pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,156 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/tps_spatial_transformer.py
17
- """
18
- from __future__ import absolute_import
19
- from __future__ import division
20
- from __future__ import print_function
21
-
22
- import math
23
- import paddle
24
- from paddle import nn, ParamAttr
25
- from paddle.nn import functional as F
26
- import numpy as np
27
- import itertools
28
-
29
-
30
- def grid_sample(input, grid, canvas=None):
31
- input.stop_gradient = False
32
- output = F.grid_sample(input, grid)
33
- if canvas is None:
34
- return output
35
- else:
36
- input_mask = paddle.ones(shape=input.shape)
37
- output_mask = F.grid_sample(input_mask, grid)
38
- padded_output = output * output_mask + canvas * (1 - output_mask)
39
- return padded_output
40
-
41
-
42
- # phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
43
- def compute_partial_repr(input_points, control_points):
44
- N = input_points.shape[0]
45
- M = control_points.shape[0]
46
- pairwise_diff = paddle.reshape(
47
- input_points, shape=[N, 1, 2]) - paddle.reshape(
48
- control_points, shape=[1, M, 2])
49
- # original implementation, very slow
50
- # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
51
- pairwise_diff_square = pairwise_diff * pairwise_diff
52
- pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
53
- 1]
54
- repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist)
55
- # fix numerical error for 0 * log(0), substitute all nan with 0
56
- mask = np.array(repr_matrix != repr_matrix)
57
- repr_matrix[mask] = 0
58
- return repr_matrix
59
-
60
-
61
- # output_ctrl_pts are specified, according to our task.
62
- def build_output_control_points(num_control_points, margins):
63
- margin_x, margin_y = margins
64
- num_ctrl_pts_per_side = num_control_points // 2
65
- ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
66
- ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
67
- ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
68
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
69
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
70
- output_ctrl_pts_arr = np.concatenate(
71
- [ctrl_pts_top, ctrl_pts_bottom], axis=0)
72
- output_ctrl_pts = paddle.to_tensor(output_ctrl_pts_arr)
73
- return output_ctrl_pts
74
-
75
-
76
- class TPSSpatialTransformer(nn.Layer):
77
- def __init__(self,
78
- output_image_size=None,
79
- num_control_points=None,
80
- margins=None):
81
- super(TPSSpatialTransformer, self).__init__()
82
- self.output_image_size = output_image_size
83
- self.num_control_points = num_control_points
84
- self.margins = margins
85
-
86
- self.target_height, self.target_width = output_image_size
87
- target_control_points = build_output_control_points(num_control_points,
88
- margins)
89
- N = num_control_points
90
-
91
- # create padded kernel matrix
92
- forward_kernel = paddle.zeros(shape=[N + 3, N + 3])
93
- target_control_partial_repr = compute_partial_repr(
94
- target_control_points, target_control_points)
95
- target_control_partial_repr = paddle.cast(target_control_partial_repr,
96
- forward_kernel.dtype)
97
- forward_kernel[:N, :N] = target_control_partial_repr
98
- forward_kernel[:N, -3] = 1
99
- forward_kernel[-3, :N] = 1
100
- target_control_points = paddle.cast(target_control_points,
101
- forward_kernel.dtype)
102
- forward_kernel[:N, -2:] = target_control_points
103
- forward_kernel[-2:, :N] = paddle.transpose(
104
- target_control_points, perm=[1, 0])
105
- # compute inverse matrix
106
- inverse_kernel = paddle.inverse(forward_kernel)
107
-
108
- # create target cordinate matrix
109
- HW = self.target_height * self.target_width
110
- target_coordinate = list(
111
- itertools.product(
112
- range(self.target_height), range(self.target_width)))
113
- target_coordinate = paddle.to_tensor(target_coordinate) # HW x 2
