pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/__init__.py +21 -21
- pyxllib/algo/__init__.py +8 -8
- pyxllib/algo/disjoint.py +54 -54
- pyxllib/algo/geo.py +541 -529
- pyxllib/algo/intervals.py +964 -964
- pyxllib/algo/matcher.py +389 -311
- pyxllib/algo/newbie.py +166 -166
- pyxllib/algo/pupil.py +629 -461
- pyxllib/algo/shapelylib.py +67 -67
- pyxllib/algo/specialist.py +241 -240
- pyxllib/algo/stat.py +494 -458
- pyxllib/algo/treelib.py +149 -149
- pyxllib/algo/unitlib.py +66 -66
- {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/__init__.py +5 -5
- pyxllib/cv/expert.py +267 -267
- pyxllib/cv/imfile.py +159 -159
- pyxllib/cv/imhash.py +39 -39
- pyxllib/cv/pupil.py +9 -9
- pyxllib/cv/rgbfmt.py +1525 -1525
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/cv/trackbartools.py +251 -251
- pyxllib/cv/xlcvlib.py +1040 -1040
- pyxllib/cv/xlpillib.py +423 -423
- pyxllib/data/echarts.py +240 -129
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/oss.py +72 -72
- pyxllib/data/pglib.py +1127 -643
- pyxllib/data/sqlite.py +568 -341
- pyxllib/data/sqllib.py +297 -297
- pyxllib/ext/JLineViewer.py +505 -492
- pyxllib/ext/__init__.py +6 -6
- pyxllib/ext/demolib.py +246 -246
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +12 -1606
- pyxllib/ext/old.py +663 -663
- pyxllib/ext/qt.py +449 -449
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/seleniumlib.py +76 -76
- pyxllib/ext/tk.py +173 -173
- pyxllib/ext/unixlib.py +827 -826
- pyxllib/ext/utools.py +351 -338
- pyxllib/ext/webhook.py +124 -101
- pyxllib/ext/win32lib.py +40 -40
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1105 -173
- pyxllib/file/__init__.py +17 -17
- pyxllib/file/docxlib.py +761 -761
- pyxllib/file/gitlib.py +309 -309
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +148 -139
- pyxllib/file/newbie.py +10 -10
- pyxllib/file/onenotelib.py +1469 -1469
- pyxllib/file/packlib/__init__.py +330 -293
- pyxllib/file/packlib/zipfile.py +2441 -2441
- pyxllib/file/pdflib.py +426 -426
- pyxllib/file/pupil.py +185 -185
- pyxllib/file/specialist/__init__.py +685 -685
- pyxllib/file/specialist/dirlib.py +799 -799
- pyxllib/file/specialist/download.py +193 -186
- pyxllib/file/specialist/filelib.py +2829 -2618
- pyxllib/file/xlsxlib.py +3131 -2976
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/__init__.py +5 -5
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/deprecatedlib.py +233 -233
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/ipyexec.py +253 -253
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +451 -444
- pyxllib/prog/pupil.py +1197 -1128
- pyxllib/prog/sitepackages.py +33 -33
- pyxllib/prog/specialist/__init__.py +391 -217
- pyxllib/prog/specialist/bc.py +203 -200
- pyxllib/prog/specialist/browser.py +497 -488
- pyxllib/prog/specialist/common.py +347 -347
- pyxllib/prog/specialist/datetime.py +199 -131
