443
|
+
|
|
444
|
+
|
|
445
|
+
def _gen_tetmesh(Nx, Ny, Nz):
|
|
446
|
+
x = np.linspace(0.0, 1.0, Nx + 1)
|
|
447
|
+
y = np.linspace(0.0, 1.0, Ny + 1)
|
|
448
|
+
z = np.linspace(0.0, 1.0, Nz + 1)
|
|
449
|
+
|
|
450
|
+
positions = np.transpose(np.meshgrid(x, y, z, indexing="ij"), axes=(1, 2, 3, 0)).reshape(-1, 3)
|
|
451
|
+
|
|
452
|
+
vidx = grid_to_tets(Nx, Ny, Nz)
|
|
453
|
+
|
|
454
|
+
return wp.array(positions, dtype=wp.vec3), wp.array(vidx, dtype=int)
|
|
455
|
+
|
|
456
|
+
|
|
457
|
+
def _gen_hexmesh(N):
|
|
458
|
+
x = np.linspace(0.0, 1.0, N + 1)
|
|
459
|
+
y = np.linspace(0.0, 1.0, N + 1)
|
|
460
|
+
z = np.linspace(0.0, 1.0, N + 1)
|
|
461
|
+
|
|
462
|
+
positions = np.transpose(np.meshgrid(x, y, z, indexing="ij"), axes=(1, 2, 3, 0)).reshape(-1, 3)
|
|
463
|
+
|
|
464
|
+
vidx = grid_to_hexes(N, N, N)
|
|
465
|
+
|
|
466
|
+
return wp.array(positions, dtype=wp.vec3), wp.array(vidx, dtype=int)
|
|
467
|
+
|
|
468
|
+
|
|
469
|
+
@fem.integrand(kernel_options={"enable_backward": False})
|
|
470
|
+
def _test_geo_cells(
|
|
471
|
+
s: fem.Sample,
|
|
472
|
+
domain: fem.Domain,
|
|
473
|
+
cell_measures: wp.array(dtype=float),
|
|
474
|
+
):
|
|
475
|
+
wp.atomic_add(cell_measures, s.element_index, fem.measure(domain, s) * s.qp_weight)
|
|
476
|
+
|
|
477
|
+
|
|
478
|
+
@fem.integrand(kernel_options={"enable_backward": False, "max_unroll": 1})
|
|
479
|
+
def _test_geo_sides(
|
|
480
|
+
s: fem.Sample,
|
|
481
|
+
domain: fem.Domain,
|
|
482
|
+
ref_measure: float,
|
|
483
|
+
side_measures: wp.array(dtype=float),
|
|
484
|
+
):
|
|
485
|
+
side_index = s.element_index
|
|
486
|
+
coords = s.element_coords
|
|
487
|
+
|
|
488
|
+
cells = fem.cells(domain)
|
|
489
|
+
|
|
490
|
+
inner_s = fem.to_inner_cell(domain, s)
|
|
491
|
+
outer_s = fem.to_outer_cell(domain, s)
|
|
492
|
+
|
|
493
|
+
pos_side = domain(s)
|
|
494
|
+
pos_inner = cells(inner_s)
|
|
495
|
+
pos_outer = cells(outer_s)
|
|
496
|
+
|
|
497
|
+
for k in range(type(pos_side).length):
|
|
498
|
+
wp.expect_near(pos_side[k], pos_inner[k], 0.0001)
|
|
499
|
+
wp.expect_near(pos_side[k], pos_outer[k], 0.0001)
|
|
500
|
+
|
|
501
|
+
inner_side_s = fem.to_cell_side(domain, inner_s, side_index)
|
|
502
|
+
outer_side_s = fem.to_cell_side(domain, outer_s, side_index)
|
|
503
|
+
|
|
504
|
+
wp.expect_near(coords, inner_side_s.element_coords, 0.0001)
|
|
505
|
+
wp.expect_near(coords, outer_side_s.element_coords, 0.0001)
|
|
506
|
+
|
|
507
|
+
area = fem.measure(domain, s)
|
|
508
|
+
wp.atomic_add(side_measures, side_index, area * s.qp_weight)
|
|
509
|
+
|
|
510
|
+
F = fem.deformation_gradient(domain, s)
|
|
511
|
+
F_det = fem.Geometry._element_measure(F)
|
|
512
|
+
wp.expect_near(F_det * ref_measure, area)
|
|
513
|
+
|
|
514
|
+
|
|
515
|
+
@fem.integrand(kernel_options={"enable_backward": False, "max_unroll": 1})
|
|
516
|
+
def _test_side_normals(
|
|
517
|
+
s: fem.Sample,
|
|
518
|
+
domain: fem.Domain,
|
|
519
|
+
):
|
|
520
|
+
# test consistency of side normal, measure, and deformation gradient
|
|
521
|
+
F = fem.deformation_gradient(domain, s)
|
|
522
|
+
|
|
523
|
+
nor = fem.normal(domain, s)
|
|
524
|
+
F_cross = fem.Geometry._element_normal(F)
|
|
525
|
+
|
|
526
|
+
for k in range(type(nor).length):
|
|
527
|
+
wp.expect_near(F_cross[k], nor[k], 0.0001)
|
|
528
|
+
|
|
529
|
+
|
|
530
|
+
def _launch_test_geometry_kernel(geo: fem.Geometry, device):
|
|
531
|
+
cell_measures = wp.zeros(dtype=float, device=device, shape=geo.cell_count())
|
|
532
|
+
cell_quadrature = fem.RegularQuadrature(fem.Cells(geo), order=2)
|
|
533
|
+
|
|
534
|
+
side_measures = wp.zeros(dtype=float, device=device, shape=geo.side_count())
|
|
535
|
+
side_quadrature = fem.RegularQuadrature(fem.Sides(geo), order=2)
|
|
536
|
+
|
|
537
|
+
with wp.ScopedDevice(device):
|
|
538
|
+
fem.interpolate(
|
|
539
|
+
_test_geo_cells,
|
|
540
|
+
quadrature=cell_quadrature,
|
|
541
|
+
values={"cell_measures": cell_measures},
|
|
542
|
+
)
|
|
543
|
+
fem.interpolate(
|
|
544
|
+
_test_geo_sides,
|
|
545
|
+
quadrature=side_quadrature,
|
|
546
|
+
values={"side_measures": side_measures, "ref_measure": geo.reference_side().measure()},
|
|
547
|
+
)
|
|
548
|
+
|
|
549
|
+
if geo.side_normal is not None:
|
|
550
|
+
fem.interpolate(
|
|
551
|
+
_test_side_normals,
|
|
552
|
+
quadrature=side_quadrature,
|
|
553
|
+
)
|
|
554
|
+
|
|
555
|
+
return side_measures, cell_measures
|
|
556
|
+
|
|
557
|
+
|
|
558
|
+
def test_grid_2d(test, device):
|
|
559
|
+
N = 3
|
|
560
|
+
|
|
561
|
+
geo = fem.Grid2D(res=wp.vec2i(N))
|
|
562
|
+
|
|
563
|
+
test.assertEqual(geo.cell_count(), N**2)
|
|
564
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 2)
|
|
565
|
+
test.assertEqual(geo.side_count(), 2 * (N + 1) * N)
|
|
566
|
+
test.assertEqual(geo.boundary_side_count(), 4 * N)
|
|
567
|
+
|
|
568
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
569
|
+
|
|
570
|
+
assert_np_equal(side_measures.numpy(), np.full(side_measures.shape, 1.0 / (N)), tol=1.0e-4)
|
|
571
|
+
assert_np_equal(cell_measures.numpy(), np.full(cell_measures.shape, 1.0 / (N**2)), tol=1.0e-4)
|
|
572
|
+
|
|
573
|
+
|
|
574
|
+
def test_triangle_mesh(test, device):
|
|
575
|
+
N = 3
|
|
576
|
+
|
|
577
|
+
with wp.ScopedDevice(device):
|
|
578
|
+
positions, tri_vidx = _gen_trimesh(N, N)
|
|
579
|
+
|
|
580
|
+
geo = fem.Trimesh2D(tri_vertex_indices=tri_vidx, positions=positions)
|
|
581
|
+
|
|
582
|
+
test.assertEqual(geo.cell_count(), 2 * (N) ** 2)
|
|
583
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 2)
|
|
584
|
+
test.assertEqual(geo.side_count(), 2 * (N + 1) * N + (N**2))
|
|
585
|
+
test.assertEqual(geo.boundary_side_count(), 4 * N)
|
|
586
|
+
|
|
587
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
588
|
+
|
|
589
|
+
assert_np_equal(cell_measures.numpy(), np.full(cell_measures.shape, 0.5 / (N**2)), tol=1.0e-4)
|
|
590
|
+
test.assertAlmostEqual(np.sum(side_measures.numpy()), 2 * (N + 1) + N * math.sqrt(2.0), places=4)
|
|
591
|
+
|
|
592
|
+
# 3d
|
|
593
|
+
|
|
594
|
+
positions = positions.numpy()
|
|
595
|
+
positions = np.hstack((positions, np.ones((positions.shape[0], 1))))
|
|
596
|
+
positions = wp.array(positions, device=device, dtype=wp.vec3)
|
|
597
|
+
|
|
598
|
+
geo = fem.Trimesh3D(tri_vertex_indices=tri_vidx, positions=positions)
|
|
599
|
+
|
|
600
|
+
test.assertEqual(geo.cell_count(), 2 * (N) ** 2)
|
|
601
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 2)
|
|
602
|
+
test.assertEqual(geo.side_count(), 2 * (N + 1) * N + (N**2))
|
|
603
|
+
test.assertEqual(geo.boundary_side_count(), 4 * N)
|
|
604
|
+
|
|
605
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
606
|
+
|
|
607
|
+
assert_np_equal(cell_measures.numpy(), np.full(cell_measures.shape, 0.5 / (N**2)), tol=1.0e-4)
|
|
608
|
+
test.assertAlmostEqual(np.sum(side_measures.numpy()), 2 * (N + 1) + N * math.sqrt(2.0), places=4)
|
|
609
|
+
|
|
610
|
+
|
|
611
|
+
def test_quad_mesh(test, device):
|
|
612
|
+
N = 3
|
|
613
|
+
|
|
614
|
+
with wp.ScopedDevice(device):
|
|
615
|
+
positions, quad_vidx = _gen_quadmesh(N)
|
|
616
|
+
|
|
617
|
+
geo = fem.Quadmesh2D(quad_vertex_indices=quad_vidx, positions=positions)
|
|
618
|
+
|
|
619
|
+
test.assertEqual(geo.cell_count(), N**2)
|
|
620
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 2)
|
|
621
|
+
test.assertEqual(geo.side_count(), 2 * (N + 1) * N)
|
|
622
|
+
test.assertEqual(geo.boundary_side_count(), 4 * N)
|
|
623
|
+
|
|
624
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
625
|
+
|
|
626
|
+
assert_np_equal(side_measures.numpy(), np.full(side_measures.shape, 1.0 / (N)), tol=1.0e-4)
|
|
627
|
+
assert_np_equal(cell_measures.numpy(), np.full(cell_measures.shape, 1.0 / (N**2)), tol=1.0e-4)
|
|
628
|
+
|
|
629
|
+
# 3d
|
|
630
|
+
|
|
631
|
+
positions = positions.numpy()
|
|
632
|
+
positions = np.hstack((positions, np.ones((positions.shape[0], 1))))
|
|
633
|
+
positions = wp.array(positions, device=device, dtype=wp.vec3)
|
|
634
|
+
|
|
635
|
+
geo = fem.Quadmesh3D(quad_vertex_indices=quad_vidx, positions=positions)
|
|
636
|
+
|
|
637
|
+
test.assertEqual(geo.cell_count(), N**2)
|
|
638
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 2)
|
|
639
|
+
test.assertEqual(geo.side_count(), 2 * (N + 1) * N)
|
|
640
|
+
test.assertEqual(geo.boundary_side_count(), 4 * N)
|
|
641
|
+
|
|
642
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
643
|
+
|
|
644
|
+
assert_np_equal(side_measures.numpy(), np.full(side_measures.shape, 1.0 / (N)), tol=1.0e-4)
|
|
645
|
+
assert_np_equal(cell_measures.numpy(), np.full(cell_measures.shape, 1.0 / (N**2)), tol=1.0e-4)
|
|
646
|
+
|
|
647
|
+
|
|
648
|
+
def test_grid_3d(test, device):
|
|
649
|
+
N = 3
|
|
650
|
+
|
|
651
|
+
geo = fem.Grid3D(res=wp.vec3i(N))
|
|
652
|
+
|
|
653
|
+
test.assertEqual(geo.cell_count(), (N) ** 3)
|
|
654
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 3)
|
|
655
|
+
test.assertEqual(geo.side_count(), 3 * (N + 1) * N**2)
|
|
656
|
+
test.assertEqual(geo.boundary_side_count(), 6 * N * N)
|
|
657
|
+
test.assertEqual(geo.edge_count(), 3 * N * (N + 1) ** 2)
|
|
658
|
+
|
|
659
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
660
|
+
|
|
661
|
+
assert_np_equal(side_measures.numpy(), np.full(side_measures.shape, 1.0 / (N**2)), tol=1.0e-4)
|
|
662
|
+
assert_np_equal(cell_measures.numpy(), np.full(cell_measures.shape, 1.0 / (N**3)), tol=1.0e-4)