114
- Y, X = paddle.split(
115
- target_coordinate, target_coordinate.shape[1], axis=1)
116
- Y = Y / (self.target_height - 1)
117
- X = X / (self.target_width - 1)
118
- target_coordinate = paddle.concat(
119
- [X, Y], axis=1) # convert from (y, x) to (x, y)
120
- target_coordinate_partial_repr = compute_partial_repr(
121
- target_coordinate, target_control_points)
122
- target_coordinate_repr = paddle.concat(
123
- [
124
- target_coordinate_partial_repr, paddle.ones(shape=[HW, 1]),
125
- target_coordinate
126
- ],
127
- axis=1)
128
-
129
- # register precomputed matrices
130
- self.inverse_kernel = inverse_kernel
131
- self.padding_matrix = paddle.zeros(shape=[3, 2])
132
- self.target_coordinate_repr = target_coordinate_repr
133
- self.target_control_points = target_control_points
134
-
135
- def forward(self, input, source_control_points):
136
- assert source_control_points.ndimension() == 3
137
- assert source_control_points.shape[1] == self.num_control_points
138
- assert source_control_points.shape[2] == 2
139
- batch_size = paddle.shape(source_control_points)[0]
140
-
141
- self.padding_matrix = paddle.expand(
142
- self.padding_matrix, shape=[batch_size, 3, 2])
143
- Y = paddle.concat([source_control_points, self.padding_matrix], 1)
144
- mapping_matrix = paddle.matmul(self.inverse_kernel, Y)
145
- source_coordinate = paddle.matmul(self.target_coordinate_repr,
146
- mapping_matrix)
147
-
148
- grid = paddle.reshape(
149
- source_coordinate,
150
- shape=[-1, self.target_height, self.target_width, 2])
151
- grid = paddle.clip(grid, 0,
152
- 1) # the source_control_points may be out of [0, 1].
153
- # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
154
- grid = 2.0 * grid - 1.0
155
- output_maps = grid_sample(input, grid, canvas=None)
156
- return output_maps, source_coordinate
@@ -1,61 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
- from __future__ import unicode_literals
19
- import copy
20
- import paddle
21
-
22
- __all__ = ['build_optimizer']
23
-
24
-
25
- def build_lr_scheduler(lr_config, epochs, step_each_epoch):
26
- from . import learning_rate
27
- lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
28
- if 'name' in lr_config:
29
- lr_name = lr_config.pop('name')
30
- lr = getattr(learning_rate, lr_name)(**lr_config)()
31
- else:
32
- lr = lr_config['learning_rate']
33
- return lr
34
-
35
-
36
- def build_optimizer(config, epochs, step_each_epoch, parameters):
37
- from . import regularizer, optimizer
38
- config = copy.deepcopy(config)
39
- # step1 build lr
40
- lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch)
41
-
42
- # step2 build regularization
43
- if 'regularizer' in config and config['regularizer'] is not None:
44
- reg_config = config.pop('regularizer')
45
- reg_name = reg_config.pop('name') + 'Decay'
46
- reg = getattr(regularizer, reg_name)(**reg_config)()
47
- else:
48
- reg = None
49
-
50
- # step3 build optimizer
51
- optim_name = config.pop('name')
52
- if 'clip_norm' in config:
53
- clip_norm = config.pop('clip_norm')
54
- grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
55
- else:
56
- grad_clip = None
57
- optim = getattr(optimizer, optim_name)(learning_rate=lr,
58
- weight_decay=reg,
59
- grad_clip=grad_clip,
60
- **config)
61
- return optim(parameters), lr
@@ -1,228 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
- from __future__ import unicode_literals
19
-
20
- from paddle.optimizer import lr
21
- from .lr_scheduler import CyclicalCosineDecay
22
-
23
-
24
- class Linear(object):
25
- """
26
- Linear learning rate decay
27
- Args:
28
- lr (float): The initial learning rate. It is a python float number.
29
- epochs(int): The decay step size. It determines the decay cycle.
30
- end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
31
- power(float, optional): Power of polynomial. Default: 1.0.
