pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,258 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # This code is refer from: https://github.com/PaddlePaddle/PaddleClas/blob/develop/ppcls/arch/backbone/legendary_models/pp_lcnet.py
16
-
17
- from __future__ import absolute_import
18
- from __future__ import division
19
- from __future__ import print_function
20
-
21
- import numpy as np
22
- import paddle
23
- from paddle import ParamAttr
24
- import paddle.nn as nn
25
- import paddle.nn.functional as F
26
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
27
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
28
- from paddle.nn.initializer import KaimingNormal
29
- import math
30
- import numpy as np
31
- import paddle
32
- from paddle import ParamAttr, reshape, transpose, concat, split
33
- import paddle.nn as nn
34
- import paddle.nn.functional as F
35
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
36
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
37
- from paddle.nn.initializer import KaimingNormal
38
- import math
39
- from paddle.nn.functional import hardswish, hardsigmoid
40
- from paddle.regularizer import L2Decay
41
-
42
-
43
- class ConvBNLayer(nn.Layer):
44
- def __init__(self,
45
- num_channels,
46
- filter_size,
47
- num_filters,
48
- stride,
49
- padding,
50
- channels=None,
51
- num_groups=1,
52
- act='hard_swish'):
53
- super(ConvBNLayer, self).__init__()
54
-
55
- self._conv = Conv2D(
56
- in_channels=num_channels,
57
- out_channels=num_filters,
58
- kernel_size=filter_size,
59
- stride=stride,
60
- padding=padding,
61
- groups=num_groups,
62
- weight_attr=ParamAttr(initializer=KaimingNormal()),
63
- bias_attr=False)
64
-
65
- self._batch_norm = BatchNorm(
66
- num_filters,
67
- act=act,
68
- param_attr=ParamAttr(regularizer=L2Decay(0.0)),
69
- bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
70
-
71
- def forward(self, inputs):
72
- y = self._conv(inputs)
73
- y = self._batch_norm(y)
74
- return y
75
-
76
-
77
- class DepthwiseSeparable(nn.Layer):
78
- def __init__(self,
79
- num_channels,
80
- num_filters1,
81
- num_filters2,
82
- num_groups,
83
- stride,
84
- scale,
85
- dw_size=3,
86
- padding=1,
87
- use_se=False):
88
- super(DepthwiseSeparable, self).__init__()
89
- self.use_se = use_se
90
- self._depthwise_conv = ConvBNLayer(
91
- num_channels=num_channels,
92
- num_filters=int(num_filters1 * scale),
93
- filter_size=dw_size,
94
- stride=stride,
95
- padding=padding,
96
- num_groups=int(num_groups * scale))
97
- if use_se:
98
- self._se = SEModule(int(num_filters1 * scale))
99
- self._pointwise_conv = ConvBNLayer(
100
- num_channels=int(num_filters1 * scale),
101
- filter_size=1,
102
- num_filters=int(num_filters2 * scale),
103
- stride=1,
104
- padding=0)
105
-
106
- def forward(self, inputs):
107
- y = self._depthwise_conv(inputs)
108
- if self.use_se:
109
- y = self._se(y)
110
- y = self._pointwise_conv(y)
111
- return y
112
-
113
-
114
- class MobileNetV1Enhance(nn.Layer):
115
- def __init__(self, in_channels=3, scale=0.5, **kwargs):
116
- super().__init__()
117
- self.scale = scale
118
- self.block_list = []
119
-
120
- self.conv1 = ConvBNLayer(
121
- num_channels=3,
122
- filter_size=3,
123
- channels=3,