- pyxllib/prog/specialist/tictoc.py +240 -241
- pyxllib/prog/specialist/xllog.py +180 -180
- pyxllib/prog/xlosenv.py +108 -101
- pyxllib/stdlib/__init__.py +17 -17
- pyxllib/stdlib/tablepyxl/__init__.py +10 -10
- pyxllib/stdlib/tablepyxl/style.py +303 -303
- pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
- pyxllib/text/__init__.py +8 -8
- pyxllib/text/ahocorasick.py +39 -39
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +121 -109
- pyxllib/text/jiebalib.py +267 -264
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +922 -767
- pyxllib/text/latex/__init__.py +158 -158
- pyxllib/text/levenshtein.py +303 -303
- pyxllib/text/nestenv.py +1215 -1215
- pyxllib/text/newbie.py +300 -288
- pyxllib/text/pupil/__init__.py +8 -8
- pyxllib/text/pupil/common.py +1121 -1095
- pyxllib/text/pupil/xlalign.py +326 -326
- pyxllib/text/pycode.py +47 -47
- pyxllib/text/specialist/__init__.py +8 -8
- pyxllib/text/specialist/common.py +112 -112
- pyxllib/text/specialist/ptag.py +186 -186
- pyxllib/text/spellchecker.py +172 -172
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/vbacode.py +17 -17
- pyxllib/text/xmllib.py +747 -685
- pyxllib/xl.py +42 -38
- pyxllib/xlcv.py +17 -17
- pyxllib-0.3.200.dist-info/METADATA +48 -0
- pyxllib-0.3.200.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
pyxllib/text/jiebalib.py
CHANGED
@@ -1,264 +1,267 @@
|
|
1
|
-
#!/usr/bin/env python3
|
2
|
-
# -*- coding: utf-8 -*-
|
3
|
-
# @Author : 陈坤泽
|
4
|
-
# @Email : 877362867@qq.com
|
5
|
-
# @Date : 2023/11/05
|
6
|
-
|
7
|
-
""" 基于jieba库的一些文本处理功能 """
|
8
|
-
|
9
|
-
from collections import Counter
|
10
|
-
import re
|
11
|
-
|
12
|
-
from tqdm import tqdm
|
13
|
-
import pandas as pd
|
14
|
-
|
15
|
-
import jieba
|
16
|
-
import jieba.posseg as pseg
|
17
|
-
|
18
|
-
|
19
|
-
from pyxllib.
|
20
|
-
from pyxllib.
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
:param
|
48
|
-
:
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
:
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
df.
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
self.
|
115
|
-
self.
|
116
|
-
self.
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
"""
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
"""
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
for k, v in vec
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# @Author : 陈坤泽
|
4
|
+
# @Email : 877362867@qq.com
|
5
|
+
# @Date : 2023/11/05
|
6
|
+
|
7
|
+
""" 基于jieba库的一些文本处理功能 """
|
8
|
+
|
9
|
+
from collections import Counter
|
10
|
+
import re
|
11
|
+
|
12
|
+
from tqdm import tqdm
|
13
|
+
import pandas as pd
|
14
|
+
|
15
|
+
import jieba
|
16
|
+
import jieba.posseg as pseg
|
17
|
+
from simhash import Simhash
|
18
|
+
|
19
|
+
from pyxllib.prog.pupil import DictTool, run_once
|
20
|
+
from pyxllib.file.specialist import XlPath
|
21
|
+
from pyxllib.algo.stat import update_dataframes_to_excel
|
22
|