32
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
33
- """
34
-
35
- def __init__(self,
36
- learning_rate,
37
- epochs,
38
- step_each_epoch,
39
- end_lr=0.0,
40
- power=1.0,
41
- warmup_epoch=0,
42
- last_epoch=-1,
43
- **kwargs):
44
- super(Linear, self).__init__()
45
- self.learning_rate = learning_rate
46
- self.epochs = epochs * step_each_epoch
47
- self.end_lr = end_lr
48
- self.power = power
49
- self.last_epoch = last_epoch
50
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
51
-
52
- def __call__(self):
53
- learning_rate = lr.PolynomialDecay(
54
- learning_rate=self.learning_rate,
55
- decay_steps=self.epochs,
56
- end_lr=self.end_lr,
57
- power=self.power,
58
- last_epoch=self.last_epoch)
59
- if self.warmup_epoch > 0:
60
- learning_rate = lr.LinearWarmup(
61
- learning_rate=learning_rate,
62
- warmup_steps=self.warmup_epoch,
63
- start_lr=0.0,
64
- end_lr=self.learning_rate,
65
- last_epoch=self.last_epoch)
66
- return learning_rate
67
-
68
-
69
- class Cosine(object):
70
- """
71
- Cosine learning rate decay
72
- lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
73
- Args:
74
- lr(float): initial learning rate
75
- step_each_epoch(int): steps each epoch
76
- epochs(int): total training epochs
77
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
78
- """
79
-
80
- def __init__(self,
81
- learning_rate,
82
- step_each_epoch,
83
- epochs,
84
- warmup_epoch=0,
85
- last_epoch=-1,
86
- **kwargs):
87
- super(Cosine, self).__init__()
88
- self.learning_rate = learning_rate
89
- self.T_max = step_each_epoch * epochs
90
- self.last_epoch = last_epoch
91
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
92
-
93
- def __call__(self):
94
- learning_rate = lr.CosineAnnealingDecay(
95
- learning_rate=self.learning_rate,
96
- T_max=self.T_max,
97
- last_epoch=self.last_epoch)
98
- if self.warmup_epoch > 0:
99
- learning_rate = lr.LinearWarmup(
100
- learning_rate=learning_rate,
101
- warmup_steps=self.warmup_epoch,
102
- start_lr=0.0,
103
- end_lr=self.learning_rate,
104
- last_epoch=self.last_epoch)
105
- return learning_rate
106
-
107
-
108
- class Step(object):
109
- """
110
- Piecewise learning rate decay
111
- Args:
112
- step_each_epoch(int): steps each epoch
113
- learning_rate (float): The initial learning rate. It is a python float number.
114
- step_size (int): the interval to update.
115
- gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
116
- It should be less than 1.0. Default: 0.1.
117
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
118
- """
119
-
120
- def __init__(self,
121
- learning_rate,
122
- step_size,
123
- step_each_epoch,
124
- gamma,
125
- warmup_epoch=0,
126
- last_epoch=-1,
127
- **kwargs):
128
- super(Step, self).__init__()
129
- self.step_size = step_each_epoch * step_size
130
- self.learning_rate = learning_rate
131
- self.gamma = gamma
132
- self.last_epoch = last_epoch
133
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
134
-
135
- def __call__(self):
136
- learning_rate = lr.StepDecay(
137
- learning_rate=self.learning_rate,
138
- step_size=self.step_size,
139
- gamma=self.gamma,
140
- last_epoch=self.last_epoch)
141
- if self.warmup_epoch > 0:
142
- learning_rate = lr.LinearWarmup(
143
- learning_rate=learning_rate,
144
- warmup_steps=self.warmup_epoch,
145
- start_lr=0.0,
146
- end_lr=self.learning_rate,
147
- last_epoch=self.last_epoch)
148
- return learning_rate
149
-
150
-
151
- class Piecewise(object):
152
- """
153
- Piecewise learning rate decay
154
- Args:
155
- boundaries(list): A list of steps numbers. The type of element in the list is python int.
156
- values(list): A list of learning rate values that will be picked during different epoch boundaries.
157
- The type of element in the list is python float.