124
- num_filters=int(32 * scale),
125
- stride=2,
126
- padding=1)
127
-
128
- conv2_1 = DepthwiseSeparable(
129
- num_channels=int(32 * scale),
130
- num_filters1=32,
131
- num_filters2=64,
132
- num_groups=32,
133
- stride=1,
134
- scale=scale)
135
- self.block_list.append(conv2_1)
136
-
137
- conv2_2 = DepthwiseSeparable(
138
- num_channels=int(64 * scale),
139
- num_filters1=64,
140
- num_filters2=128,
141
- num_groups=64,
142
- stride=1,
143
- scale=scale)
144
- self.block_list.append(conv2_2)
145
-
146
- conv3_1 = DepthwiseSeparable(
147
- num_channels=int(128 * scale),
148
- num_filters1=128,
149
- num_filters2=128,
150
- num_groups=128,
151
- stride=1,
152
- scale=scale)
153
- self.block_list.append(conv3_1)
154
-
155
- conv3_2 = DepthwiseSeparable(
156
- num_channels=int(128 * scale),
157
- num_filters1=128,
158
- num_filters2=256,
159
- num_groups=128,
160
- stride=(2, 1),
161
- scale=scale)
162
- self.block_list.append(conv3_2)
163
-
164
- conv4_1 = DepthwiseSeparable(
165
- num_channels=int(256 * scale),
166
- num_filters1=256,
167
- num_filters2=256,
168
- num_groups=256,
169
- stride=1,
170
- scale=scale)
171
- self.block_list.append(conv4_1)
172
-
173
- conv4_2 = DepthwiseSeparable(
174
- num_channels=int(256 * scale),
175
- num_filters1=256,
176
- num_filters2=512,
177
- num_groups=256,
178
- stride=(2, 1),
179
- scale=scale)
180
- self.block_list.append(conv4_2)
181
-
182
- for _ in range(5):
183
- conv5 = DepthwiseSeparable(
184
- num_channels=int(512 * scale),
185
- num_filters1=512,
186
- num_filters2=512,
187
- num_groups=512,
188
- stride=1,
189
- dw_size=5,
190
- padding=2,
191
- scale=scale,
192
- use_se=False)
193
- self.block_list.append(conv5)
194
-
195
- conv5_6 = DepthwiseSeparable(
196
- num_channels=int(512 * scale),
197
- num_filters1=512,
198
- num_filters2=1024,
199
- num_groups=512,
200
- stride=(2, 1),
201
- dw_size=5,
202
- padding=2,
203
- scale=scale,
204
- use_se=True)
205
- self.block_list.append(conv5_6)
206
-
207
- conv6 = DepthwiseSeparable(
208
- num_channels=int(1024 * scale),
209
- num_filters1=1024,
210
- num_filters2=1024,
211
- num_groups=1024,
212
- stride=1,
213
- dw_size=5,
214
- padding=2,
215
- use_se=True,
216
- scale=scale)
217
- self.block_list.append(conv6)
218
-
219
- self.block_list = nn.Sequential(*self.block_list)
220
-
221
- self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
222
- self.out_channels = int(1024 * scale)
223
-
224
- def forward(self, inputs):
225
- y = self.conv1(inputs)
226
- y = self.block_list(y)
227
- y = self.pool(y)
228
- return y
229
-
230
-
231
- class SEModule(nn.Layer):
232
- def __init__(self, channel, reduction=4):
233
- super(SEModule, self).__init__()
234
- self.avg_pool = AdaptiveAvgPool2D(1)
235
- self.conv1 = Conv2D(
236
- in_channels=channel,
237
- out_channels=channel // reduction,
238
- kernel_size=1,
239
- stride=1,
240
- padding=0,
241
- weight_attr=ParamAttr(),
242
- bias_attr=ParamAttr())
243
- self.conv2 = Conv2D(
244
- in_channels=channel // reduction,
245
- out_channels=channel,
246
- kernel_size=1,
247
- stride=1,
248
- padding=0,
249
- weight_attr=ParamAttr(),
250
- bias_attr=ParamAttr())
251
-
252
- def forward(self, inputs):
253
- outputs = self.avg_pool(inputs)