+
|
23
|
+
|
24
|
+
def jieba_add_words(words):
|
25
|
+
for w in words:
|
26
|
+
jieba.add_word(w)
|
27
|
+
|
28
|
+
|
29
|
+
def jieba_del_words(words):
|
30
|
+
for w in words:
|
31
|
+
jieba.del_word(w)
|
32
|
+
|
33
|
+
|
34
|
+
@run_once('str')
|
35
|
+
def jieba_cut(text):
|
36
|
+
return tuple(jieba.cut(text))
|
37
|
+
|
38
|
+
|
39
|
+
@run_once('str')
|
40
|
+
def pseg_cut(text):
|
41
|
+
return tuple(pseg.cut(text))
|
42
|
+
|
43
|
+
|
44
|
+
def _count_word_frequency(texts, function_word=True):
|
45
|
+
""" 统计关键词出现频数 (主要是协助计算tf-idf)
|
46
|
+
|
47
|
+
:param texts: 输入字符串列表
|
48
|
+
:param function_word: 是否要统计虚词
|
49
|
+
:return: 一个dict
|
50
|
+
key: 分词名称
|
51
|
+
values: [x, y],x是出现总频数,y是这个词在多少篇文章中出现过
|
52
|
+
|
53
|
+
>>> _count_word_frequency(['正正正正', '正反正', '反反反反'])
|
54
|
+
{'正正': [1, 1], '反反': [2, 1]}
|
55
|
+
|
56
|
+
原没有过滤词性的结果:{'正正': [2, 1], '正': [1, 1], '反正': [1, 1], '反反': [2, 1]}
|
57
|
+
"""
|
58
|
+
|
59
|
+
d = dict()
|
60
|
+
for text in tqdm(texts, '词频统计'):
|
61
|
+
wordflags = list(pseg.cut(text))
|
62
|
+
words = set()
|
63
|
+
for word, flag in wordflags:
|
64
|
+
# 虚词不做记录
|
65
|
+
if (not function_word) and flag in ('uj', 'd', 'p', 'c', 'u', 'xc'):
|
66
|
+
continue
|
67
|
+
words.add(word)
|
68
|
+
if word not in d:
|
69
|
+
d[word] = [0, 0]
|
70
|
+
d[word][0] += 1
|
71
|
+
for word in words:
|
72
|
+
d[word][1] += 1
|
73
|
+
return d
|
74
|
+
|
75
|
+
|
76
|
+
def analyse_tf_idf(texts, outfile=None, sheet_name='tf-idf', *, function_word=True):
|
77
|
+
""" 分析tf-idf值
|
78
|
+
|
79
|
+
:param list[str] texts: 多份文件的文本内容
|
80
|
+
:return: 一个DataFrame数据
|
81
|
+
|
82
|
+
这个算法jieba可能有些自带库可以搞,但是自己写一下也不难啦
|
83
|
+
注意我这里返回的tf-idf中,是放大了总频数倍的,这样显示的数值大一点,看起来舒服~
|
84
|
+
"""
|
85
|
+
from math import log10
|
86
|
+
|
87
|
+
frequency = _count_word_frequency(texts, function_word)
|
88
|
+
DictTool.isub(frequency, [' ', '\t', '\n'])
|
89
|
+
|
90
|
+
n = len(texts)
|
91
|
+
sum_frequency = sum([v[0] for v in frequency.values()])
|
92
|
+
|
93
|
+
li = []
|
94
|
+
for k, v in frequency.items():
|
95
|
+
idf = log10(n / v[1])
|
96
|
+
# idf = 1
|
97
|
+
li.append([k, v[0], v[0] / sum_frequency, v[1], idf, v[0] * idf])
|
98
|
+
df = pd.DataFrame.from_records(li, columns=('词汇', '频数', '频率', '出现该词文章数', 'idf', 'tf-idf'))
|
99
|
+
df.sort_values(by='tf-idf', ascending=False, inplace=True)
|
100
|
+
|
101
|
+
if outfile:
|
102
|
+
update_dataframes_to_excel(outfile, {sheet_name: df})
|
103
|
+
|
104
|
+
return df
|
105
|
+
|
106
|
+
|
107
|
+
class TextClassifier:
|
108
|
+
def __init__(self, texts=None):
|
109
|
+
""" 文本分类器
|
110
|
+
|
111
|
+
:param list[str] texts: 文本内容
|
112
|
+
"""
|
113
|
+
|
114
|
+
self.texts = []
|
115
|
+
self.tfidf = {}
|
116
|
+
self.vecs = [] # 每份文本对应的向量化表达
|
117
|
+
self.default_tfidf = 1 # 如果没有计算tf-idf,可以全部默认用权重1
|
118
|
+
|
119
|
+
if texts:
|
120
|
+
for text in texts:
|
121
|
+
