pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
pyxlpr/ai/specialist.py DELETED
@@ -1,286 +0,0 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
- # @Author : 陈坤泽
4
- # @Email : 877362867@qq.com
5
- # @Date : 2021/11/07 14:04
6
-
7
- import os
8
- import re
9
- import time
10
-
11
- from humanfriendly import format_size
12
- import pandas as pd
13
- import numpy as np
14
-
15
- from pyxllib.prog.pupil import check_install_package, run_once
16
-
17
-
18
- class ClasEvaluater:
19
- def __init__(self, gt, pred, *, names=None):
20
- """
21
- :param names: 可以将id映射到对应的明文名称
22
- list,跟id对应名称names[id]
23
- dict,使用key映射规则
24
- """
25
- assert len(gt) == len(pred), f'gt={len(gt)}和pred={len(pred)}数量不匹配'
26
- self.gt, self.pred = gt, pred
27
- self.total = len(gt)
28
- self.names = names
29
-
30
- @classmethod
31
- def from_pairs(cls, pairs):
32
- """
33
- :param list|tuple pairs: 一个列表 [(y1, y_hat1), (y2, y_hat2), ...]
34
- 每个元素还是一个长度2的列表,常见格式是[[0, 0], [1,2], ...]
35
- 第一个值是gt的类别y,第二个值是程序预测的类别y_hat
36
- """
37
- gt, pred = list(zip(*pairs)) # 这里内部的实现算法很多都是分解开的
38
- return cls(gt, pred)
39
-
40
- def n_correct(self):
41
- """ 类别正确数量 """
42
- return sum([y == y_hat for y, y_hat in zip(self.gt, self.pred)])
43
-
44
- def accuracy(self):
45
- """ 整体的正确率精度(等价于f1_score的micro) """
46
- return round(self.n_correct() / self.total, 4)
47
-
48
- def crosstab(self):
49
- """ 各类别具体情况交叉表 """
50
- # TODO 用names转明文?
51
- df = pd.DataFrame.from_dict({'gt': self.gt, 'pred': self.pred})
52
- return pd.crosstab(df['gt'], df['pred'])
53
-
54
- def f1_score(self, average='weighted'):
55
- """ 多分类任务是用F1分值 https://zhuanlan.zhihu.com/p/64315175
56
-
57
- :param average:
58
- weighted:每一类都算出f1,然后(按样本数)加权平均
59
- macro:每一类都算出f1,然后求平均值(样本不均衡下,有的类就算只出现1次,也会造成极大的影响)
60
- micro:按二分类形式直接计算全样本的f1,等价于accuracy
61
- all:我自己扩展的格式,会返回三种结果的字典值
62
- """
63
- check_install_package('sklearn', 'scikit-learn')
64
- from sklearn.metrics import f1_score
65
-
66
- if average == 'all':
67
- return {f'f1_{k}': self.f1_score(k) for k in ('weighted', 'macro', 'micro')}
68
- else:
69
- return round(f1_score(self.gt, self.pred, average=average), 4)
70
-
71
-
72
- class ComputingReceptiveFields:
73
- """ 计算感受野大小的工具
74
- https://distill.pub/2019/computing-receptive-fields/#return-from-solving-receptive-field-size
75
-
76
- 除了这里实现的基础版本的感受野大小计算,论文还能计算具体的区间位置、不规则图形等情况
77
- """
78
-
79
- @classmethod
80
- def computing(cls, network):
81
- """ 基础的计算工具
82
-
83
- network = [['Conv2D', 5, 1],
84
- ['MaxPool2D', 2, 2],
85
- ['Conv2D', 3, 1],
86
- ['MaxPool2D', 2, 2],
87
- ['Conv2D', 3, 1],
88
- ['MaxPool2D', 2, 2]]
89
- df = computing(network)
90
- """
91
-
92
- # 0 基本配置数据表,由外部输入
93
- columns = ['name', 'kernel_size', 'stride']
94
- df = pd.DataFrame.from_records(network, columns=columns)
95
-
96
- # 1 感受野
97
- n = len(df)
98
- df['receptive'] = 1
99
- for i in range(n - 2, -1, -1):
100
- x = df.loc[i + 1]
101
- df.loc[i, 'receptive'] = x['stride'] * x['receptive'] + (x['kernel_size'] - x['stride'])
102
-
103
- return df
104
-
105
- @classmethod
106
- def from_paddle_layers(cls, network):
107
- """ 先对一些基础的常见类型做些功能接口,复杂的情况以后有需要再说吧 """
108
-
109
- import paddle
110
-
111
- ls = []
112
- for x in network.sublayers():
113
- if isinstance(x, paddle.nn.layer.conv.Conv2D):
114