|
|
663
|
+
|
|
664
|
+
|
|
665
|
+
def test_tet_mesh(test, device):
|
|
666
|
+
N = 3
|
|
667
|
+
|
|
668
|
+
with wp.ScopedDevice(device):
|
|
669
|
+
positions, tet_vidx = _gen_tetmesh(N, N, N)
|
|
670
|
+
|
|
671
|
+
geo = fem.Tetmesh(tet_vertex_indices=tet_vidx, positions=positions)
|
|
672
|
+
|
|
673
|
+
test.assertEqual(geo.cell_count(), 5 * (N) ** 3)
|
|
674
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 3)
|
|
675
|
+
test.assertEqual(geo.side_count(), 6 * (N + 1) * N**2 + (N**3) * 4)
|
|
676
|
+
test.assertEqual(geo.boundary_side_count(), 12 * N * N)
|
|
677
|
+
test.assertEqual(geo.edge_count(), 3 * N * (N + 1) * (2 * N + 1))
|
|
678
|
+
|
|
679
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
680
|
+
|
|
681
|
+
test.assertAlmostEqual(np.sum(cell_measures.numpy()), 1.0, places=4)
|
|
682
|
+
test.assertAlmostEqual(np.sum(side_measures.numpy()), 0.5 * 6 * (N + 1) + N * 2 * math.sqrt(3.0), places=4)
|
|
683
|
+
|
|
684
|
+
|
|
685
|
+
def test_hex_mesh(test, device):
|
|
686
|
+
N = 3
|
|
687
|
+
|
|
688
|
+
with wp.ScopedDevice(device):
|
|
689
|
+
positions, tet_vidx = _gen_hexmesh(N)
|
|
690
|
+
|
|
691
|
+
geo = fem.Hexmesh(hex_vertex_indices=tet_vidx, positions=positions)
|
|
692
|
+
|
|
693
|
+
test.assertEqual(geo.cell_count(), (N) ** 3)
|
|
694
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 3)
|
|
695
|
+
test.assertEqual(geo.side_count(), 3 * (N + 1) * N**2)
|
|
696
|
+
test.assertEqual(geo.boundary_side_count(), 6 * N * N)
|
|
697
|
+
test.assertEqual(geo.edge_count(), 3 * N * (N + 1) ** 2)
|
|
698
|
+
|
|
699
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
700
|
+
|
|
701
|
+
assert_np_equal(side_measures.numpy(), np.full(side_measures.shape, 1.0 / (N**2)), tol=1.0e-4)
|
|
702
|
+
assert_np_equal(cell_measures.numpy(), np.full(cell_measures.shape, 1.0 / (N**3)), tol=1.0e-4)
|
|
703
|
+
|
|
704
|
+
|
|
705
|
+
def test_nanogrid(test, device):
|
|
706
|
+
N = 8
|
|
707
|
+
|
|
708
|
+
points = wp.array([[0.5, 0.5, 0.5]], dtype=float, device=device)
|
|
709
|
+
volume = wp.Volume.allocate_by_tiles(
|
|
710
|
+
tile_points=points, voxel_size=1.0 / N, translation=(0.0, 0.0, 0.0), bg_value=None, device=device
|
|
711
|
+
)
|
|
712
|
+
|
|
713
|
+
geo = fem.Nanogrid(volume)
|
|
714
|
+
|
|
715
|
+
test.assertEqual(geo.cell_count(), (N) ** 3)
|
|
716
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 3)
|
|
717
|
+
test.assertEqual(geo.side_count(), 3 * (N + 1) * N**2)
|
|
718
|
+
test.assertEqual(geo.boundary_side_count(), 6 * N * N)
|
|
719
|
+
test.assertEqual(geo.edge_count(), 3 * N * (N + 1) ** 2)
|
|
720
|
+
|
|
721
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
722
|
+
|
|
723
|
+
assert_np_equal(side_measures.numpy(), np.full(side_measures.shape, 1.0 / (N**2)), tol=1.0e-4)
|
|
724
|
+
assert_np_equal(cell_measures.numpy(), np.full(cell_measures.shape, 1.0 / (N**3)), tol=1.0e-4)
|
|
725
|
+
|
|
726
|
+
|
|
727
|
+
@wp.func
|
|
728
|
+
def _refinement_field(x: wp.vec3):
|
|
729
|
+
return 4.0 * (wp.length(x) - 0.5)
|
|
730
|
+
|
|
731
|
+
|
|
732
|
+
def test_adaptive_nanogrid(test, device):
|
|
733
|
+
# 3 res-1 voxels, 8 res-0 voxels
|
|
734
|
+
|
|
735
|
+
res0 = wp.array(
|
|
736
|
+
[
|
|
737
|
+
[2, 2, 0],
|
|
738
|
+
[2, 3, 0],
|
|
739
|
+
[3, 2, 0],
|
|
740
|
+
[3, 3, 0],
|
|
741
|
+
[2, 2, 1],
|
|
742
|
+
[2, 3, 1],
|
|
743
|
+
[3, 2, 1],
|
|
744
|
+
[3, 3, 1],
|
|
745
|
+
],
|
|
746
|
+
dtype=int,
|
|
747
|
+
device=device,
|
|
748
|
+
)
|
|
749
|
+
res1 = wp.array(
|
|
750
|
+
[
|
|
751
|
+
[0, 0, 0],
|
|
752
|
+
[0, 1, 0],
|
|
753
|
+
[1, 0, 0],
|
|
754
|
+
[1, 1, 0],
|
|
755
|
+
],
|
|
756
|
+
dtype=int,
|
|
757
|
+
device=device,
|
|
758
|
+
)
|
|
759
|
+
|
|
760
|
+
grid0 = wp.Volume.allocate_by_voxels(res0, 0.5, device=device)
|
|
761
|
+
grid1 = wp.Volume.allocate_by_voxels(res1, 1.0, device=device)
|
|
762
|
+
geo = fem.adaptive_nanogrid_from_hierarchy([grid0, grid1])
|
|
763
|
+
|
|
764
|
+
test.assertEqual(geo.cell_count(), 3 + 8)
|
|
765
|
+
test.assertEqual(geo.vertex_count(), 2 * 9 + 27 - 8)
|
|
766
|
+
test.assertEqual(geo.side_count(), 2 * 4 + 6 * 2 + (3 * (2 + 1) * 2**2 - 6))
|
|
767
|
+
test.assertEqual(geo.boundary_side_count(), 2 * 4 + 4 * 2 + (4 * 4 - 4))
|
|
768
|
+
# test.assertEqual(geo.edge_count(), 6 * 4 + 9 + (3 * 2 * (2 + 1) ** 2 - 12))
|
|
769
|
+
test.assertEqual(geo.stacked_face_count(), geo.side_count() + 2)
|
|
770
|
+
test.assertEqual(geo.stacked_edge_count(), 6 * 4 + 9 + (3 * 2 * (2 + 1) ** 2 - 12) + 7)
|
|
771
|
+
|
|
772
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(geo, device)
|
|
773
|
+
|
|
774
|
+
test.assertAlmostEqual(np.sum(cell_measures.numpy()), 4.0, places=4)
|
|
775
|
+
test.assertAlmostEqual(np.sum(side_measures.numpy()), 20 + 3.0, places=4)
|
|
776
|
+
|
|
777
|
+
# Test with non-graded geometry
|
|
778
|
+
ref_field = fem.ImplicitField(fem.Cells(geo), func=_refinement_field)
|
|
779
|
+
non_graded_geo = fem.adaptive_nanogrid_from_field(grid1, level_count=3, refinement_field=ref_field)
|
|
780
|
+
_launch_test_geometry_kernel(geo, device)
|
|
781
|
+
|
|
782
|
+
# Test automatic grading
|
|
783
|
+
graded_geo = fem.adaptive_nanogrid_from_field(grid1, level_count=3, refinement_field=ref_field, grading="face")
|
|
784
|
+
test.assertEqual(non_graded_geo.cell_count() + 7, graded_geo.cell_count())
|
|
785
|
+
|
|
786
|
+
|
|
787
|
+
@integrand
|
|
788
|
+
def _rigid_deformation_field(s: Sample, domain: Domain, translation: wp.vec3, rotation: wp.vec3, scale: float):
|
|
789
|
+
q = wp.quat_from_axis_angle(wp.normalize(rotation), wp.length(rotation))
|
|
790
|
+
return translation + scale * wp.quat_rotate(q, domain(s)) - domain(s)
|
|
791
|
+
|
|
792
|
+
|
|
793
|
+
def test_deformed_geometry(test, device):
|
|
794
|
+
N = 3
|
|
795
|
+
|
|
796
|
+
with wp.ScopedDevice(device):
|
|
797
|
+
positions, tet_vidx = _gen_tetmesh(N, N, N)
|
|
798
|
+
|
|
799
|
+
geo = fem.Tetmesh(tet_vertex_indices=tet_vidx, positions=positions)
|
|
800
|
+
|
|
801
|
+
translation = [1.0, 2.0, 3.0]
|
|
802
|
+
rotation = [0.0, math.pi / 4.0, 0.0]
|
|
803
|
+
scale = 2.0
|
|
804
|
+
|
|
805
|
+
vector_space = fem.make_polynomial_space(geo, dtype=wp.vec3, degree=2)
|
|
806
|
+
pos_field = vector_space.make_field()
|
|
807
|
+
fem.interpolate(
|
|
808
|
+
_rigid_deformation_field,
|
|
809
|
+
dest=pos_field,
|
|
810
|
+
values={"translation": translation, "rotation": rotation, "scale": scale},
|
|
811
|
+
)
|
|
812
|
+
|
|
813
|
+
deformed_geo = pos_field.make_deformed_geometry()
|
|
814
|
+
|
|
815
|
+
# rigidly-deformed geometry
|
|
816
|
+
|
|
817
|
+
test.assertEqual(geo.cell_count(), 5 * (N) ** 3)
|
|
818
|
+
test.assertEqual(geo.vertex_count(), (N + 1) ** 3)
|
|
819
|
+
test.assertEqual(geo.side_count(), 6 * (N + 1) * N**2 + (N**3) * 4)
|
|
820
|
+
test.assertEqual(geo.boundary_side_count(), 12 * N * N)
|
|
821
|
+
|
|
822
|
+
side_measures, cell_measures = _launch_test_geometry_kernel(deformed_geo, wp.get_device())
|
|
823
|
+
|
|
824
|
+
test.assertAlmostEqual(
|
|
825
|
+
np.sum(cell_measures.numpy()), scale**3, places=4, msg=f"cell_measures = {cell_measures.numpy()}"
|
|
826
|
+
)
|
|
827
|
+
test.assertAlmostEqual(
|
|
828
|
+
np.sum(side_measures.numpy()), scale**2 * (0.5 * 6 * (N + 1) + N * 2 * math.sqrt(3.0)), places=4
|
|
829
|
+
)
|
|
830
|
+
|
|
831
|
+
@wp.kernel
|
|
832
|
+
def _test_deformed_geometry_normal(
|
|
833
|
+
geo_index_arg: geo.SideIndexArg, geo_arg: geo.SideArg, def_arg: deformed_geo.SideArg, rotation: wp.vec3
|
|
834
|
+
):
|
|
835
|
+
i = wp.tid()
|
|
836
|
+
side_index = deformed_geo.boundary_side_index(geo_index_arg, i)
|
|
837
|
+
|
|
838
|
+
s = make_free_sample(side_index, Coords(0.5, 0.5, 0.0))
|
|
839
|
+
geo_n = geo.side_normal(geo_arg, s)
|
|
840
|
+
def_n = deformed_geo.side_normal(def_arg, s)
|
|
841
|
+
|
|
842
|
+
q = wp.quat_from_axis_angle(wp.normalize(rotation), wp.length(rotation))
|
|
843
|
+
wp.expect_near(wp.quat_rotate(q, geo_n), def_n, 0.001)
|
|
844
|
+
|
|
845
|
+
wp.launch(
|
|
846
|
+
_test_deformed_geometry_normal,
|
|
847
|
+
dim=geo.boundary_side_count(),
|
|
848
|
+
inputs=[
|
|
849
|
+
geo.side_index_arg_value(wp.get_device()),
|
|
850
|
+
geo.side_arg_value(wp.get_device()),
|
|
851
|
+
deformed_geo.side_arg_value(wp.get_device()),
|
|
852
|
+
rotation,
|
|
853
|
+
],
|
|
854
|
+
)
|
|
855
|
+
|
|
856
|
+
wp.synchronize()
|
|
857
|
+
|
|
858
|
+
|
|
859
|
+
@wp.kernel
|
|
860
|
+
def _test_closest_point_on_tri_kernel(
|
|
861
|
+
e0: wp.vec2,
|
|
862
|
+
e1: wp.vec2,
|
|
863
|
+
points: wp.array(dtype=wp.vec2),
|
|
864
|
+
sq_dist: wp.array(dtype=float),
|
|
865
|
+
coords: wp.array(dtype=Coords),
|
|
866
|
+
):
|
|
867
|
+
i = wp.tid()
|
|
868
|
+
d2, c = project_on_tri_at_origin(points[i], e0, e1)
|
|
869
|
+
sq_dist[i] = d2
|
|
870
|
+
coords[i] = c
|
|
871
|
+
|
|
872
|
+
|
|
873
|
+
@wp.kernel
|
|
874
|
+
def _test_closest_point_on_tet_kernel(
|
|
875
|
+
e0: wp.vec3,
|
|
876
|
+
e1: wp.vec3,
|
|
877
|
+
e2: wp.vec3,
|
|
878
|
+
points: wp.array(dtype=wp.vec3),
|
|
879
|
+
sq_dist: wp.array(dtype=float),
|
|
880
|
+
coords: wp.array(dtype=Coords),
|
|
881
|
+
):
|
|
882
|
+
i = wp.tid()
|
|
883
|
+
d2, c = project_on_tet_at_origin(points[i], e0, e1, e2)
|
|
884
|
+
sq_dist[i] = d2
|
|
885
|
+
coords[i] = c
|
|
886
|
+
|
|
887
|
+
|
|
888
|
+
def test_closest_point_queries(test, device):
|
|
889
|
+
# Test some simple lookup queries
|
|