self.texts.append(text)
|
122
|
+
|
123
|
+
def get_text_tf(self, text, *,
|
124
|
+
function_word_weight=0.2,
|
125
|
+
normalize=True,
|
126
|
+
ingore_words=(' ', '\t', '\n'),
|
127
|
+
add_flag=False):
|
128
|
+
""" 这里可以定制提取text关键词的算法
|
129
|
+
|
130
|
+
:param function_word_weight: 这里可以自定义功能性词汇权重,一般是设一个小数降低权重
|
131
|
+
|
132
|
+
一般是定制一些过滤规则,比如过滤掉一些词性,或者过滤掉一些词
|
133
|
+
"""
|
134
|
+
ct = Counter()
|
135
|
+
|
136
|
+
# 1 初步的分词,以及是否要过滤虚词
|
137
|
+
wordflags = list(pseg_cut(text))
|
138
|
+
for word, flag in wordflags:
|
139
|
+
if flag in ('uj', 'd', 'p', 'c', 'u', 'xc', 'x'):
|
140
|
+
if add_flag:
|
141
|
+
ct[word + ',' + flag] += function_word_weight
|
142
|
+
else:
|
143
|
+
ct[word] += function_word_weight
|
144
|
+
else:
|
145
|
+
if add_flag:
|
146
|
+
ct[word + ',' + flag] += 1
|
147
|
+
else:
|
148
|
+
ct[word] += 1
|
149
|
+
|
150
|
+
# 2 归一化一些词
|
151
|
+
if normalize:
|
152
|
+
ct2 = Counter()
|
153
|
+
for k, v in ct.items():
|
154
|
+
# 如果需要对一些词汇做归一化,也可以这里设置
|
155
|
+
k = re.sub(r'\d', '0', k) # 把数字都换成0
|
156
|
+
ct2[k] += v
|
157
|
+
ct = ct2
|
158
|
+
|
159
|
+
# 3 过滤掉一些词
|
160
|
+
if ingore_words:
|
161
|
+
for k in ingore_words:
|
162
|
+
if k in ct:
|
163
|
+
del ct[k]
|
164
|
+
|
165
|
+
return ct
|
166
|
+
|
167
|
+
def compute_tfidf(self, outfile=None, sheet_name='tf-idf', normalize=False, function_word_weight=0.2,
|
168
|
+
add_flag=False):
|
169
|
+
""" 重算tfidf表 """
|
170
|
+
from math import log10
|
171
|
+
|
172
|
+
# 1 统计频数和出现该词的文章数
|
173
|
+
d = dict()
|
174
|
+
for text in tqdm(self.texts, '词频统计'):
|
175
|
+
ct = self.get_text_tf(text, normalize=normalize, function_word_weight=function_word_weight,
|
176
|
+
add_flag=add_flag)
|
177
|
+
for k, v in ct.items():
|
178
|
+
if k not in d:
|
179
|
+
d[k] = [0, 0]
|
180
|
+
d[k] = [d[k][0] + v, d[k][1] + 1]
|
181
|
+
|
182
|
+
# 2 计算tfidf
|
183
|
+
n = len(self.texts)
|
184
|
+
sum_tf = sum([v[0] for v in d.values()])
|
185
|
+
ls = []
|
186
|
+
for k, v in d.items():
|
187
|
+
idf = log10(n / v[1])
|
188
|
+
# idf = 1
|
189
|
+
ls.append([k, v[0], v[0] / sum_tf, v[1], idf, v[0] * idf])
|
190
|
+
|
191
|
+
df = pd.DataFrame.from_records(ls, columns=('词汇', '频数', '频率', '出现该词文章数', 'idf', 'tf-idf'))
|
192
|
+
df.sort_values(by='tf-idf', ascending=False, inplace=True)
|
193
|
+
|
194
|
+
# 3 保存到文件
|
195
|
+
if outfile:
|
196
|
+
update_dataframes_to_excel(outfile, {sheet_name: df})
|
197
|
+
|
198
|
+
self.tfidf = {row['词汇']: row['tf-idf'] for idx, row in df.iterrows()}
|
199
|
+
self.default_tfidf = df.loc[len(df) - 1]['tf-idf'] # 最后条的权重作为其他未见词的默认权重
|
200
|
+
|
201
|
+
return df
|
202
|
+
|
203
|
+
def normalization(self, d):
|
204
|
+
""" 向量归一化
|
205
|
+
|
206
|
+
输入一个类字典结构表示的向量,对向量做归一化处理
|
207
|
+
"""
|
208
|
+
length = sum([v * v for v in d.values()]) ** 0.5 # 向量长度
|
209
|
+
return {k: v / length for k, v in d.items()}
|
210
|
+
|
211
|
+
def get_text_vec(self, text):