- ls.append(['Conv2D', x._kernel_size[0], x._stride[0]])
115
- elif isinstance(x, paddle.nn.layer.pooling.MaxPool2D):
116
- ls.append(['MaxPool2D', x.ksize, x.ksize])
117
- else: # 其他先不考虑,跳过
118
- pass
119
-
120
- return cls.computing(ls)
121
-
122
-
123
- def show_feature_map(feature_map, show=True, *, pading=5):
124
- """ 显示特征图 """
125
- from pyxllib.xlcv import xlcv
126
-
127
- a = np.array(feature_map)
128
- a = a - a.min()
129
- m = a.max()
130
- if m:
131
- a = (a / m) * 255
132
- a = a.astype('uint8')
133
-
134
- if a.ndim == 3:
135
- a = xlcv.concat(list(a), pad=pading)
136
- elif a.ndim == 4:
137
- a = xlcv.concat([list(x) for x in a], pad=pading)
138
-
139
- if show:
140
- xlcv.show(a)
141
-
142
- return a
143
-
144
-
145
- @run_once
146
- def _nvml_init():
147
- check_install_package('pynvml')
148
-
149
- import pynvml
150
- pynvml.nvmlInit()
151
-
152
-
153
- class NvmDevice:
154
- """
155
- TODO 增加获得多张卡的接口
156
- """
157
-
158
- def __init__(self, *, set_cuda_visible=True):
159
- """ 获得各个gpu内存使用信息
160
-
161
- :param set_cuda_visible: 是否根据 环境变量 CUDA_VISIBLE_DEVICES 重新计算gpu的相对编号
162
- """
163
- _nvml_init()
164
-
165
- import pynvml
166
-
167
- records = []
168
- columns = ['origin_id', # 原始id编号
169
- 'total', # 总内存
170
- 'used', # 已使用
171
- 'free'] # 剩余空间
172
-
173
- try:
174
- # 2 每张gpu卡的绝对、相对编号
175
- if set_cuda_visible and 'CUDA_VISIBLE_DEVICES' in os.environ:
176
- idxs = re.findall(r'\d+', os.environ['CUDA_VISIBLE_DEVICES'])
177
- idxs = [int(v) for v in idxs]
178
- else:
179
- cuda_num = pynvml.nvmlDeviceGetCount()
180
- idxs = list(range(cuda_num)) # 如果不限定,则获得所有卡的信息
181
-
182
- # 3 获取每张候选gpu卡的内存使用情况
183
- for i in idxs:
184
- handle = pynvml.nvmlDeviceGetHandleByIndex(i)
185
- meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
186
- records.append([i, meminfo.total, meminfo.used, meminfo.free])
187
- except (FileNotFoundError, pynvml.nvml.NVMLError_LibraryNotFound) as e:
188
- # 注意,找不到nvml.dll文件,不代表没有gpu卡~
189
- pass
190
-
191
- self.stat = pd.DataFrame.from_records(records, columns=columns)
192
-
193
- def get_most_free_gpu_id(self, minimum_free_byte=-1, *, reverse=False):
194
- """ 获得当前剩余空间最大的gpu的id,没有则返回None
195
-
196
- :param minimum_free_byte: 最少需要剩余的空闲字节数,少于这个值则找不到gpu,返回None
197
- """
198
- gpu_id, most_free = None, minimum_free_byte
199
- for idx, row in self.stat.iterrows():
200
- if row['free'] > most_free:
201
- gpu_id, most_free = idx, row['free']
202
- # 个人习惯,从后往前找空闲最大的gpu,这样也能尽量避免使用到0卡
203
- # 所以≥就更新,而不是>才更新
204
- if reverse and row['free'] >= most_free:
205
- gpu_id, most_free = idx, row['free']
206
- return gpu_id
207
-
208
- def get_free_gpu_ids(self, minimum_free_byte=10 * 1024 ** 3):
209
- """ 获取多个有剩余空间的gpu id
210
-
211
- :param minimum_free_byte: 默认值至少需要10G
212
- """
213
- gpu_ids = []
214
- for idx, row in self.stat.iterrows():
215
- if row['free'] >= minimum_free_byte:
216
- gpu_ids.append(idx)
217
- return gpu_ids
218
-
219
-
220
- def auto_set_visible_device(reverse=False):
221
- """ 自动设置环境变量为可见的某一张单卡
222
-
223
- CUDA_VISIBLE_DEVICES
224
-
225
- 对于没有gpu的机子,可以自动设置CUDA_VISIBLE_DEVICES=''空值
226
- """
227
- name = 'CUDA_VISIBLE_DEVICES'
228
- if name not in os.environ:
229
- gpu_id = NvmDevice().get_most_free_gpu_id(reverse=reverse)
230
- if gpu_id is not None:
231
- os.environ[name] = str(gpu_id)