890
|
+
e0 = wp.vec2(2.0, 0.0)
|
|
891
|
+
e1 = wp.vec2(0.0, 2.0)
|
|
892
|
+
|
|
893
|
+
points = wp.array(
|
|
894
|
+
(
|
|
895
|
+
[-1.0, -1.0],
|
|
896
|
+
[0.5, 0.5],
|
|
897
|
+
[1.0, 1.0],
|
|
898
|
+
[2.0, 2.0],
|
|
899
|
+
),
|
|
900
|
+
dtype=wp.vec2,
|
|
901
|
+
device=device,
|
|
902
|
+
)
|
|
903
|
+
expected_sq_dist = np.array([2.0, 0.0, 0.0, 2.0])
|
|
904
|
+
expected_coords = np.array([[1.0, 0.0, 0.0], [0.5, 0.25, 0.25], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5]])
|
|
905
|
+
|
|
906
|
+
sq_dist = wp.empty(shape=points.shape, dtype=float, device=device)
|
|
907
|
+
coords = wp.empty(shape=points.shape, dtype=Coords, device=device)
|
|
908
|
+
wp.launch(
|
|
909
|
+
_test_closest_point_on_tri_kernel, dim=points.shape, device=device, inputs=[e0, e1, points, sq_dist, coords]
|
|
910
|
+
)
|
|
911
|
+
|
|
912
|
+
assert_np_equal(coords.numpy(), expected_coords)
|
|
913
|
+
assert_np_equal(sq_dist.numpy(), expected_sq_dist)
|
|
914
|
+
|
|
915
|
+
# Tet
|
|
916
|
+
|
|
917
|
+
e0 = wp.vec3(3.0, 0.0, 0.0)
|
|
918
|
+
e1 = wp.vec3(0.0, 3.0, 0.0)
|
|
919
|
+
e2 = wp.vec3(0.0, 0.0, 3.0)
|
|
920
|
+
|
|
921
|
+
points = wp.array(
|
|
922
|
+
(
|
|
923
|
+
[-1.0, -1.0, -1.0],
|
|
924
|
+
[0.5, 0.5, 0.5],
|
|
925
|
+
[1.0, 1.0, 1.0],
|
|
926
|
+
[2.0, 2.0, 2.0],
|
|
927
|
+
),
|
|
928
|
+
dtype=wp.vec3,
|
|
929
|
+
device=device,
|
|
930
|
+
)
|
|
931
|
+
expected_sq_dist = np.array([3.0, 0.0, 0.0, 3.0])
|
|
932
|
+
expected_coords = np.array(
|
|
933
|
+
[
|
|
934
|
+
[0.0, 0.0, 0.0],
|
|
935
|
+
[1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0],
|
|
936
|
+
[1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0],
|
|
937
|
+
[1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0],
|
|
938
|
+
]
|
|
939
|
+
)
|
|
940
|
+
|
|
941
|
+
sq_dist = wp.empty(shape=points.shape, dtype=float, device=device)
|
|
942
|
+
coords = wp.empty(shape=points.shape, dtype=Coords, device=device)
|
|
943
|
+
wp.launch(
|
|
944
|
+
_test_closest_point_on_tet_kernel, dim=points.shape, device=device, inputs=[e0, e1, e2, points, sq_dist, coords]
|
|
945
|
+
)
|
|
946
|
+
|
|
947
|
+
assert_np_equal(coords.numpy(), expected_coords, tol=1.0e-4)
|
|
948
|
+
assert_np_equal(sq_dist.numpy(), expected_sq_dist, tol=1.0e-4)
|
|
949
|
+
|
|
950
|
+
|
|
951
|
+
def test_regular_quadrature(test, device):
|
|
952
|
+
from warp.fem.geometry.element import LinearEdge, Polynomial, Triangle
|
|
953
|
+
|
|
954
|
+
for family in Polynomial:
|
|
955
|
+
# test integrating monomials
|
|
956
|
+
for degree in range(8):
|
|
957
|
+
coords, weights = LinearEdge().instantiate_quadrature(degree, family=family)
|
|
958
|
+
res = sum(w * pow(c[0], degree) for w, c in zip(weights, coords))
|
|
959
|
+
ref = 1.0 / (degree + 1)
|
|
960
|
+
|
|
961
|
+
test.assertAlmostEqual(ref, res, places=4)
|
|
962
|
+
|
|
963
|
+
# test integrating y^k1 (1 - x)^k2 on triangle using transformation to square
|
|
964
|
+
for x_degree in range(4):
|
|
965
|
+
for y_degree in range(4):
|
|
966
|
+
coords, weights = Triangle().instantiate_quadrature(x_degree + y_degree, family=family)
|
|
967
|
+
res = 0.5 * sum(w * pow(1.0 - c[1], x_degree) * pow(c[2], y_degree) for w, c in zip(weights, coords))
|
|
968
|
+
|
|
969
|
+
ref = 1.0 / ((x_degree + y_degree + 2) * (y_degree + 1))
|
|
970
|
+
# print(x_degree, y_degree, family, len(coords), res, ref)
|
|
971
|
+
test.assertAlmostEqual(ref, res, places=4)
|
|
972
|
+
|
|
973
|
+
# test integrating y^k1 (1 - x)^k2 on triangle using direct formulas
|
|
974
|
+
for x_degree in range(5):
|
|
975
|
+
for y_degree in range(5):
|
|
976
|
+
coords, weights = Triangle().instantiate_quadrature(x_degree + y_degree, family=None)
|
|
977
|
+
res = 0.5 * sum(w * pow(1.0 - c[1], x_degree) * pow(c[2], y_degree) for w, c in zip(weights, coords))
|
|
978
|
+
|
|
979
|
+
ref = 1.0 / ((x_degree + y_degree + 2) * (y_degree + 1))
|
|
980
|
+
test.assertAlmostEqual(ref, res, places=4)
|
|
981
|
+
|
|
982
|
+
|
|
983
|
+
def test_dof_mapper(test, device):
|
|
984
|
+
matrix_types = [wp.mat22, wp.mat33]
|
|
985
|
+
|
|
986
|
+
# Symmetric mapper
|
|
987
|
+
for mapping in fem.SymmetricTensorMapper.Mapping:
|
|
988
|
+
for dtype in matrix_types:
|
|
989
|
+
mapper = fem.SymmetricTensorMapper(dtype, mapping=mapping)
|
|
990
|
+
dof_dtype = mapper.dof_dtype
|
|
991
|
+
|
|
992
|
+
for k in range(dof_dtype._length_):
|
|
993
|
+
elem = np.array(dof_dtype(0.0))
|
|
994
|
+
elem[k] = 1.0
|
|
995
|
+
dof_vec = dof_dtype(elem)
|
|
996
|
+
|
|
997
|
+
mat = mapper.dof_to_value(dof_vec)
|
|
998
|
+
dof_round_trip = mapper.value_to_dof(mat)
|
|
999
|
+
|
|
1000
|
+
# Check that value_to_dof(dof_to_value) is idempotent
|
|
1001
|
+
assert_np_equal(np.array(dof_round_trip), np.array(dof_vec))
|
|
1002
|
+
|
|
1003
|
+
# Check that value is unitary for Frobenius norm 0.5 * |tau:tau|
|
|
1004
|
+
frob_norm2 = 0.5 * wp.ddot(mat, mat)
|
|
1005
|
+
test.assertAlmostEqual(frob_norm2, 1.0, places=6)
|
|
1006
|
+
|
|
1007
|
+
# Skew-symmetric mapper
|
|
1008
|
+
for dtype in matrix_types:
|
|
1009
|
+
mapper = fem.SkewSymmetricTensorMapper(dtype)
|
|
1010
|
+
dof_dtype = mapper.dof_dtype
|
|
1011
|
+
|
|
1012
|
+
if hasattr(dof_dtype, "_length_"):
|
|
1013
|
+
for k in range(dof_dtype._length_):
|
|
1014
|
+
elem = np.array(dof_dtype(0.0))
|
|
1015
|
+
elem[k] = 1.0
|
|
1016
|
+
dof_vec = dof_dtype(elem)
|
|
1017
|
+
|
|
1018
|
+
mat = mapper.dof_to_value(dof_vec)
|
|
1019
|
+
dof_round_trip = mapper.value_to_dof(mat)
|
|
1020
|
+
|
|
1021
|
+
# Check that value_to_dof(dof_to_value) is idempotent
|
|
1022
|
+
assert_np_equal(np.array(dof_round_trip), np.array(dof_vec))
|
|
1023
|
+
|
|
1024
|
+
# Check that value is unitary for Frobenius norm 0.5 * |tau:tau|
|
|
1025
|
+
frob_norm2 = 0.5 * wp.ddot(mat, mat)
|
|
1026
|
+
test.assertAlmostEqual(frob_norm2, 1.0, places=6)
|
|
1027
|
+
else:
|
|
1028
|
+
dof_val = 1.0
|
|
1029
|
+
|
|
1030
|
+
mat = mapper.dof_to_value(dof_val)
|
|
1031
|
+
dof_round_trip = mapper.value_to_dof(mat)
|
|
1032
|
+
|
|
1033
|
+
test.assertAlmostEqual(dof_round_trip, dof_val)
|
|
1034
|
+
|
|
1035
|
+
# Check that value is unitary for Frobenius norm 0.5 * |tau:tau|
|
|
1036
|
+
frob_norm2 = 0.5 * wp.ddot(mat, mat)
|
|
1037
|
+
test.assertAlmostEqual(frob_norm2, 1.0, places=6)
|
|
1038
|
+
|
|
1039
|
+
|
|
1040
|
+
@wp.func
|
|
1041
|
+
def _expect_near(a: Any, b: Any, tol: float):
|
|
1042
|
+
wp.expect_near(a, b, tol)
|
|
1043
|
+
|
|
1044
|
+
|
|
1045
|
+
@wp.func
|
|
1046
|
+
def _expect_near(a: wp.vec2, b: wp.vec2, tol: float):
|
|
1047
|
+
for k in range(2):
|
|
1048
|
+
wp.expect_near(a[k], b[k], tol)
|
|
1049
|
+
|
|
1050
|
+
|
|
1051
|
+
def test_shape_function_weight(test, shape: shape.ShapeFunction, coord_sampler, CENTER_COORDS):
|
|
1052
|
+
NODE_COUNT = shape.NODES_PER_ELEMENT
|
|
1053
|
+
weight_fn = shape.make_element_inner_weight()
|
|
1054
|
+
node_coords_fn = shape.make_node_coords_in_element()
|
|
1055
|
+
|
|
1056
|
+
# Weight at node should be 1
|
|
1057
|
+
@dynamic_kernel(suffix=shape.name, kernel_options={"enable_backward": False})
|
|
1058
|
+
def node_unity_test():
|
|
1059
|
+
n = wp.tid()
|
|
1060
|
+
node_w = weight_fn(node_coords_fn(n), n)
|
|
1061
|
+
wp.expect_near(node_w, 1.0, 1e-5)
|
|
1062
|
+
|
|
1063
|
+
wp.launch(node_unity_test, dim=NODE_COUNT, inputs=[])
|
|
1064
|
+
|
|
1065
|
+
# Sum of node quadrature weights should be one (order 0)
|
|
1066
|
+
# Sum of weighted quadrature coords should be element center (order 1)
|
|
1067
|
+
node_quadrature_weight_fn = shape.make_node_quadrature_weight()
|
|
1068
|
+
|
|
1069
|
+
@dynamic_kernel(suffix=shape.name, kernel_options={"enable_backward": False})
|
|
1070
|
+
def node_quadrature_unity_test():
|
|
1071
|
+
sum_node_qp = float(0.0)
|
|
1072
|
+
sum_node_qp_coords = Coords(0.0)
|
|
1073
|
+
|
|
1074
|
+
for n in range(NODE_COUNT):
|
|
1075
|
+
w = node_quadrature_weight_fn(n)
|
|
1076
|
+
sum_node_qp += w
|
|
1077
|
+
sum_node_qp_coords += w * node_coords_fn(n)
|
|
1078
|
+
|
|
1079
|
+
wp.expect_near(sum_node_qp, 1.0, 0.0001)
|
|
1080
|
+
wp.expect_near(sum_node_qp_coords, CENTER_COORDS, 0.0001)
|
|
1081
|
+
|
|
1082
|
+
wp.launch(node_quadrature_unity_test, dim=1, inputs=[])
|
|
1083
|
+
|
|
1084
|
+
@dynamic_kernel(suffix=shape.name, kernel_options={"enable_backward": False})
|
|
1085
|
+
def partition_of_unity_test():
|
|
1086
|
+
rng_state = wp.rand_init(4321, wp.tid())
|
|
1087
|
+
coords = coord_sampler(rng_state)
|
|
1088
|
+
|
|
1089
|
+
# sum of node weights anywhere should be 1.0
|
|
1090
|
+
w_sum = type(weight_fn(coords, 0))(0.0)
|
|
1091
|
+
for n in range(NODE_COUNT):
|
|
1092
|
+
w_sum += weight_fn(coords, n)
|
|
1093
|
+
|
|
1094
|
+
_expect_near(wp.abs(w_sum), type(w_sum)(1.0), 0.0001)
|
|
1095
|
+
|
|
1096
|
+
n_samples = 100
|
|
1097
|
+
wp.launch(partition_of_unity_test, dim=n_samples, inputs=[])
|
|
1098
|
+
|
|
1099
|
+
|
|
1100
|
+
def test_shape_function_trace(test, shape: shape.ShapeFunction, CENTER_COORDS):
|
|
1101
|
+
NODE_COUNT = shape.NODES_PER_ELEMENT
|
|
1102
|
+
node_coords_fn = shape.make_node_coords_in_element()
|
|
1103
|
+
|
|
1104
|
+
# Sum of node quadrature weights should be one (order 0)
|
|
1105
|
+
# Sum of weighted quadrature coords should be element center (order 1)
|
|
1106
|
+
trace_node_quadrature_weight_fn = shape.make_trace_node_quadrature_weight()
|
|
1107
|
+
|
|
1108
|
+