254
- outputs = self.conv1(outputs)
255
- outputs = F.relu(outputs)
256
- outputs = self.conv2(outputs)
257
- outputs = hardsigmoid(outputs)
258
- return paddle.multiply(x=inputs, y=outputs)
@@ -1,48 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from paddle import nn
16
- import paddle
17
-
18
-
19
- class MTB(nn.Layer):
20
- def __init__(self, cnn_num, in_channels):
21
- super(MTB, self).__init__()
22
- self.block = nn.Sequential()
23
- self.out_channels = in_channels
24
- self.cnn_num = cnn_num
25
- if self.cnn_num == 2:
26
- for i in range(self.cnn_num):
27
- self.block.add_sublayer(
28
- 'conv_{}'.format(i),
29
- nn.Conv2D(
30
- in_channels=in_channels
31
- if i == 0 else 32 * (2**(i - 1)),
32
- out_channels=32 * (2**i),
33
- kernel_size=3,
34
- stride=2,
35
- padding=1))
36
- self.block.add_sublayer('relu_{}'.format(i), nn.ReLU())
37
- self.block.add_sublayer('bn_{}'.format(i),
38
- nn.BatchNorm2D(32 * (2**i)))
39
-
40
- def forward(self, images):
41
- x = self.block(images)
42
- if self.cnn_num == 2:
43
- # (b, w, h, c)
44
- x = paddle.transpose(x, [0, 3, 2, 1])
45
- x_shape = paddle.shape(x)
46
- x = paddle.reshape(
47
- x, [x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
48
- return x
@@ -1,210 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
17
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
18
- """
19
-
20
- from __future__ import absolute_import
21
- from __future__ import division
22
- from __future__ import print_function
23
-
24
- import paddle
25
- from paddle import ParamAttr
26
- import paddle.nn as nn
27
- import paddle.nn.functional as F
28
- import numpy as np
29
-
30
- __all__ = ["ResNet31"]
31
-
32
-
33
- def conv3x3(in_channel, out_channel, stride=1):
34
- return nn.Conv2D(
35
- in_channel,
36
- out_channel,
37
- kernel_size=3,
38
- stride=stride,
39
- padding=1,
40
- bias_attr=False)
41
-
42
-
43
- class BasicBlock(nn.Layer):
44
- expansion = 1
45
-
46
- def __init__(self, in_channels, channels, stride=1, downsample=False):
47
- super().__init__()
48
- self.conv1 = conv3x3(in_channels, channels, stride)
49
- self.bn1 = nn.BatchNorm2D(channels)
50
- self.relu = nn.ReLU()
51
- self.conv2 = conv3x3(channels, channels)
52
- self.bn2 = nn.BatchNorm2D(channels)
53
- self.downsample = downsample
54
- if downsample:
55
- self.downsample = nn.Sequential(
56
- nn.Conv2D(
57
- in_channels,
58
- channels * self.expansion,
59
- 1,
60
- stride,
61
- bias_attr=False),
62
- nn.BatchNorm2D(channels * self.expansion), )
63
- else:
64
- self.downsample = nn.Sequential()
65
- self.stride = stride
66
-
67
- def forward(self, x):
68
- residual = x
69
-
70
- out = self.conv1(x)
71
- out = self.bn1(out)
72
- out = self.relu(out)
73
-
74
- out = self.conv2(out)
75
- out = self.bn2(out)
76
-
77
- if self.downsample:
78
- residual = self.downsample(x)
79
-
80
- out += residual
81
- out = self.relu(out)
82
-
83
- return out
84
-
85
-
86
- class ResNet31(nn.Layer):
87
- '''
88
- Args:
89
- in_channels (int): Number of channels of input image tensor.
90
- layers (list[int]): List of BasicBlock number for each stage.
91
- channels (list[int]): List of out_channels of Conv2d layer.
92
- out_indices (None | Sequence[int]): Indices of output stages.