158
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
159
- """
160
-
161
- def __init__(self,
162
- step_each_epoch,
163
- decay_epochs,
164
- values,
165
- warmup_epoch=0,
166
- last_epoch=-1,
167
- **kwargs):
168
- super(Piecewise, self).__init__()
169
- self.boundaries = [step_each_epoch * e for e in decay_epochs]
170
- self.values = values
171
- self.last_epoch = last_epoch
172
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
173
-
174
- def __call__(self):
175
- learning_rate = lr.PiecewiseDecay(
176
- boundaries=self.boundaries,
177
- values=self.values,
178
- last_epoch=self.last_epoch)
179
- if self.warmup_epoch > 0:
180
- learning_rate = lr.LinearWarmup(
181
- learning_rate=learning_rate,
182
- warmup_steps=self.warmup_epoch,
183
- start_lr=0.0,
184
- end_lr=self.values[0],
185
- last_epoch=self.last_epoch)
186
- return learning_rate
187
-
188
-
189
- class CyclicalCosine(object):
190
- """
191
- Cyclical cosine learning rate decay
192
- Args:
193
- learning_rate(float): initial learning rate
194
- step_each_epoch(int): steps each epoch
195
- epochs(int): total training epochs
196
- cycle(int): period of the cosine learning rate
197
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
198
- """
199
-
200
- def __init__(self,
201
- learning_rate,
202
- step_each_epoch,
203
- epochs,
204
- cycle,
205
- warmup_epoch=0,
206
- last_epoch=-1,
207
- **kwargs):
208
- super(CyclicalCosine, self).__init__()
209
- self.learning_rate = learning_rate
210
- self.T_max = step_each_epoch * epochs
211
- self.last_epoch = last_epoch
212
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
213
- self.cycle = round(cycle * step_each_epoch)
214
-
215
- def __call__(self):
216
- learning_rate = CyclicalCosineDecay(
217
- learning_rate=self.learning_rate,
218
- T_max=self.T_max,
219
- cycle=self.cycle,
220
- last_epoch=self.last_epoch)
221
- if self.warmup_epoch > 0:
222
- learning_rate = lr.LinearWarmup(
223
- learning_rate=learning_rate,
224
- warmup_steps=self.warmup_epoch,
225
- start_lr=0.0,
226
- end_lr=self.learning_rate,
227
- last_epoch=self.last_epoch)
228
- return learning_rate
@@ -1,49 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import math
16
- from paddle.optimizer.lr import LRScheduler
17
-
18
-
19
- class CyclicalCosineDecay(LRScheduler):
20
- def __init__(self,
21
- learning_rate,
22
- T_max,
23
- cycle=1,
24
- last_epoch=-1,
25
- eta_min=0.0,
26
- verbose=False):
27
- """
28
- Cyclical cosine learning rate decay
29
- A learning rate which can be referred in https://arxiv.org/pdf/2012.12645.pdf
30
- Args:
31
- learning rate(float): learning rate
32
- T_max(int): maximum epoch num
33
- cycle(int): period of the cosine decay
34
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
35
- eta_min(float): minimum learning rate during training
36
- verbose(bool): whether to print learning rate for each epoch
37
- """
38
- super(CyclicalCosineDecay, self).__init__(learning_rate, last_epoch,
39
- verbose)
40
- self.cycle = cycle
41
- self.eta_min = eta_min
42
-
43
- def get_lr(self):
44
- if self.last_epoch == 0:
45
- return self.base_lr
46
- reletive_epoch = self.last_epoch % self.cycle
47
- lr = self.eta_min + 0.5 * (self.base_lr - self.eta_min) * \
48
- (1 + math.cos(math.pi * reletive_epoch / self.cycle))
49
- return lr
@@ -1,160 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
- from __future__ import unicode_literals
19
-
20
- from paddle import optimizer as optim
21
-
22
-
23
- class Momentum(object):
24
- """
25
- Simple Momentum optimizer with velocity state.
26
- Args:
27
- learning_rate (float|Variable) - The learning rate used to update parameters.
28
- Can be a float value or a Variable with one float value as data element.
29
- momentum (float) - Momentum factor.