@dynamic_kernel(suffix=shape.name, kernel_options={"enable_backward": False})
|
|
1109
|
+
def trace_node_quadrature_unity_test():
|
|
1110
|
+
sum_node_qp = float(0.0)
|
|
1111
|
+
sum_node_qp_coords = Coords(0.0)
|
|
1112
|
+
|
|
1113
|
+
for n in range(NODE_COUNT):
|
|
1114
|
+
coords = node_coords_fn(n)
|
|
1115
|
+
|
|
1116
|
+
if wp.abs(coords[0]) < 1.0e-6:
|
|
1117
|
+
w = trace_node_quadrature_weight_fn(n)
|
|
1118
|
+
sum_node_qp += w
|
|
1119
|
+
sum_node_qp_coords += w * node_coords_fn(n)
|
|
1120
|
+
|
|
1121
|
+
wp.expect_near(sum_node_qp, 1.0, 0.0001)
|
|
1122
|
+
wp.expect_near(sum_node_qp_coords, CENTER_COORDS, 0.0001)
|
|
1123
|
+
|
|
1124
|
+
wp.launch(trace_node_quadrature_unity_test, dim=1, inputs=[])
|
|
1125
|
+
|
|
1126
|
+
|
|
1127
|
+
def test_shape_function_gradient(
|
|
1128
|
+
test,
|
|
1129
|
+
shape: shape.ShapeFunction,
|
|
1130
|
+
coord_sampler,
|
|
1131
|
+
coord_delta_sampler,
|
|
1132
|
+
pure_curl: bool = False,
|
|
1133
|
+
pure_spherical: bool = False,
|
|
1134
|
+
):
|
|
1135
|
+
weight_fn = shape.make_element_inner_weight()
|
|
1136
|
+
weight_gradient_fn = shape.make_element_inner_weight_gradient()
|
|
1137
|
+
|
|
1138
|
+
@wp.func
|
|
1139
|
+
def scalar_delta(avg_grad: Any, param_delta: Any):
|
|
1140
|
+
return wp.dot(avg_grad, param_delta)
|
|
1141
|
+
|
|
1142
|
+
@wp.func
|
|
1143
|
+
def vector_delta(avg_grad: Any, param_delta: Any):
|
|
1144
|
+
return avg_grad * param_delta
|
|
1145
|
+
|
|
1146
|
+
grad_delta_fn = scalar_delta if shape.value == shape.Value.Scalar else vector_delta
|
|
1147
|
+
|
|
1148
|
+
@dynamic_kernel(suffix=shape.name, kernel_options={"enable_backward": False})
|
|
1149
|
+
def finite_difference_test():
|
|
1150
|
+
i, n = wp.tid()
|
|
1151
|
+
rng_state = wp.rand_init(1234, i)
|
|
1152
|
+
|
|
1153
|
+
coords = coord_sampler(rng_state)
|
|
1154
|
+
|
|
1155
|
+
epsilon = 0.003
|
|
1156
|
+
param_delta, coords_delta = coord_delta_sampler(epsilon, rng_state)
|
|
1157
|
+
|
|
1158
|
+
w_p = weight_fn(coords + coords_delta, n)
|
|
1159
|
+
w_m = weight_fn(coords - coords_delta, n)
|
|
1160
|
+
|
|
1161
|
+
gp = weight_gradient_fn(coords + coords_delta, n)
|
|
1162
|
+
gm = weight_gradient_fn(coords - coords_delta, n)
|
|
1163
|
+
|
|
1164
|
+
# 2nd-order finite-difference test
|
|
1165
|
+
# See Schroeder 2019, Practical course on computing derivatives in code
|
|
1166
|
+
delta_ref = w_p - w_m
|
|
1167
|
+
delta_est = grad_delta_fn(gp + gm, param_delta)
|
|
1168
|
+
_expect_near(delta_ref, delta_est, 0.0001)
|
|
1169
|
+
|
|
1170
|
+
if wp.static(pure_curl):
|
|
1171
|
+
wp.expect_near(wp.ddot(symmetric_part(gp), symmetric_part(gp)), gp.dtype(0.0))
|
|
1172
|
+
|
|
1173
|
+
if wp.static(pure_spherical):
|
|
1174
|
+
deviatoric_part = gp - spherical_part(gp)
|
|
1175
|
+
wp.expect_near(wp.ddot(deviatoric_part, deviatoric_part), gp.dtype(0.0))
|
|
1176
|
+
|
|
1177
|
+
n_samples = 100
|
|
1178
|
+
wp.launch(finite_difference_test, dim=(n_samples, shape.NODES_PER_ELEMENT), inputs=[])
|
|
1179
|
+
|
|
1180
|
+
|
|
1181
|
+
def test_square_shape_functions(test, device):
|
|
1182
|
+
SQUARE_CENTER_COORDS = wp.constant(Coords(0.5, 0.5, 0.0))
|
|
1183
|
+
SQUARE_SIDE_CENTER_COORDS = wp.constant(Coords(0.0, 0.5, 0.0))
|
|
1184
|
+
|
|
1185
|
+
@wp.func
|
|
1186
|
+
def square_coord_sampler(state: wp.uint32):
|
|
1187
|
+
return Coords(wp.randf(state), wp.randf(state), 0.0)
|
|
1188
|
+
|
|
1189
|
+
@wp.func
|
|
1190
|
+
def square_coord_delta_sampler(epsilon: float, state: wp.uint32):
|
|
1191
|
+
param_delta = wp.normalize(wp.vec2(wp.randf(state), wp.randf(state))) * epsilon
|
|
1192
|
+
return param_delta, Coords(param_delta[0], param_delta[1], 0.0)
|
|
1193
|
+
|
|
1194
|
+
Q_1 = shape.SquareBipolynomialShapeFunctions(degree=1, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1195
|
+
Q_2 = shape.SquareBipolynomialShapeFunctions(degree=2, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1196
|
+
Q_3 = shape.SquareBipolynomialShapeFunctions(degree=3, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1197
|
+
|
|
1198
|
+
test_shape_function_weight(test, Q_1, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1199
|
+
test_shape_function_weight(test, Q_2, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1200
|
+
test_shape_function_weight(test, Q_3, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1201
|
+
test_shape_function_trace(test, Q_1, SQUARE_SIDE_CENTER_COORDS)
|
|
1202
|
+
test_shape_function_trace(test, Q_2, SQUARE_SIDE_CENTER_COORDS)
|
|
1203
|
+
test_shape_function_trace(test, Q_3, SQUARE_SIDE_CENTER_COORDS)
|
|
1204
|
+
test_shape_function_gradient(test, Q_1, square_coord_sampler, square_coord_delta_sampler)
|
|
1205
|
+
test_shape_function_gradient(test, Q_2, square_coord_sampler, square_coord_delta_sampler)
|
|
1206
|
+
test_shape_function_gradient(test, Q_3, square_coord_sampler, square_coord_delta_sampler)
|
|
1207
|
+
|
|
1208
|
+
Q_1 = shape.SquareBipolynomialShapeFunctions(degree=1, family=fem.Polynomial.GAUSS_LEGENDRE)
|
|
1209
|
+
Q_2 = shape.SquareBipolynomialShapeFunctions(degree=2, family=fem.Polynomial.GAUSS_LEGENDRE)
|
|
1210
|
+
Q_3 = shape.SquareBipolynomialShapeFunctions(degree=3, family=fem.Polynomial.GAUSS_LEGENDRE)
|
|
1211
|
+
|
|
1212
|
+
test_shape_function_weight(test, Q_1, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1213
|
+
test_shape_function_weight(test, Q_2, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1214
|
+
test_shape_function_weight(test, Q_3, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1215
|
+
test_shape_function_gradient(test, Q_1, square_coord_sampler, square_coord_delta_sampler)
|
|
1216
|
+
test_shape_function_gradient(test, Q_2, square_coord_sampler, square_coord_delta_sampler)
|
|
1217
|
+
test_shape_function_gradient(test, Q_3, square_coord_sampler, square_coord_delta_sampler)
|
|
1218
|
+
|
|
1219
|
+
S_2 = shape.SquareSerendipityShapeFunctions(degree=2, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1220
|
+
S_3 = shape.SquareSerendipityShapeFunctions(degree=3, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1221
|
+
|
|
1222
|
+
test_shape_function_weight(test, S_2, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1223
|
+
test_shape_function_weight(test, S_3, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1224
|
+
test_shape_function_trace(test, S_2, SQUARE_SIDE_CENTER_COORDS)
|
|
1225
|
+
test_shape_function_trace(test, S_3, SQUARE_SIDE_CENTER_COORDS)
|
|
1226
|
+
test_shape_function_gradient(test, S_2, square_coord_sampler, square_coord_delta_sampler)
|
|
1227
|
+
test_shape_function_gradient(test, S_3, square_coord_sampler, square_coord_delta_sampler)
|
|
1228
|
+
|
|
1229
|
+
P_c1 = shape.SquareNonConformingPolynomialShapeFunctions(degree=1)
|
|
1230
|
+
P_c2 = shape.SquareNonConformingPolynomialShapeFunctions(degree=2)
|
|
1231
|
+
P_c3 = shape.SquareNonConformingPolynomialShapeFunctions(degree=3)
|
|
1232
|
+
|
|
1233
|
+
test_shape_function_weight(test, P_c1, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1234
|
+
test_shape_function_weight(test, P_c2, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1235
|
+
test_shape_function_weight(test, P_c3, square_coord_sampler, SQUARE_CENTER_COORDS)
|
|
1236
|
+
test_shape_function_gradient(test, P_c1, square_coord_sampler, square_coord_delta_sampler)
|
|
1237
|
+
test_shape_function_gradient(test, P_c2, square_coord_sampler, square_coord_delta_sampler)
|
|
1238
|
+
test_shape_function_gradient(test, P_c3, square_coord_sampler, square_coord_delta_sampler)
|
|
1239
|
+
|
|
1240
|
+
N1_1 = shape.SquareNedelecFirstKindShapeFunctions(degree=1)
|
|
1241
|
+
test_shape_function_gradient(test, N1_1, square_coord_sampler, square_coord_delta_sampler)
|
|
1242
|
+
RT_1 = shape.SquareRaviartThomasShapeFunctions(degree=1)
|
|
1243
|
+
test_shape_function_gradient(test, RT_1, square_coord_sampler, square_coord_delta_sampler)
|
|
1244
|
+
|
|
1245
|
+
wp.synchronize()
|
|
1246
|
+
|
|
1247
|
+
|
|
1248
|
+
def test_cube_shape_functions(test, device):
|
|
1249
|
+
CUBE_CENTER_COORDS = wp.constant(Coords(0.5, 0.5, 0.5))
|
|
1250
|
+
CUBE_SIDE_CENTER_COORDS = wp.constant(Coords(0.0, 0.5, 0.5))
|
|
1251
|
+
|
|
1252
|
+
@wp.func
|
|
1253
|
+
def cube_coord_sampler(state: wp.uint32):
|
|
1254
|
+
return Coords(wp.randf(state), wp.randf(state), wp.randf(state))
|
|
1255
|
+
|
|
1256
|
+
@wp.func
|
|
1257
|
+
def cube_coord_delta_sampler(epsilon: float, state: wp.uint32):
|
|
1258
|
+
param_delta = wp.normalize(wp.vec3(wp.randf(state), wp.randf(state), wp.randf(state))) * epsilon
|
|
1259
|
+
return param_delta, param_delta
|
|
1260
|
+
|
|
1261
|
+
Q_1 = shape.CubeTripolynomialShapeFunctions(degree=1, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1262
|
+
Q_2 = shape.CubeTripolynomialShapeFunctions(degree=2, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1263
|
+
Q_3 = shape.CubeTripolynomialShapeFunctions(degree=3, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1264
|
+
|
|
1265
|
+
test_shape_function_weight(test, Q_1, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1266
|
+
test_shape_function_weight(test, Q_2, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1267
|
+
test_shape_function_weight(test, Q_3, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1268
|
+
test_shape_function_trace(test, Q_1, CUBE_SIDE_CENTER_COORDS)
|
|
1269
|
+