232
- if name in os.environ:
233
- print('{}={}'.format(name, os.environ[name]))
234
-
235
-
236
- def get_current_gpu_useage(card_id=None):
237
- """ 查当前gpu最大使用率
238
-
239
- :param card_id:
240
- int, 查单卡
241
- str, 逗号隔开的多张卡
242
- list|tuple, 查多张卡
243
- None, 查所有卡
244
- """
245
- _nvml_init()
246
-
247
- import pynvml
248
-
249
- # 1 要检查哪些卡
250
- if isinstance(card_id, int):
251
- idxs = [card_id]
252
- elif isinstance(card_id, str):
253
- idxs = card_id.split(',')
254
- elif isinstance(card_id, (list, tuple)):
255
- idxs = card_id
256
- else:
257
- cuda_num = pynvml.nvmlDeviceGetCount()
258
- idxs = list(range(cuda_num)) # 如果不限定,则获得所有卡的信息
259
-
260
- # 2 获取每张候选gpu卡的显存使用情况
261
- cur_max_memory = 0
262
- for i in idxs:
263
- handle = pynvml.nvmlDeviceGetHandleByIndex(i)
264
- meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
265
- cur_max_memory = max(cur_max_memory, meminfo.used)
266
- return cur_max_memory
267
-
268
-
269
- def watch_gpu_maximun(card_id=None, interval_seconds=0.1):
270
- """ 查gpu使用峰值
271
-
272
- :param interval_seconds: 查询间隔
273
- """
274
- max_memory = 0
275
- while True:
276
- cur = get_current_gpu_useage(card_id)
277
- max_memory = max(max_memory, cur)
278
- print(f'\rmax_memory={format_size(max_memory, binary=True)} '
279
- f'current_memory={format_size(cur, binary=True)}', end='')
280
- time.sleep(interval_seconds)
281
-
282
-
283
- if __name__ == '__main__':
284
- import fire
285
-
286
- fire.Fire()
pyxlpr/ai/torch_app.py DELETED
@@ -1,172 +0,0 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
- # @Author : 陈坤泽
4
- # @Email : 877362867@qq.com
5
- # @Date : 2021/07/08 16:16
6
-
7
- import torch
8
- from torch import nn
9
- import torchvision
10
-
11
- from pyxllib.cv.xlcvlib import CvImg
12
- from pyxlpr.ai.xltorch import XlPredictor
13
-
14
-
15
- class ImageDirectionModelV2(nn.Module):
16
- def __init__(self, n_classes=4):
17
- super().__init__()
18
-
19
- self.feature_extractor = nn.Sequential(
20
- nn.Conv2d(1, 10, kernel_size=5, padding=2),
21
- nn.BatchNorm2d(10, track_running_stats=False),
22
- nn.ReLU(inplace=True),
23
- nn.MaxPool2d(kernel_size=2),
24
- nn.Conv2d(10, 5, kernel_size=3),
25
- nn.BatchNorm2d(5, track_running_stats=False),
26
- nn.ReLU(inplace=True),
27
- nn.MaxPool2d(kernel_size=2),
28
- nn.Conv2d(in_channels=5, out_channels=5, kernel_size=3),
29
- nn.BatchNorm2d(5, track_running_stats=False),
30
- nn.ReLU(inplace=True),
31
- nn.MaxPool2d(kernel_size=2),
32
- )
33
-
34
- self.classifier = nn.Sequential(
35
- nn.Linear(in_features=19220, out_features=n_classes),
36
- )
37
-
38
- def forward(self, x):
39
- device = next(self.parameters()).device
40
- x = x.to(device)
41
- # dprint(x.shape)
42
- x = self.feature_extractor(x)
43
- x = torch.flatten(x, 1)
44
- logits = self.classifier(x)
45
-
46
- if self.training:
47
- return logits
48
- else:
49
- return logits.argmax(dim=1)
50
-
51
-
52
- def get_imagedirection_predictor(state_file=None, device=None, batch_size=1):
53
- """
54
- :param state_file: 权重文件
55
- 默认会自动下载,可以不输入
56
- 如果输入url会自动下载
57
- 也可以指定本地权重文件
58
-
59
- 这里只是该任务比较简单,所以内置权重文件了,
60
- 在某些复杂项目中,可以设为必选参数
61
-
62
- 目前内置的模型,效果并不高,在内部测试集中精度只有57%,
63
- 但模型比较小才300kb,可以用于演示demo、测试
64
- :param device: 计划在哪个设备运行
65
- 默认会自动找一个空闲最大的gpu设备
66
- 没有gpu则默认使用cpu模式执行
67