|
212
|
+
""" 获取文本的向量化表达
|
213
|
+
|
214
|
+
:param str text: 文本内容
|
215
|
+
"""
|
216
|
+
ct = self.get_text_tf(text)
|
217
|
+
vec = {k: v * self.tfidf.get(k, self.default_tfidf) for k, v in ct.items()}
|
218
|
+
vec = self.normalization(vec)
|
219
|
+
return vec
|
220
|
+
|
221
|
+
def compute_vecs(self):
|
222
|
+
""" 重置向量化表达 """
|
223
|
+
vecs = []
|
224
|
+
for text in tqdm(self.texts, desc='query向量化'):
|
225
|
+
vecs.append(self.get_text_vec(text))
|
226
|
+
self.vecs = vecs
|
227
|
+
return vecs
|
228
|
+
|
229
|
+
def cosine_similar(self, x, y):
|
230
|
+
""" 两个向量的余弦相似度,值越大越相似
|
231
|
+
|
232
|
+
这里是简化的,只算两个向量的点积,请确保输入的都是单位长度的向量
|
233
|
+
注意这里x和y都是稀疏矩阵的存储形式,传入的是dict结构
|
234
|
+
"""
|
235
|
+
keys = x.keys() & y.keys() # 求出x和y共有的键值
|
236
|
+
return sum([x[k] * y[k] for k in keys])
|
237
|
+
|
238
|
+
def find_similar_vec(self, x, maxn=10):
|
239
|
+
""" 找与x最相近的向量,返回下标和相似度
|
240
|
+
|
241
|
+
:pamra x: 待查找的对象
|
242
|
+
:param maxn: 返回最相近的前maxn个对象
|
243
|
+
"""
|
244
|
+
if isinstance(x, str):
|
245
|
+
x = self.get_text_vec(x)
|
246
|
+
|
247
|
+
# todo 使用并行计算?或者其实也可以向量化,但向量化是稀疏矩阵,挺占空间的
|
248
|
+
sims = [(i, self.cosine_similar(x, v)) for i, v in enumerate(self.vecs)]
|
249
|
+
sims.sort(key=lambda x: x[1], reverse=True)
|
250
|
+
return sims[:maxn]
|
251
|
+
|
252
|
+
def refine_vecs(self):
|
253
|
+
""" 优化向量数据,去掉权重小余0.0001的维度 """
|
254
|
+
# 1 计算每个向量的长度
|
255
|
+
vecs = []
|
256
|
+
for vec in tqdm(self.vecs, '优化向量'):
|
257
|
+
vec = [(k, v) for k, v in vec.items()]
|
258
|
+
vec.sort(key=lambda x: x[1], reverse=True)
|
259
|
+
vec2 = {}
|
260
|
+
for k, v in vec:
|
261
|
+
if v < 0.0001:
|
262
|
+
break
|
263
|
+
vec2[k] = round(v, 4)
|
264
|
+
vecs.append(vec2)
|
265
|
+
|
266
|
+
self.vecs = vecs
|
267
|
+
return self.vecs
|
pyxllib/text/jinjalib.py
ADDED
@@ -0,0 +1,32 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# @Author : 陈坤泽
|
4
|
+
# @Email : 877362867@qq.com
|
5
|
+
# @Date : 2024/05/26
|
6
|
+
|
7
|
+
from pyxllib.prog.pupil import check_install_package
|
8
|
+
|
9
|
+
# 一个xpath解析库
|
10
|
+
check_install_package('jinja2')
|
11
|
+
|
12
|
+
import jinja2
|
13
|
+
from jinja2 import Template, Environment
|
14
|
+
|
15
|
+
from pyxllib.file.specialist import XlPath
|
16
|
+
|
17
|
+
|
18
|
+
def set_template(s, *args, **kwargs):
|
19
|
+
""" todo 这个名字会不会太容易冲突了? """
|
20
|
+
return Template(s.strip(), *args, **kwargs)
|
21
|
+
|
22
|
+
|
23
|
+
def set_meta_template(s, meta_start='[[', meta_end=']]', **kwargs):
|
24
|
+
""" 支持预先用某些格式渲染后,再返回标准渲染模板 """
|
25
|
+
t = Template(s.strip(), variable_start_string=meta_start,
|
26
|
+
variable_end_string=meta_end).render(**kwargs)
|
27
|
+
return Template(t)
|
28
|
+
|
29
|
+
|
30
|
+
def get_jinja_template(name, **kwargs):
|
31
|
+
template = Environment(**kwargs).from_string((XlPath(__file__).parent / f'templates/{name}').read_text())
|
32
|
+
return template
|