test_shape_function_trace(test, Q_2, CUBE_SIDE_CENTER_COORDS)
|
|
1270
|
+
test_shape_function_trace(test, Q_3, CUBE_SIDE_CENTER_COORDS)
|
|
1271
|
+
test_shape_function_gradient(test, Q_1, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1272
|
+
test_shape_function_gradient(test, Q_2, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1273
|
+
test_shape_function_gradient(test, Q_3, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1274
|
+
|
|
1275
|
+
Q_1 = shape.CubeTripolynomialShapeFunctions(degree=1, family=fem.Polynomial.GAUSS_LEGENDRE)
|
|
1276
|
+
Q_2 = shape.CubeTripolynomialShapeFunctions(degree=2, family=fem.Polynomial.GAUSS_LEGENDRE)
|
|
1277
|
+
Q_3 = shape.CubeTripolynomialShapeFunctions(degree=3, family=fem.Polynomial.GAUSS_LEGENDRE)
|
|
1278
|
+
|
|
1279
|
+
test_shape_function_weight(test, Q_1, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1280
|
+
test_shape_function_weight(test, Q_2, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1281
|
+
test_shape_function_weight(test, Q_3, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1282
|
+
test_shape_function_gradient(test, Q_1, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1283
|
+
test_shape_function_gradient(test, Q_2, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1284
|
+
test_shape_function_gradient(test, Q_3, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1285
|
+
|
|
1286
|
+
S_2 = shape.CubeSerendipityShapeFunctions(degree=2, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1287
|
+
S_3 = shape.CubeSerendipityShapeFunctions(degree=3, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1288
|
+
|
|
1289
|
+
test_shape_function_weight(test, S_2, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1290
|
+
test_shape_function_weight(test, S_3, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1291
|
+
test_shape_function_trace(test, S_2, CUBE_SIDE_CENTER_COORDS)
|
|
1292
|
+
test_shape_function_trace(test, S_3, CUBE_SIDE_CENTER_COORDS)
|
|
1293
|
+
test_shape_function_gradient(test, S_2, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1294
|
+
test_shape_function_gradient(test, S_3, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1295
|
+
|
|
1296
|
+
P_c1 = shape.CubeNonConformingPolynomialShapeFunctions(degree=1)
|
|
1297
|
+
P_c2 = shape.CubeNonConformingPolynomialShapeFunctions(degree=2)
|
|
1298
|
+
P_c3 = shape.CubeNonConformingPolynomialShapeFunctions(degree=3)
|
|
1299
|
+
|
|
1300
|
+
test_shape_function_weight(test, P_c1, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1301
|
+
test_shape_function_weight(test, P_c2, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1302
|
+
test_shape_function_weight(test, P_c3, cube_coord_sampler, CUBE_CENTER_COORDS)
|
|
1303
|
+
test_shape_function_gradient(test, P_c1, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1304
|
+
test_shape_function_gradient(test, P_c2, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1305
|
+
test_shape_function_gradient(test, P_c3, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1306
|
+
|
|
1307
|
+
N1_1 = shape.CubeNedelecFirstKindShapeFunctions(degree=1)
|
|
1308
|
+
test_shape_function_gradient(test, N1_1, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1309
|
+
RT_1 = shape.CubeRaviartThomasShapeFunctions(degree=1)
|
|
1310
|
+
test_shape_function_gradient(test, RT_1, cube_coord_sampler, cube_coord_delta_sampler)
|
|
1311
|
+
|
|
1312
|
+
wp.synchronize()
|
|
1313
|
+
|
|
1314
|
+
|
|
1315
|
+
def test_tri_shape_functions(test, device):
|
|
1316
|
+
TRI_CENTER_COORDS = wp.constant(Coords(1 / 3.0, 1 / 3.0, 1 / 3.0))
|
|
1317
|
+
TRI_SIDE_CENTER_COORDS = wp.constant(Coords(0.0, 0.5, 0.5))
|
|
1318
|
+
|
|
1319
|
+
@wp.func
|
|
1320
|
+
def tri_coord_sampler(state: wp.uint32):
|
|
1321
|
+
a = wp.randf(state)
|
|
1322
|
+
b = wp.randf(state)
|
|
1323
|
+
return Coords(1.0 - a - b, a, b)
|
|
1324
|
+
|
|
1325
|
+
@wp.func
|
|
1326
|
+
def tri_coord_delta_sampler(epsilon: float, state: wp.uint32):
|
|
1327
|
+
param_delta = wp.normalize(wp.vec2(wp.randf(state), wp.randf(state))) * epsilon
|
|
1328
|
+
a = param_delta[0]
|
|
1329
|
+
b = param_delta[1]
|
|
1330
|
+
return param_delta, Coords(-a - b, a, b)
|
|
1331
|
+
|
|
1332
|
+
P_1 = shape.TrianglePolynomialShapeFunctions(degree=1)
|
|
1333
|
+
P_2 = shape.TrianglePolynomialShapeFunctions(degree=2)
|
|
1334
|
+
P_3 = shape.TrianglePolynomialShapeFunctions(degree=3)
|
|
1335
|
+
|
|
1336
|
+
test_shape_function_weight(test, P_1, tri_coord_sampler, TRI_CENTER_COORDS)
|
|
1337
|
+
test_shape_function_weight(test, P_2, tri_coord_sampler, TRI_CENTER_COORDS)
|
|
1338
|
+
test_shape_function_weight(test, P_3, tri_coord_sampler, TRI_CENTER_COORDS)
|
|
1339
|
+
test_shape_function_trace(test, P_1, TRI_SIDE_CENTER_COORDS)
|
|
1340
|
+
test_shape_function_trace(test, P_2, TRI_SIDE_CENTER_COORDS)
|
|
1341
|
+
test_shape_function_trace(test, P_3, TRI_SIDE_CENTER_COORDS)
|
|
1342
|
+
test_shape_function_gradient(test, P_1, tri_coord_sampler, tri_coord_delta_sampler)
|
|
1343
|
+
test_shape_function_gradient(test, P_2, tri_coord_sampler, tri_coord_delta_sampler)
|
|
1344
|
+
test_shape_function_gradient(test, P_3, tri_coord_sampler, tri_coord_delta_sampler)
|
|
1345
|
+
|
|
1346
|
+
P_1d = shape.TriangleNonConformingPolynomialShapeFunctions(degree=1)
|
|
1347
|
+
P_2d = shape.TriangleNonConformingPolynomialShapeFunctions(degree=2)
|
|
1348
|
+
P_3d = shape.TriangleNonConformingPolynomialShapeFunctions(degree=3)
|
|
1349
|
+
|
|
1350
|
+
test_shape_function_weight(test, P_1d, tri_coord_sampler, TRI_CENTER_COORDS)
|
|
1351
|
+
test_shape_function_weight(test, P_2d, tri_coord_sampler, TRI_CENTER_COORDS)
|
|
1352
|
+
test_shape_function_weight(test, P_3d, tri_coord_sampler, TRI_CENTER_COORDS)
|
|
1353
|
+
test_shape_function_gradient(test, P_1d, tri_coord_sampler, tri_coord_delta_sampler)
|
|
1354
|
+
test_shape_function_gradient(test, P_2d, tri_coord_sampler, tri_coord_delta_sampler)
|
|
1355
|
+
test_shape_function_gradient(test, P_3d, tri_coord_sampler, tri_coord_delta_sampler)
|
|
1356
|
+
|
|
1357
|
+
N1_1 = shape.TriangleNedelecFirstKindShapeFunctions(degree=1)
|
|
1358
|
+
test_shape_function_gradient(test, N1_1, tri_coord_sampler, tri_coord_delta_sampler, pure_curl=True)
|
|
1359
|
+
|
|
1360
|
+
RT_1 = shape.TriangleNedelecFirstKindShapeFunctions(degree=1)
|
|
1361
|
+
test_shape_function_gradient(test, RT_1, tri_coord_sampler, tri_coord_delta_sampler, pure_spherical=True)
|
|
1362
|
+
|
|
1363
|
+
wp.synchronize()
|
|
1364
|
+
|
|
1365
|
+
|
|
1366
|
+
def test_tet_shape_functions(test, device):
|
|
1367
|
+
TET_CENTER_COORDS = wp.constant(Coords(1 / 4.0, 1 / 4.0, 1 / 4.0))
|
|
1368
|
+
TET_SIDE_CENTER_COORDS = wp.constant(Coords(0.0, 1.0 / 3.0, 1.0 / 3.0))
|
|
1369
|
+
|
|
1370
|
+
@wp.func
|
|
1371
|
+
def tet_coord_sampler(state: wp.uint32):
|
|
1372
|
+
return Coords(wp.randf(state), wp.randf(state), wp.randf(state))
|
|
1373
|
+
|
|
1374
|
+
@wp.func
|
|
1375
|
+
def tet_coord_delta_sampler(epsilon: float, state: wp.uint32):
|
|
1376
|
+
param_delta = wp.normalize(wp.vec3(wp.randf(state), wp.randf(state), wp.randf(state))) * epsilon
|
|
1377
|
+
return param_delta, param_delta
|
|
1378
|
+
|
|
1379
|
+
P_1 = shape.TetrahedronPolynomialShapeFunctions(degree=1)
|
|
1380
|
+
P_2 = shape.TetrahedronPolynomialShapeFunctions(degree=2)
|
|
1381
|
+
P_3 = shape.TetrahedronPolynomialShapeFunctions(degree=3)
|
|
1382
|
+
|
|
1383
|
+
test_shape_function_weight(test, P_1, tet_coord_sampler, TET_CENTER_COORDS)
|
|
1384
|
+
test_shape_function_weight(test, P_2, tet_coord_sampler, TET_CENTER_COORDS)
|
|
1385
|
+
test_shape_function_weight(test, P_3, tet_coord_sampler, TET_CENTER_COORDS)
|
|
1386
|
+
test_shape_function_trace(test, P_1, TET_SIDE_CENTER_COORDS)
|
|
1387
|
+
test_shape_function_trace(test, P_2, TET_SIDE_CENTER_COORDS)
|
|
1388
|
+
test_shape_function_trace(test, P_3, TET_SIDE_CENTER_COORDS)
|
|
1389
|
+
test_shape_function_gradient(test, P_1, tet_coord_sampler, tet_coord_delta_sampler)
|
|
1390
|
+
test_shape_function_gradient(test, P_2, tet_coord_sampler, tet_coord_delta_sampler)
|
|
1391
|
+
test_shape_function_gradient(test, P_3, tet_coord_sampler, tet_coord_delta_sampler)
|
|
1392
|
+
|
|
1393
|
+
P_1d = shape.TetrahedronNonConformingPolynomialShapeFunctions(degree=1)
|
|
1394
|
+
P_2d = shape.TetrahedronNonConformingPolynomialShapeFunctions(degree=2)
|
|
1395
|
+
P_3d = shape.TetrahedronNonConformingPolynomialShapeFunctions(degree=3)
|
|
1396
|
+
|
|
1397
|
+
test_shape_function_weight(test, P_1d, tet_coord_sampler, TET_CENTER_COORDS)
|
|
1398
|
+
test_shape_function_weight(test, P_2d, tet_coord_sampler, TET_CENTER_COORDS)
|
|
1399
|
+
test_shape_function_weight(test, P_3d, tet_coord_sampler, TET_CENTER_COORDS)
|
|
1400
|
+
test_shape_function_gradient(test, P_1d, tet_coord_sampler, tet_coord_delta_sampler)
|
|
1401
|
+
test_shape_function_gradient(test, P_2d, tet_coord_sampler, tet_coord_delta_sampler)
|
|
1402
|
+
test_shape_function_gradient(test, P_3d, tet_coord_sampler, tet_coord_delta_sampler)
|
|
1403
|
+
|
|
1404
|
+
N1_1 = shape.TetrahedronNedelecFirstKindShapeFunctions(degree=1)
|
|
1405
|
+
test_shape_function_gradient(test, N1_1, tet_coord_sampler, tet_coord_delta_sampler, pure_curl=True)
|
|
1406
|
+
|
|
1407
|
+
RT_1 = shape.TetrahedronRaviartThomasShapeFunctions(degree=1)
|
|
1408
|
+
test_shape_function_gradient(test, RT_1, tet_coord_sampler, tet_coord_delta_sampler, pure_spherical=True)