30
- regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
31
- """
32
-
33
- def __init__(self,
34
- learning_rate,
35
- momentum,
36
- weight_decay=None,
37
- grad_clip=None,
38
- **args):
39
- super(Momentum, self).__init__()
40
- self.learning_rate = learning_rate
41
- self.momentum = momentum
42
- self.weight_decay = weight_decay
43
- self.grad_clip = grad_clip
44
-
45
- def __call__(self, parameters):
46
- opt = optim.Momentum(
47
- learning_rate=self.learning_rate,
48
- momentum=self.momentum,
49
- weight_decay=self.weight_decay,
50
- grad_clip=self.grad_clip,
51
- parameters=parameters)
52
- return opt
53
-
54
-
55
- class Adam(object):
56
- def __init__(self,
57
- learning_rate=0.001,
58
- beta1=0.9,
59
- beta2=0.999,
60
- epsilon=1e-08,
61
- parameter_list=None,
62
- weight_decay=None,
63
- grad_clip=None,
64
- name=None,
65
- lazy_mode=False,
66
- **kwargs):
67
- self.learning_rate = learning_rate
68
- self.beta1 = beta1
69
- self.beta2 = beta2
70
- self.epsilon = epsilon
71
- self.parameter_list = parameter_list
72
- self.learning_rate = learning_rate
73
- self.weight_decay = weight_decay
74
- self.grad_clip = grad_clip
75
- self.name = name
76
- self.lazy_mode = lazy_mode
77
-
78
- def __call__(self, parameters):
79
- opt = optim.Adam(
80
- learning_rate=self.learning_rate,
81
- beta1=self.beta1,
82
- beta2=self.beta2,
83
- epsilon=self.epsilon,
84
- weight_decay=self.weight_decay,
85
- grad_clip=self.grad_clip,
86
- name=self.name,
87
- lazy_mode=self.lazy_mode,
88
- parameters=parameters)
89
- return opt
90
-
91
-
92
- class RMSProp(object):
93
- """
94
- Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
95
- Args:
96
- learning_rate (float|Variable) - The learning rate used to update parameters.
97
- Can be a float value or a Variable with one float value as data element.
98
- momentum (float) - Momentum factor.
99
- rho (float) - rho value in equation.
100
- epsilon (float) - avoid division by zero, default is 1e-6.
101
- regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
102
- """
103
-
104
- def __init__(self,
105
- learning_rate,
106
- momentum=0.0,
107
- rho=0.95,
108
- epsilon=1e-6,
109
- weight_decay=None,
110
- grad_clip=None,
111
- **args):
112
- super(RMSProp, self).__init__()
113
- self.learning_rate = learning_rate
114
- self.momentum = momentum
115
- self.rho = rho
116
- self.epsilon = epsilon
117
- self.weight_decay = weight_decay
118
- self.grad_clip = grad_clip
119
-
120
- def __call__(self, parameters):
121
- opt = optim.RMSProp(
122
- learning_rate=self.learning_rate,
123
- momentum=self.momentum,
124
- rho=self.rho,
125
- epsilon=self.epsilon,
126
- weight_decay=self.weight_decay,
127
- grad_clip=self.grad_clip,
128
- parameters=parameters)
129
- return opt
130
-
131
-
132
- class Adadelta(object):
133
- def __init__(self,
134
- learning_rate=0.001,
135
- epsilon=1e-08,
136
- rho=0.95,
137
- parameter_list=None,
138
- weight_decay=None,
139
- grad_clip=None,
140
- name=None,
141
- **kwargs):
142
- self.learning_rate = learning_rate
143
- self.epsilon = epsilon
144
- self.rho = rho
145
- self.parameter_list = parameter_list
146
- self.learning_rate = learning_rate
147
- self.weight_decay = weight_decay
148
- self.grad_clip = grad_clip
149
- self.name = name
150
-
151
- def __call__(self, parameters):
152
- opt = optim.Adadelta(
153
- learning_rate=self.learning_rate,
154
- epsilon=self.epsilon,
155
- rho=self.rho,
156
- weight_decay=self.weight_decay,
157
- grad_clip=self.grad_clip,
158
- name=self.name,
159
- parameters=parameters)
160
- return opt