93
- last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
94
- '''
95
-
96
- def __init__(self,
97
- in_channels=3,
98
- layers=[1, 2, 5, 3],
99
- channels=[64, 128, 256, 256, 512, 512, 512],
100
- out_indices=None,
101
- last_stage_pool=False):
102
- super(ResNet31, self).__init__()
103
- assert isinstance(in_channels, int)
104
- assert isinstance(last_stage_pool, bool)
105
-
106
- self.out_indices = out_indices
107
- self.last_stage_pool = last_stage_pool
108
-
109
- # conv 1 (Conv Conv)
110
- self.conv1_1 = nn.Conv2D(
111
- in_channels, channels[0], kernel_size=3, stride=1, padding=1)
112
- self.bn1_1 = nn.BatchNorm2D(channels[0])
113
- self.relu1_1 = nn.ReLU()
114
-
115
- self.conv1_2 = nn.Conv2D(
116
- channels[0], channels[1], kernel_size=3, stride=1, padding=1)
117
- self.bn1_2 = nn.BatchNorm2D(channels[1])
118
- self.relu1_2 = nn.ReLU()
119
-
120
- # conv 2 (Max-pooling, Residual block, Conv)
121
- self.pool2 = nn.MaxPool2D(
122
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
123
- self.block2 = self._make_layer(channels[1], channels[2], layers[0])
124
- self.conv2 = nn.Conv2D(
125
- channels[2], channels[2], kernel_size=3, stride=1, padding=1)
126
- self.bn2 = nn.BatchNorm2D(channels[2])
127
- self.relu2 = nn.ReLU()
128
-
129
- # conv 3 (Max-pooling, Residual block, Conv)
130
- self.pool3 = nn.MaxPool2D(
131
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
132
- self.block3 = self._make_layer(channels[2], channels[3], layers[1])
133
- self.conv3 = nn.Conv2D(
134
- channels[3], channels[3], kernel_size=3, stride=1, padding=1)
135
- self.bn3 = nn.BatchNorm2D(channels[3])
136
- self.relu3 = nn.ReLU()
137
-
138
- # conv 4 (Max-pooling, Residual block, Conv)
139
- self.pool4 = nn.MaxPool2D(
140
- kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
141
- self.block4 = self._make_layer(channels[3], channels[4], layers[2])
142
- self.conv4 = nn.Conv2D(
143
- channels[4], channels[4], kernel_size=3, stride=1, padding=1)
144
- self.bn4 = nn.BatchNorm2D(channels[4])
145
- self.relu4 = nn.ReLU()
146
-
147
- # conv 5 ((Max-pooling), Residual block, Conv)
148
- self.pool5 = None
149
- if self.last_stage_pool:
150
- self.pool5 = nn.MaxPool2D(
151
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
152
- self.block5 = self._make_layer(channels[4], channels[5], layers[3])
153
- self.conv5 = nn.Conv2D(
154
- channels[5], channels[5], kernel_size=3, stride=1, padding=1)
155
- self.bn5 = nn.BatchNorm2D(channels[5])
156
- self.relu5 = nn.ReLU()
157
-
158
- self.out_channels = channels[-1]
159
-
160
- def _make_layer(self, input_channels, output_channels, blocks):
161
- layers = []
162
- for _ in range(blocks):
163
- downsample = None
164
- if input_channels != output_channels:
165
- downsample = nn.Sequential(
166
- nn.Conv2D(
167
- input_channels,
168
- output_channels,
169
- kernel_size=1,
170
- stride=1,
171
- bias_attr=False),
172
- nn.BatchNorm2D(output_channels), )
173
-
174
- layers.append(
175
- BasicBlock(
176
- input_channels, output_channels, downsample=downsample))
177
- input_channels = output_channels
178
- return nn.Sequential(*layers)
179
-
180
- def forward(self, x):
181
- x = self.conv1_1(x)
182
- x = self.bn1_1(x)
183
- x = self.relu1_1(x)
184
-
185
- x = self.conv1_2(x)
186
- x = self.bn1_2(x)
187
- x = self.relu1_2(x)
188
-
189
- outs = []
190
- for i in range(4):
191
- layer_index = i + 2
192
- pool_layer = getattr(self, f'pool{layer_index}')
193
- block_layer = getattr(self, f'block{layer_index}')
194
- conv_layer = getattr(self, f'conv{layer_index}')
195
- bn_layer = getattr(self, f'bn{layer_index}')
196
- relu_layer = getattr(self, f'relu{layer_index}')
197
-
198
- if pool_layer is not None:
199
- x = pool_layer(x)
200
- x = block_layer(x)
201
- x = conv_layer(x)
202
- x = bn_layer(x)
203
- x = relu_layer(x)
204
-
205
- outs.append(x)
206
-
207