|
|
1409
|
+
|
|
1410
|
+
wp.synchronize()
|
|
1411
|
+
|
|
1412
|
+
|
|
1413
|
+
def test_point_basis(test, device):
|
|
1414
|
+
geo = fem.Grid2D(res=wp.vec2i(2))
|
|
1415
|
+
|
|
1416
|
+
domain = fem.Cells(geo)
|
|
1417
|
+
|
|
1418
|
+
quadrature = fem.RegularQuadrature(domain, order=2, family=fem.Polynomial.GAUSS_LEGENDRE)
|
|
1419
|
+
point_basis = fem.PointBasisSpace(quadrature)
|
|
1420
|
+
|
|
1421
|
+
point_space = fem.make_collocated_function_space(point_basis)
|
|
1422
|
+
point_test = fem.make_test(point_space, domain=domain)
|
|
1423
|
+
|
|
1424
|
+
# Sample at particle positions
|
|
1425
|
+
ones = fem.integrate(linear_form, fields={"u": point_test}, nodal=True)
|
|
1426
|
+
test.assertAlmostEqual(np.sum(ones.numpy()), 1.0, places=5)
|
|
1427
|
+
|
|
1428
|
+
# Sampling outside of particle positions
|
|
1429
|
+
other_quadrature = fem.RegularQuadrature(domain, order=2, family=fem.Polynomial.LOBATTO_GAUSS_LEGENDRE)
|
|
1430
|
+
zeros = fem.integrate(linear_form, quadrature=other_quadrature, fields={"u": point_test})
|
|
1431
|
+
|
|
1432
|
+
test.assertAlmostEqual(np.sum(zeros.numpy()), 0.0, places=5)
|
|
1433
|
+
|
|
1434
|
+
# test point basis with variable points per cell
|
|
1435
|
+
points = wp.array([[0.25, 0.33], [0.33, 0.25], [0.8, 0.8]], dtype=wp.vec2)
|
|
1436
|
+
pic = fem.PicQuadrature(domain, positions=points)
|
|
1437
|
+
|
|
1438
|
+
test.assertEqual(pic.active_cell_count(), 2)
|
|
1439
|
+
test.assertEqual(pic.total_point_count(), 3)
|
|
1440
|
+
test.assertEqual(pic.max_points_per_element(), 2)
|
|
1441
|
+
|
|
1442
|
+
point_basis = fem.PointBasisSpace(pic)
|
|
1443
|
+
point_space = fem.make_collocated_function_space(point_basis)
|
|
1444
|
+
point_test = fem.make_test(point_space, domain=domain)
|
|
1445
|
+
test.assertEqual(point_test.space_restriction.node_count(), 3)
|
|
1446
|
+
|
|
1447
|
+
ones = fem.integrate(linear_form, fields={"u": point_test}, quadrature=pic)
|
|
1448
|
+
test.assertAlmostEqual(np.sum(ones.numpy()), pic.active_cell_count() / geo.cell_count(), places=5)
|
|
1449
|
+
|
|
1450
|
+
zeros = fem.integrate(linear_form, quadrature=other_quadrature, fields={"u": point_test})
|
|
1451
|
+
test.assertAlmostEqual(np.sum(zeros.numpy()), 0.0, places=5)
|
|
1452
|
+
|
|
1453
|
+
linear_vec = fem.make_polynomial_space(geo, dtype=wp.vec2)
|
|
1454
|
+
linear_test = fem.make_test(linear_vec)
|
|
1455
|
+
point_trial = fem.make_trial(point_space)
|
|
1456
|
+
|
|
1457
|
+
mat = fem.integrate(vector_divergence_form, fields={"u": linear_test, "q": point_trial}, quadrature=pic)
|
|
1458
|
+
test.assertEqual(mat.nrow, 9)
|
|
1459
|
+
test.assertEqual(mat.ncol, 3)
|
|
1460
|
+
test.assertEqual(mat.nnz_sync(), 12)
|
|
1461
|
+
|
|
1462
|
+
|
|
1463
|
+
@fem.integrand
|
|
1464
|
+
def _bicubic(s: Sample, domain: Domain):
|
|
1465
|
+
x = domain(s)
|
|
1466
|
+
return wp.pow(x[0], 3.0) * wp.pow(x[1], 3.0)
|
|
1467
|
+
|
|
1468
|
+
|
|
1469
|
+
@fem.integrand
|
|
1470
|
+
def _piecewise_constant(s: Sample):
|
|
1471
|
+
return float(s.element_index)
|
|
1472
|
+
|
|
1473
|
+
|
|
1474
|
+
def test_particle_quadratures(test, device):
|
|
1475
|
+
geo = fem.Grid2D(res=wp.vec2i(2))
|
|
1476
|
+
|
|
1477
|
+
domain = fem.Cells(geo)
|
|
1478
|
+
|
|
1479
|
+
# Explicit quadrature
|
|
1480
|
+
points, weights = domain.reference_element().instantiate_quadrature(order=4, family=fem.Polynomial.GAUSS_LEGENDRE)
|
|
1481
|
+
points_per_cell = len(points)
|
|
1482
|
+
|
|
1483
|
+
points = points * domain.element_count()
|
|
1484
|
+
weights = weights * domain.element_count()
|
|
1485
|
+
|
|
1486
|
+
points = wp.array(points, shape=(domain.element_count(), points_per_cell), dtype=Coords, device=device)
|
|
1487
|
+
weights = wp.array(weights, shape=(domain.element_count(), points_per_cell), dtype=float, device=device)
|
|
1488
|
+
|
|
1489
|
+
explicit_quadrature = fem.ExplicitQuadrature(domain, points, weights)
|
|
1490
|
+
|
|
1491
|
+
test.assertEqual(explicit_quadrature.max_points_per_element(), points_per_cell)
|
|
1492
|
+
test.assertEqual(explicit_quadrature.total_point_count(), points_per_cell * geo.cell_count())
|
|
1493
|
+
|
|
1494
|
+
# test integration accuracy
|
|
1495
|
+
val = fem.integrate(_bicubic, quadrature=explicit_quadrature)
|
|
1496
|
+
test.assertAlmostEqual(val, 1.0 / 16, places=5)
|
|
1497
|
+
|
|
1498
|
+
# test indexing validity
|
|
1499
|
+
arr = wp.empty(explicit_quadrature.total_point_count(), dtype=float)
|
|
1500
|
+
fem.interpolate(_piecewise_constant, dest=arr, quadrature=explicit_quadrature)
|
|
1501
|
+
assert_np_equal(arr.numpy(), np.arange(geo.cell_count()).repeat(points_per_cell))
|
|
1502
|
+
|
|
1503
|
+
# PIC quadrature
|
|
1504
|
+
element_indices = wp.array([3, 3, 2], dtype=int, device=device)
|
|
1505
|
+
element_coords = wp.array(
|
|
1506
|
+
[
|
|
1507
|
+
[0.25, 0.5, 0.0],
|
|
1508
|
+
[0.5, 0.25, 0.0],
|
|
1509
|
+
[0.5, 0.5, 0.0],
|
|
1510
|
+
],
|
|
1511
|
+
dtype=Coords,
|
|
1512
|
+
device=device,
|
|
1513
|
+
)
|
|
1514
|
+
|
|
1515
|
+
pic_quadrature = fem.PicQuadrature(domain, positions=(element_indices, element_coords))
|
|
1516
|
+
|
|
1517
|
+
test.assertEqual(pic_quadrature.max_points_per_element(), 2)
|
|
1518
|
+
test.assertEqual(pic_quadrature.total_point_count(), 3)
|
|
1519
|
+
test.assertEqual(pic_quadrature.active_cell_count(), 2)
|
|
1520
|
+
|
|
1521
|
+
# Test integration accuracy
|
|
1522
|
+
val = fem.integrate(_piecewise_constant, quadrature=pic_quadrature)
|
|
1523
|
+
test.assertAlmostEqual(val, 1.25, places=5)
|
|
1524
|
+
|
|
1525
|
+
# Test differentiability of PicQuadrature w.r.t positions and measures
|
|
1526
|
+
points = wp.array([[0.25, 0.33], [0.33, 0.25], [0.8, 0.8]], dtype=wp.vec2, device=device, requires_grad=True)
|
|
1527
|
+
measures = wp.ones(3, dtype=float, device=device, requires_grad=True)
|
|
1528
|
+
|
|
1529
|
+
tape = wp.Tape()
|
|
1530
|
+
with tape:
|
|
1531
|
+
pic = fem.PicQuadrature(domain, positions=points, measures=measures, requires_grad=True)
|
|
1532
|
+
|
|
1533
|
+
pic.arg_value(device).particle_coords.grad.fill_(1.0)
|
|
1534
|
+
pic.arg_value(device).particle_fraction.grad.fill_(1.0)
|
|
1535
|
+
tape.backward()
|
|
1536
|
+
|
|
1537
|
+
assert_np_equal(points.grad.numpy(), np.full((3, 2), 2.0)) # == 1.0 / cell_size
|
|
1538
|
+
assert_np_equal(measures.grad.numpy(), np.full(3, 4.0)) # == 1.0 / cell_area
|
|
1539
|
+
|
|
1540
|
+
|
|
1541
|
+
@fem.integrand
|
|
1542
|
+
def _value_at_node(s: fem.Sample, f: fem.Field, values: wp.array(dtype=float)):
|
|
1543
|
+
node_index = fem.operator.node_partition_index(f, s.qp_index)
|
|
1544
|
+
return values[node_index]
|
|
1545
|
+
|
|
1546
|
+
|
|
1547
|
+
def test_nodal_quadrature(test, device):
|
|
1548
|
+
geo = fem.Grid2D(res=wp.vec2i(2))
|
|
1549
|
+
|
|
1550
|
+
domain = fem.Cells(geo)
|
|
1551
|
+
|
|
1552
|
+
space = fem.make_polynomial_space(geo, degree=2, discontinuous=True, family=fem.Polynomial.GAUSS_LEGENDRE)
|
|
1553
|
+
nodal_quadrature = fem.NodalQuadrature(domain, space)
|
|
1554
|
+
|
|
1555
|
+
test.assertEqual(nodal_quadrature.max_points_per_element(), 9)
|
|
1556
|
+
test.assertEqual(nodal_quadrature.total_point_count(), 9 * geo.cell_count())
|
|
1557
|
+
|
|
1558
|
+
val = fem.integrate(_bicubic, quadrature=nodal_quadrature)
|
|
1559
|
+
test.assertAlmostEqual(val, 1.0 / 16, places=5)
|
|
1560
|
+
|
|
1561
|
+
# test accessing data associated to a given node
|
|
1562
|
+
|
|
1563
|
+
piecewise_constant_space = fem.make_polynomial_space(geo, degree=0)
|
|
1564
|
+
geo_partition = fem.LinearGeometryPartition(geo, 3, 4)
|
|
1565
|
+
space_partition = fem.make_space_partition(piecewise_constant_space, geo_partition)
|
|
1566
|
+
field = fem.make_discrete_field(piecewise_constant_space, space_partition=space_partition)
|
|
1567
|
+
|
|
1568
|
+
partition_domain = fem.Cells(geo_partition)
|
|
1569
|
+
partition_nodal_quadrature = fem.NodalQuadrature(partition_domain, piecewise_constant_space)
|
|
1570
|
+
|
|
1571
|
+
partition_node_values = wp.array([5.0], dtype=float)
|
|
1572
|
+
val = fem.integrate(
|
|
1573
|
+
_value_at_node,
|
|
1574
|
+
quadrature=partition_nodal_quadrature,
|
|
1575
|
+
fields={"f": field},
|
|
1576
|
+
values={"values": partition_node_values},
|
|
1577
|
+
)
|
|
1578
|
+
test.assertAlmostEqual(val, 5.0 / geo.cell_count(), places=5)
|
|
1579
|
+
|
|
1580
|
+
|
|
1581
|
+
@wp.func
|
|
1582
|
+
def aniso_bicubic_fn(x: wp.vec2, scale: wp.vec2):
|
|
1583
|
+
return wp.pow(x[0] * scale[0], 3.0) * wp.pow(x[1] * scale[1], 3.0)
|
|
1584
|
+
|
|
1585
|
+
|
|
1586
|
+
@wp.func
|
|
1587
|
+
def aniso_bicubic_grad(x: wp.vec2, scale: wp.vec2):
|
|
1588
|
+
return wp.vec2(
|
|
1589
|
+
3.0 * scale[0] * wp.pow(x[0] * scale[0], 2.0) * wp.pow(x[1] * scale[1], 3.0),
|
|
1590
|
+
3.0 * scale[1] * wp.pow(x[0] * scale[0], 3.0) * wp.pow(x[1] * scale[1], 2.0),
|
|
1591
|
+
)
|
|
1592
|
+
|
|
1593
|
+
|
|
1594
|
+
def test_implicit_fields(test, device):
|
|
1595
|
+
geo = fem.Grid2D(res=wp.vec2i(2))
|
|
1596
|
+
domain = fem.Cells(geo)
|
|
1597
|
+
boundary = fem.BoundarySides(geo)
|
|
1598
|
+
|
|
1599
|
+
space = fem.make_polynomial_space(geo)
|
|
1600
|
+
vec_space = fem.make_polynomial_space(geo, dtype=wp.vec2)
|
|
1601
|
+
discrete_field = fem.make_discrete_field(space)
|
|
1602
|
+
discrete_vec_field = fem.make_discrete_field(vec_space)
|
|
1603
|
+
|
|