- 可以自定义 'cpu', 'cuda', 'cuda:1'
68
- :param batch_size: 允许多少样本同时识别
69
- :return: 生成一个分类器"函数",支持单张、多张图识别,支持路径、cv2、pil格式图片
70
- 函数返回值
71
- 0,正向
72
- 1,顺时针旋转了90度
73
- 2,顺时针旋转了180度
74
- 3,顺时针旋转了270度
75
-
76
- 补充说明:
77
- 这相当于是一个最简接口示例,有些模型比较复杂,可以增加初始化用的配置文件等
78
-
79
- """
80
- # 1 确定本地权重文件路径,没有则预制了一个网络上的模型,会自动下载
81
- if state_file is None:
82
- state_file = 'https://gitee.com/code4101/TestData/raw/master/ImageDirectionModelV2%20epoch=17.pth'
83
-
84
- # 2 初始化分类器 (不一定都要用XlPredictor框架实现,但最终提供的接口希望都跟get_imagedirection_func这样简洁)
85
- # 模型结构,可以借助配置文件来初始化,但接口要可能简单。
86
- # 权重初始化,参考前面自动获取权重文件的方法,简化交接过程。
87
- # device可选项,默认自动查找一个本机设备
88
- # batch_size可选项,默认为1,后续pred还可以重新设定。
89
- pred = XlPredictor(ImageDirectionModelV2(), state_file, device=device, batch_size=batch_size)
90
-
91
- # 自定义预处理器,即pred(datas)中的data要经过怎样的预处理,再传入model.forward
92
- def img_transform(arg):
93
- # 输入的参数可以是路径、opencv图片、pil图片
94
- # 然后会转为灰度图、resize、to_tensor
95
- img = CvImg.read(arg, 0).resize2((512, 512))
96
- return torchvision.transforms.functional.to_tensor(img)
97
-
98
- pred.transform = img_transform
99
-
100
- # pred.target_transform 还可以指定对model.forward结果的y_hat进行后处理
101
-
102
- return pred
103
-
104
-
105
- class ContentTypeModel(nn.Module):
106
- def __init__(self, n_classes=3):
107
- super().__init__()
108
-
109
- self.feature_extractor = nn.Sequential(
110
- nn.Conv2d(3, 10, kernel_size=5, padding=2),
111
- nn.BatchNorm2d(10, track_running_stats=False),
112
- nn.ReLU(inplace=True),
113
- nn.MaxPool2d(kernel_size=2),
114
- nn.Conv2d(10, 5, kernel_size=3),
115
- nn.BatchNorm2d(5, track_running_stats=False),
116
- nn.ReLU(inplace=True),
117
- nn.MaxPool2d(kernel_size=2),
118
- nn.Conv2d(in_channels=5, out_channels=5, kernel_size=3),
119
- nn.BatchNorm2d(5, track_running_stats=False),
120
- nn.ReLU(inplace=True),
121
- nn.MaxPool2d(kernel_size=2),
122
- )
123
-
124
- self.classifier = nn.Sequential(
125
- nn.Linear(in_features=180, out_features=n_classes),
126
- )
127
-
128
- def forward(self, x):
129
- device = next(self.parameters()).device
130
- x = x.to(device)
131
-
132
- x = self.feature_extractor(x)
133
- x = torch.flatten(x, 1)
134
- logits = self.classifier(x)
135
-
136
- if self.training:
137
- return logits
138
- else:
139
- return logits.argmax(dim=1)
140
-
141
-
142
- def get_contenttype_predictor(state_file=None, device=None, batch_size=1, text=None):
143
- """
144
-
145
- :param text: 将结果类别映射到字符串
146
-
147
- Returns:
148
- 0, handwriting,手写体
149
- 1, printed,印刷体
150
- 2, seal,印章
151
-
152
- """
153
- # 1 确定本地权重文件路径,没有则预制了一个网络上的模型,会自动下载
154
- if state_file is None:
155
- state_file = 'https://gitee.com/code4101/TestData/raw/master/ContentTypeModel%20epoch=15.pth'
156
-
157
- # 2 初始化分类器 (不一定都要用XlPredictor框架实现,但最终提供的接口希望都跟get_imagedirection_func这样简洁)
158
- pred = XlPredictor(ContentTypeModel(3), state_file, device=device, batch_size=batch_size)
159
-
160
- # 自定义预处理器,即pred(datas)中的data要经过怎样的预处理,再传入model.forward
161
- def img_transform(arg):
162
- # 输入的参数可以是路径、opencv图片、pil图片
163
- # 然后会转为灰度图、resize、to_tensor
164
- img = CvImg.read(arg, 1).resize2((64, 64))
165
- return torchvision.transforms.functional.to_tensor(img)
166
-
167
- pred.transform = img_transform
168
-
169
- if text:
170
- pred.target_transform = lambda idx: text[idx]
171
-
172
- return pred