- if self.out_indices is not None:
208
- return tuple([outs[i] for i in self.out_indices])
209
-
210
- return x
@@ -1,143 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/resnet_aster.py
17
- """
18
- import paddle
19
- import paddle.nn as nn
20
-
21
- import sys
22
- import math
23
-
24
-
25
- def conv3x3(in_planes, out_planes, stride=1):
26
- """3x3 convolution with padding"""
27
- return nn.Conv2D(
28
- in_planes,
29
- out_planes,
30
- kernel_size=3,
31
- stride=stride,
32
- padding=1,
33
- bias_attr=False)
34
-
35
-
36
- def conv1x1(in_planes, out_planes, stride=1):
37
- """1x1 convolution"""
38
- return nn.Conv2D(
39
- in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
40
-
41
-
42
- def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):
43
- # [n_position]
44
- positions = paddle.arange(0, n_position)
45
- # [feat_dim]
46
- dim_range = paddle.arange(0, feat_dim)
47
- dim_range = paddle.pow(wave_length, 2 * (dim_range // 2) / feat_dim)
48
- # [n_position, feat_dim]
49
- angles = paddle.unsqueeze(
50
- positions, axis=1) / paddle.unsqueeze(
51
- dim_range, axis=0)
52
- angles = paddle.cast(angles, "float32")
53
- angles[:, 0::2] = paddle.sin(angles[:, 0::2])
54
- angles[:, 1::2] = paddle.cos(angles[:, 1::2])
55
- return angles
56
-
57
-
58
- class AsterBlock(nn.Layer):
59
- def __init__(self, inplanes, planes, stride=1, downsample=None):
60
- super(AsterBlock, self).__init__()
61
- self.conv1 = conv1x1(inplanes, planes, stride)
62
- self.bn1 = nn.BatchNorm2D(planes)
63
- self.relu = nn.ReLU()
64
- self.conv2 = conv3x3(planes, planes)
65
- self.bn2 = nn.BatchNorm2D(planes)
66
- self.downsample = downsample
67
- self.stride = stride
68
-
69
- def forward(self, x):
70
- residual = x
71
- out = self.conv1(x)
72
- out = self.bn1(out)
73
- out = self.relu(out)
74
- out = self.conv2(out)
75
- out = self.bn2(out)
76
-
77
- if self.downsample is not None:
78
- residual = self.downsample(x)
79
- out += residual
80
- out = self.relu(out)
81
- return out
82
-
83
-
84
- class ResNet_ASTER(nn.Layer):
85
- """For aster or crnn"""
86
-
87
- def __init__(self, with_lstm=True, n_group=1, in_channels=3):
88
- super(ResNet_ASTER, self).__init__()
89
- self.with_lstm = with_lstm
90
- self.n_group = n_group
91
-
92
- self.layer0 = nn.Sequential(
93
- nn.Conv2D(
94
- in_channels,
95
- 32,
96
- kernel_size=(3, 3),
97
- stride=1,
98
- padding=1,
99
- bias_attr=False),
100
- nn.BatchNorm2D(32),
101
- nn.ReLU())
102
-
103
- self.inplanes = 32
104
- self.layer1 = self._make_layer(32, 3, [2, 2]) # [16, 50]
105
- self.layer2 = self._make_layer(64, 4, [2, 2]) # [8, 25]
106
- self.layer3 = self._make_layer(128, 6, [2, 1]) # [4, 25]
107
- self.layer4 = self._make_layer(256, 6, [2, 1]) # [2, 25]
108
- self.layer5 = self._make_layer(512, 3, [2, 1]) # [1, 25]
109
-
110
- if with_lstm:
111
- self.rnn = nn.LSTM(512, 256, direction="bidirect", num_layers=2)
112
- self.out_channels = 2 * 256
113
- else:
114
- self.out_channels = 512
115
-
116
- def _make_layer(self, planes, blocks, stride):
117
- downsample = None
118
- if stride != [1, 1] or self.inplanes != planes:
119
- downsample = nn.Sequential(
120
- conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))
121
-
122
- layers = []
123
- layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
124
- self.inplanes = planes
125
- for _ in range(1, blocks):
126
- layers.append(AsterBlock(self.inplanes, planes))
127
- return nn.Sequential(*layers)
128
-
129
- def forward(self, x):
130
- x0 = self.layer0(x)
131
- x1 = self.layer1(x0)
132
- x2 = self.layer2(x1)
133
- x3 = self.layer3(x2)
134
- x4 = self.layer4(x3)
135
- x5 = self.layer5(x4)
136
-
137
- cnn_feat = x5.squeeze(2) # [N, c, w]
138
- cnn_feat = paddle.transpose(cnn_feat, perm=[0, 2, 1])
139
- if self.with_lstm:
140
- rnn_feat, _ = self.rnn(cnn_feat)
141
- return rnn_feat
142
- else:
143
- return cnn_feat