1604
|
+
# Uniform
|
|
1605
|
+
|
|
1606
|
+
uniform = fem.UniformField(domain, 5.0)
|
|
1607
|
+
fem.interpolate(uniform, dest=discrete_field)
|
|
1608
|
+
assert_np_equal(discrete_field.dof_values.numpy(), np.full(9, 5.0))
|
|
1609
|
+
|
|
1610
|
+
fem.interpolate(grad_field, fields={"p": uniform}, dest=discrete_vec_field)
|
|
1611
|
+
assert_np_equal(discrete_vec_field.dof_values.numpy(), np.zeros((9, 2)))
|
|
1612
|
+
|
|
1613
|
+
uniform.value = 2.0
|
|
1614
|
+
fem.interpolate(uniform.trace(), dest=fem.make_restriction(discrete_field, domain=boundary))
|
|
1615
|
+
assert_np_equal(discrete_field.dof_values.numpy(), np.array([2.0] * 4 + [5.0] + [2.0] * 4))
|
|
1616
|
+
|
|
1617
|
+
# Implicit
|
|
1618
|
+
|
|
1619
|
+
implicit = fem.ImplicitField(
|
|
1620
|
+
domain, func=aniso_bicubic_fn, values={"scale": wp.vec2(2.0, 4.0)}, grad_func=aniso_bicubic_grad
|
|
1621
|
+
)
|
|
1622
|
+
fem.interpolate(implicit, dest=discrete_field)
|
|
1623
|
+
assert_np_equal(
|
|
1624
|
+
discrete_field.dof_values.numpy(),
|
|
1625
|
+
np.array([0.0, 0.0, 0.0, 0.0, 2.0**3, 4.0**3, 0.0, 2.0**3 * 2.0**3, 4.0**3 * 2.0**3]),
|
|
1626
|
+
)
|
|
1627
|
+
|
|
1628
|
+
fem.interpolate(grad_field, fields={"p": implicit}, dest=discrete_vec_field)
|
|
1629
|
+
assert_np_equal(discrete_vec_field.dof_values.numpy()[0], np.zeros(2))
|
|
1630
|
+
assert_np_equal(discrete_vec_field.dof_values.numpy()[-1], np.full(2, (2.0**9.0 * 3.0)))
|
|
1631
|
+
|
|
1632
|
+
implicit.values.scale = wp.vec2(-2.0, -2.0)
|
|
1633
|
+
fem.interpolate(implicit.trace(), dest=fem.make_restriction(discrete_field, domain=boundary))
|
|
1634
|
+
assert_np_equal(
|
|
1635
|
+
discrete_field.dof_values.numpy(),
|
|
1636
|
+
np.array([0.0, 0.0, 0.0, 0.0, 2.0**3, 2.0**3, 0.0, 2.0**3, 4.0**3]),
|
|
1637
|
+
)
|
|
1638
|
+
|
|
1639
|
+
# Nonconforming
|
|
1640
|
+
|
|
1641
|
+
geo2 = fem.Grid2D(res=wp.vec2i(1), bounds_lo=wp.vec2(0.25, 0.25), bounds_hi=wp.vec2(2.0, 2.0))
|
|
1642
|
+
domain2 = fem.Cells(geo2)
|
|
1643
|
+
boundary2 = fem.BoundarySides(geo2)
|
|
1644
|
+
space2 = fem.make_polynomial_space(geo2)
|
|
1645
|
+
vec_space2 = fem.make_polynomial_space(geo2, dtype=wp.vec2)
|
|
1646
|
+
discrete_field2 = fem.make_discrete_field(space2)
|
|
1647
|
+
discrete_vec_field2 = fem.make_discrete_field(vec_space2)
|
|
1648
|
+
|
|
1649
|
+
nonconforming = fem.NonconformingField(domain2, discrete_field, background=5.0)
|
|
1650
|
+
fem.interpolate(
|
|
1651
|
+
nonconforming,
|
|
1652
|
+
dest=discrete_field2,
|
|
1653
|
+
)
|
|
1654
|
+
assert_np_equal(discrete_field2.dof_values.numpy(), np.array([2.0] + [5.0] * 3))
|
|
1655
|
+
|
|
1656
|
+
fem.interpolate(grad_field, fields={"p": nonconforming}, dest=discrete_vec_field2)
|
|
1657
|
+
assert_np_equal(discrete_vec_field2.dof_values.numpy()[0], np.full(2, 8.0))
|
|
1658
|
+
assert_np_equal(discrete_vec_field2.dof_values.numpy()[-1], np.zeros(2))
|
|
1659
|
+
|
|
1660
|
+
discrete_field2.dof_values.zero_()
|
|
1661
|
+
fem.interpolate(
|
|
1662
|
+
nonconforming.trace(),
|
|
1663
|
+
dest=fem.make_restriction(discrete_field2, domain=boundary2),
|
|
1664
|
+
)
|
|
1665
|
+
assert_np_equal(discrete_field2.dof_values.numpy(), np.array([2.0] + [5.0] * 3))
|
|
1666
|
+
|
|
1667
|
+
|
|
1668
|
+
@fem.integrand
|
|
1669
|
+
def _expect_pure_curl(s: fem.Sample, field: fem.Field):
|
|
1670
|
+
sym_grad = fem.D(field, s)
|
|
1671
|
+
wp.expect_near(wp.ddot(sym_grad, sym_grad), 0.0)
|
|
1672
|
+
return 0.0
|
|
1673
|
+
|
|
1674
|
+
|
|
1675
|
+
@fem.integrand
|
|
1676
|
+
def _expect_pure_spherical(s: fem.Sample, field: fem.Field):
|
|
1677
|
+
grad = fem.grad(field, s)
|
|
1678
|
+
deviatoric_part = grad - spherical_part(grad)
|
|
1679
|
+
wp.expect_near(wp.ddot(deviatoric_part, deviatoric_part), 0.0)
|
|
1680
|
+
return 0.0
|
|
1681
|
+
|
|
1682
|
+
|
|
1683
|
+
@fem.integrand
|
|
1684
|
+
def _expect_normal_continuity(s: fem.Sample, domain: fem.Domain, field: fem.Field):
|
|
1685
|
+
nor = fem.normal(domain, s)
|
|
1686
|
+
wp.expect_near(wp.dot(fem.inner(field, s), nor), wp.dot(fem.outer(field, s), nor), 0.0001)
|
|
1687
|
+
return 0.0
|
|
1688
|
+
|
|
1689
|
+
|
|
1690
|
+
@fem.integrand
|
|
1691
|
+
def _expect_tangential_continuity(s: fem.Sample, domain: fem.Domain, field: fem.Field):
|
|
1692
|
+
nor = fem.normal(domain, s)
|
|
1693
|
+
in_s = fem.inner(field, s)
|
|
1694
|
+
out_s = fem.outer(field, s)
|
|
1695
|
+
in_t = in_s - wp.dot(in_s, nor) * nor
|
|
1696
|
+
out_t = out_s - wp.dot(out_s, nor) * nor
|
|
1697
|
+
|
|
1698
|
+
_expect_near(in_t, out_t, 0.0001)
|
|
1699
|
+
return 0.0
|
|
1700
|
+
|
|
1701
|
+
|
|
1702
|
+
def test_vector_spaces(test, device):
|
|
1703
|
+
# Test covariant / contravariant mappings
|
|
1704
|
+
|
|
1705
|
+
with wp.ScopedDevice(device):
|
|
1706
|
+
positions, hex_vidx = _gen_quadmesh(3)
|
|
1707
|
+
|
|
1708
|
+
geo = fem.Quadmesh2D(quad_vertex_indices=hex_vidx, positions=positions)
|
|
1709
|
+
|
|
1710
|
+
curl_space = fem.make_polynomial_space(geo, element_basis=fem.ElementBasis.NEDELEC_FIRST_KIND)
|
|
1711
|
+
curl_test = fem.make_test(curl_space)
|
|
1712
|
+
|
|
1713
|
+
curl_field = curl_space.make_field()
|
|
1714
|
+
curl_field.dof_values = wp.array(np.linspace(0.0, 1.0, curl_space.node_count()), dtype=float)
|
|
1715
|
+
|
|
1716
|
+
fem.interpolate(
|
|
1717
|
+
_expect_tangential_continuity,
|
|
1718
|
+
quadrature=fem.RegularQuadrature(fem.Sides(geo), order=2),
|
|
1719
|
+
fields={"field": curl_field.trace()},
|
|
1720
|
+
)
|
|
1721
|
+
|
|
1722
|
+
div_space = fem.make_polynomial_space(geo, element_basis=fem.ElementBasis.RAVIART_THOMAS)
|
|
1723
|
+
div_test = fem.make_test(div_space)
|
|
1724
|
+
|
|
1725
|
+
div_field = div_space.make_field()
|
|
1726
|
+
div_field.dof_values = wp.array(np.linspace(0.0, 1.0, div_space.node_count()), dtype=float)
|
|
1727
|
+
|
|
1728
|
+
fem.interpolate(
|
|
1729
|
+
_expect_normal_continuity,
|
|
1730
|
+
quadrature=fem.RegularQuadrature(fem.Sides(geo), order=2),
|
|
1731
|
+
fields={"field": div_field.trace()},
|
|
1732
|
+
)
|
|
1733
|
+
|
|
1734
|
+
with wp.ScopedDevice(device):
|
|
1735
|
+
positions, hex_vidx = _gen_hexmesh(3)
|
|
1736
|
+
|
|
1737
|
+
geo = fem.Hexmesh(hex_vertex_indices=hex_vidx, positions=positions)
|
|
1738
|
+
|
|
1739
|
+
curl_space = fem.make_polynomial_space(geo, element_basis=fem.ElementBasis.NEDELEC_FIRST_KIND)
|
|
1740
|
+
curl_test = fem.make_test(curl_space)
|
|
1741
|
+
|
|
1742
|
+
curl_field = curl_space.make_field()
|
|
1743
|
+
curl_field.dof_values = wp.array(np.linspace(0.0, 1.0, curl_space.node_count()), dtype=float)
|
|
1744
|
+
|
|
1745
|
+
fem.interpolate(
|
|
1746
|
+
_expect_tangential_continuity,
|
|
1747
|
+
quadrature=fem.RegularQuadrature(fem.Sides(geo), order=2),
|
|
1748
|
+
fields={"field": curl_field.trace()},
|
|
1749
|
+
)
|
|
1750
|
+
|
|
1751
|
+
div_space = fem.make_polynomial_space(geo, element_basis=fem.ElementBasis.RAVIART_THOMAS)
|
|
1752
|
+
div_test = fem.make_test(div_space)
|
|
1753
|
+
|
|
1754
|
+
div_field = div_space.make_field()
|
|
1755
|
+
div_field.dof_values = wp.array(np.linspace(0.0, 1.0, div_space.node_count()), dtype=float)
|
|
1756
|
+
|
|
1757
|
+
fem.interpolate(
|
|
1758
|
+
_expect_normal_continuity,
|
|
1759
|
+
quadrature=fem.RegularQuadrature(fem.Sides(geo), order=2),
|
|
1760
|
+
fields={"field": div_field.trace()},
|
|
1761
|
+
)
|
|
1762
|
+
|
|
1763
|
+
return
|
|
1764
|
+
|
|
1765
|
+
with wp.ScopedDevice(device):
|
|
1766
|
+
positions, tri_vidx = _gen_trimesh(3, 5)
|
|
1767
|
+
|
|
1768
|
+
geo = fem.Trimesh2D(tri_vertex_indices=tri_vidx, positions=positions)
|
|
1769
|
+
|
|
1770
|
+
curl_space = fem.make_polynomial_space(geo, element_basis=fem.ElementBasis.NEDELEC_FIRST_KIND)
|
|
1771
|
+
curl_test = fem.make_test(curl_space)
|
|
1772
|
+
|
|
1773
|
+
fem.integrate(_expect_pure_curl, fields={"field": curl_test}, assembly="generic")
|
|
1774
|
+
|
|
1775
|
+
curl_field = curl_space.make_field()
|
|
1776
|
+
curl_field.dof_values.fill_(1.0)
|
|
1777
|
+
fem.interpolate(
|
|
1778
|
+
_expect_pure_curl, quadrature=fem.RegularQuadrature(fem.Cells(geo), order=2), fields={"field": curl_field}
|
|
1779
|
+
)
|
|
1780
|
+
|
|
1781
|
+
fem.interpolate(
|
|
1782
|
+
_expect_tangential_continuity,
|
|
1783
|
+
quadrature=fem.RegularQuadrature(fem.Sides(geo), order=2),
|
|
1784
|
+
fields={"field": curl_field.trace()},
|
|
1785
|
+
)
|
|
1786
|
+
|
|
1787
|
+
div_space = fem.make_polynomial_space(geo, element_basis=fem.ElementBasis.RAVIART_THOMAS)
|
|
1788
|
+
div_test = fem.make_test(div_space)
|
|
1789
|
+
|
|
1790
|
+
fem.integrate(_expect_pure_spherical, fields={"field": div_test}, assembly="generic")
|
|
1791
|
+
|
|
1792
|
+
div_field = div_space.make_field()
|
|
1793
|
+
div_field.dof_values.fill_(1.0)
|
|
1794
|
+
fem.interpolate(
|
|
1795
|
+
_expect_pure_spherical,
|
|
1796
|
+
quadrature=fem.RegularQuadrature(fem.Cells(geo), order=2),
|
|
1797
|
+
fields={"field": div_field},
|
|
1798
|
+
)
|
|
1799
|
+
|
|
1800
|
+
fem.interpolate(
|
|
1801
|
+
_expect_normal_continuity,
|
|
1802
|
+
quadrature=fem.RegularQuadrature(fem.Sides(geo), order=2),
|
|
1803
|
+
fields={"field": div_field.trace()},
|
|
1804
|
+
)
|
|
1805
|
+
|
|
1806
|
+
with wp.ScopedDevice(device):
|
|
1807
|
+
positions, tet_vidx = _gen_tetmesh(3, 5, 7)
|
|
1808
|
+
|
|
1809
|
+
geo = fem.Tetmesh(tet_vertex_indices=tet_vidx, positions=positions)
|
|
1810
|
+
|
|
1811
|
+
curl_space = fem.make_polynomial_space(geo, element_basis=fem.ElementBasis.NEDELEC_FIRST_KIND)
|
|
1812
|
+
curl_test = fem.make_test(curl_space)
|
|
1813
|
+
|
|
1814
|
+
fem.integrate(_expect_pure_curl, fields={"field": curl_test}, assembly="generic")
|
|
1815
|
+
|
|
1816
|
+
curl_field = curl_space.make_field()
|
|
1817
|
+
curl_field.dof_values.fill_(1.0)
|
|
1818
|
+
fem.interpolate(
|
|
1819
|
+
_expect_pure_curl, quadrature=fem.RegularQuadrature(fem.Cells(geo), order=2), fields={"field": curl_field}
|
|
1820
|
+
)
|
|
1821
|
+
|
|
1822
|
+
fem.interpolate(
|
|
1823
|
+
_expect_tangential_continuity,
|
|
1824
|
+
quadrature=fem.RegularQuadrature(fem.Sides(geo), order=1),
|
|
1825
|
+
fields={"field": curl_field.trace()},
|
|
1826
|
+
)
|
|
1827
|
+
|
|
1828
|
+
div_space = fem.make_polynomial_space(geo, element_basis=fem.ElementBasis.RAVIART_THOMAS)
|
|
1829
|
+
div_test = fem.make_test(div_space)
|
|
1830
|
+
|
|
1831
|
+
fem.integrate(_expect_pure_spherical, fields={"field": div_test}, assembly="generic")
|
|
1832
|
+
|
|
1833
|
+
div_field = div_space.make_field()
|
|
1834
|
+
div_field.dof_values.fill_(1.0)
|
|
1835
|
+
fem.interpolate(
|
|
1836
|
+
_expect_pure_spherical,
|
|
1837
|
+
quadrature=fem.RegularQuadrature(fem.Cells(geo), order=2),
|
|
1838
|
+
fields={"field": div_field},
|
|
1839
|
+
)
|
|
1840
|
+
|
|
1841
|
+
fem.interpolate(
|
|
1842
|
+
_expect_normal_continuity,
|
|
1843
|
+
quadrature=fem.RegularQuadrature(fem.Sides(geo), order=0),
|
|
1844
|
+
fields={"field": div_field.trace()},
|
|
1845
|
+
)
|
|
1846
|
+
|
|
1847
|
+
|
|
1848
|
+
@wp.kernel
|
|
1849
|
+
def test_qr_eigenvalues():
|
|
1850
|
+
tol = 1.0e-8
|
|
1851
|
+
|
|
1852
|
+
# zero
|
|
1853
|
+
Zero = wp.mat33(0.0)
|
|
1854
|
+
Id = wp.identity(n=3, dtype=float)
|
|
1855
|
+
D3, P3 = symmetric_eigenvalues_qr(Zero, tol * tol)
|
|
1856
|
+
wp.expect_eq(D3, wp.vec3(0.0))
|
|
1857
|
+
wp.expect_eq(P3, Id)
|
|
1858
|
+
|
|
1859
|
+
# Identity
|
|
1860
|
+
D3, P3 = symmetric_eigenvalues_qr(Id, tol * tol)
|
|
1861
|
+
wp.expect_eq(D3, wp.vec3(1.0))
|
|
1862
|
+
wp.expect_eq(wp.transpose(P3) * P3, Id)
|
|
1863
|
+
|
|
1864
|
+
# rank 1
|
|
1865
|
+
v = wp.vec4(0.0, 1.0, 1.0, 0.0)
|
|
1866
|
+
Rank1 = wp.outer(v, v)
|
|
1867
|
+
D4, P4 = symmetric_eigenvalues_qr(Rank1, tol * tol)
|
|
1868
|
+
wp.expect_near(wp.max(D4), wp.length_sq(v), tol)
|
|
1869
|
+
Err4 = wp.transpose(P4) * wp.diag(D4) * P4 - Rank1
|
|
1870
|
+
wp.expect_near(wp.ddot(Err4, Err4), 0.0, tol)
|
|
1871
|
+
|
|
1872
|
+
# rank 2
|
|
1873
|
+
v2 = wp.vec4(0.0, 0.5, -0.5, 0.0)
|
|
1874
|
+
Rank2 = Rank1 + wp.outer(v2, v2)
|
|
1875
|
+
D4, P4 = symmetric_eigenvalues_qr(Rank2, tol * tol)
|
|
1876
|
+
wp.expect_near(wp.max(D4), wp.length_sq(v), tol)
|
|
1877
|
+
wp.expect_near(D4[0] + D4[1] + D4[2] + D4[3], wp.length_sq(v) + wp.length_sq(v2), tol)
|
|
1878
|
+
Err4 = wp.transpose(P4) * wp.diag(D4) * P4 - Rank2
|
|
1879
|
+
wp.expect_near(wp.ddot(Err4, Err4), 0.0, tol)
|
|
1880
|
+
|
|
1881
|
+
# rank 4
|
|
1882
|
+
v3 = wp.vec4(1.0, 2.0, 3.0, 4.0)
|
|
1883
|
+
v4 = wp.vec4(2.0, 1.0, 0.0, -1.0)
|
|
1884
|
+
Rank4 = Rank2 + wp.outer(v3, v3) + wp.outer(v4, v4)
|
|
1885
|
+
D4, P4 = symmetric_eigenvalues_qr(Rank4, tol * tol)
|
|
1886
|
+
Err4 = wp.transpose(P4) * wp.diag(D4) * P4 - Rank4
|
|
1887
|
+
wp.expect_near(wp.ddot(Err4, Err4), 0.0, tol)
|
|
1888
|
+
|
|
1889
|
+
# test robustness to low requested tolerance
|
|
1890
|
+
Rank6 = wp.matrix_from_cols(
|
|
1891
|
+
vec6f(0.00171076, 0.0, 0.0, 0.0, 0.0, 0.0),
|
|
1892
|
+
vec6f(0.0, 0.00169935, 6.14367e-06, -3.52589e-05, 3.02397e-05, -1.53458e-11),
|
|
1893
|
+
vec6f(0.0, 6.14368e-06, 0.00172217, 2.03568e-05, 1.74589e-05, -2.92627e-05),
|
|
1894
|
+
vec6f(0.0, -3.52589e-05, 2.03568e-05, 0.00172178, 2.53422e-05, 3.02397e-05),
|
|
1895
|
+
vec6f(0.0, 3.02397e-05, 1.74589e-05, 2.53422e-05, 0.00171114, 3.52589e-05),
|
|
1896
|
+
vec6f(0.0, 6.42993e-12, -2.92627e-05, 3.02397e-05, 3.52589e-05, 0.00169935),
|
|
1897
|
+
)
|
|
1898
|
+
D6, P6 = symmetric_eigenvalues_qr(Rank6, 0.0)
|
|
1899
|
+
Err6 = wp.transpose(P6) * wp.diag(D6) * P6 - Rank6
|
|
1900
|
+
wp.expect_near(wp.ddot(Err6, Err6), 0.0, 1.0e-13)
|
|
1901
|
+
|
|
1902
|
+
|
|
1903
|
+
@wp.kernel
|
|
1904
|
+
def test_qr_inverse():
|
|
1905
|
+
rng = wp.rand_init(4356, wp.tid())
|
|
1906
|
+
M = wp.mat33(
|
|
1907
|
+
wp.randf(rng, 0.0, 10.0),
|
|
1908
|
+
wp.randf(rng, 0.0, 10.0),
|
|
1909
|
+
wp.randf(rng, 0.0, 10.0),
|
|
1910
|
+
wp.randf(rng, 0.0, 10.0),
|
|
1911
|
+
wp.randf(rng, 0.0, 10.0),
|
|
1912
|
+
wp.randf(rng, 0.0, 10.0),
|
|
1913
|
+
wp.randf(rng, 0.0, 10.0),
|
|
1914
|
+
wp.randf(rng, 0.0, 10.0),
|
|
1915
|
+
wp.randf(rng, 0.0, 10.0),
|
|
1916
|
+
)
|
|
1917
|
+
|
|
1918
|
+
if wp.determinant(M) != 0.0:
|
|
1919
|
+
tol = 1.0e-8
|
|
1920
|
+
Mi = inverse_qr(M)
|
|
1921
|
+
Id = wp.identity(n=3, dtype=float)
|
|
1922
|
+
Err = M * Mi - Id
|
|
1923
|
+
wp.expect_near(wp.ddot(Err, Err), 0.0, tol)
|
|
1924
|
+
Err = Mi * M - Id
|
|
1925
|
+
wp.expect_near(wp.ddot(Err, Err), 0.0, tol)
|
|
1926
|
+
|
|
1927
|
+
|
|
1928
|
+
def test_array_axpy(test, device):
|
|
1929
|
+
N = 10
|
|
1930
|
+
alpha = 0.5
|
|
1931
|
+
beta = 4.0
|
|
1932
|
+
|
|
1933
|
+
x = wp.full(N, 2.0, device=device, dtype=float, requires_grad=True)
|
|
1934
|
+
y = wp.array(np.arange(N), device=device, dtype=wp.float64, requires_grad=True)
|
|
1935
|
+
|
|
1936
|
+
tape = wp.Tape()
|
|
1937
|
+
with tape:
|
|
1938
|
+
fem.utils.array_axpy(x=x, y=y, alpha=alpha, beta=beta)
|
|
1939
|
+
|
|
1940
|
+
assert_np_equal(x.numpy(), np.full(N, 2.0))
|
|
1941
|
+
assert_np_equal(y.numpy(), alpha * x.numpy() + beta * np.arange(N))
|
|
1942
|
+
|
|
1943
|
+
y.grad.fill_(1.0)
|
|
1944
|
+
tape.backward()
|
|
1945
|
+
|
|
1946
|
+
assert_np_equal(x.grad.numpy(), alpha * np.ones(N))
|
|
1947
|
+
assert_np_equal(y.grad.numpy(), beta * np.ones(N))
|
|
1948
|
+
|
|
1949
|
+
|
|
1950
|
+
devices = get_test_devices()
|
|
1951
|
+
cuda_devices = get_selected_cuda_test_devices()
|
|
1952
|
+
|
|
1953
|
+
|
|
1954
|
+
class TestFem(unittest.TestCase):
|
|
1955
|
+
pass
|
|
1956
|
+
|
|
1957
|
+
|
|
1958
|
+
add_function_test(TestFem, "test_regular_quadrature", test_regular_quadrature)
|
|
1959
|
+
add_function_test(TestFem, "test_closest_point_queries", test_closest_point_queries)
|
|
1960
|
+
add_function_test(TestFem, "test_grad_decomposition", test_grad_decomposition, devices=devices)
|
|
1961
|
+
add_function_test(TestFem, "test_integrate_gradient", test_integrate_gradient, devices=devices)
|
|
1962
|
+
add_function_test(TestFem, "test_interpolate_gradient", test_interpolate_gradient, devices=devices)
|
|
1963
|
+
add_function_test(TestFem, "test_vector_divergence_theorem", test_vector_divergence_theorem, devices=devices)
|
|
1964
|
+
add_function_test(TestFem, "test_tensor_divergence_theorem", test_tensor_divergence_theorem, devices=devices)
|
|
1965
|
+
add_function_test(TestFem, "test_grid_2d", test_grid_2d, devices=devices)
|
|
1966
|
+
add_function_test(TestFem, "test_triangle_mesh", test_triangle_mesh, devices=devices)
|
|
1967
|
+
add_function_test(TestFem, "test_quad_mesh", test_quad_mesh, devices=devices)
|
|
1968
|
+
add_function_test(TestFem, "test_grid_3d", test_grid_3d, devices=devices)
|
|
1969
|
+
add_function_test(TestFem, "test_tet_mesh", test_tet_mesh, devices=devices)
|
|
1970
|
+
add_function_test(TestFem, "test_hex_mesh", test_hex_mesh, devices=devices)
|
|
1971
|
+
add_function_test(TestFem, "test_nanogrid", test_nanogrid, devices=cuda_devices)
|
|
1972
|
+
add_function_test(TestFem, "test_adaptive_nanogrid", test_adaptive_nanogrid, devices=cuda_devices)
|
|
1973
|
+
add_function_test(TestFem, "test_deformed_geometry", test_deformed_geometry, devices=devices)
|
|
1974
|
+
add_function_test(TestFem, "test_vector_spaces", test_vector_spaces, devices=devices)
|
|
1975
|
+
add_function_test(TestFem, "test_dof_mapper", test_dof_mapper)
|
|
1976
|
+
add_function_test(TestFem, "test_point_basis", test_point_basis)
|
|
1977
|
+
add_function_test(TestFem, "test_particle_quadratures", test_particle_quadratures)
|
|
1978
|
+
add_function_test(TestFem, "test_nodal_quadrature", test_nodal_quadrature)
|
|
1979
|
+
add_function_test(TestFem, "test_implicit_fields", test_implicit_fields)
|
|
1980
|
+
|
|
1981
|
+
|
|
1982
|
+
class TestFemUtilities(unittest.TestCase):
|
|
1983
|
+
pass
|
|
1984
|
+
|
|
1985
|
+
|
|
1986
|
+
add_kernel_test(TestFemUtilities, test_qr_eigenvalues, dim=1, devices=devices)
|
|
1987
|
+
add_kernel_test(TestFemUtilities, test_qr_inverse, dim=100, devices=devices)
|
|
1988
|
+
add_function_test(TestFemUtilities, "test_array_axpy", test_array_axpy)
|
|
1989
|
+
|
|
1990
|
+
|
|
1991
|
+
class TestFemShapeFunctions(unittest.TestCase):
|
|
1992
|
+
pass
|
|
1993
|
+
|
|
1994
|
+
|
|
1995
|
+
add_function_test(TestFemShapeFunctions, "test_square_shape_functions", test_square_shape_functions)
|
|
1996
|
+
add_function_test(TestFemShapeFunctions, "test_cube_shape_functions", test_cube_shape_functions)
|
|
1997
|
+
add_function_test(TestFemShapeFunctions, "test_tri_shape_functions", test_tri_shape_functions)
|
|
1998
|
+
add_function_test(TestFemShapeFunctions, "test_tet_shape_functions", test_tet_shape_functions)
|
|
1999
|
+
|
|
2000
|
+
|
|
2001
|
+
if __name__ == "__main__":
|
|
2002
|
+
wp.clear_kernel_cache()
|
|
2003
|
+
unittest.main(verbosity=2, failfast=True)
|