pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,402 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/encoders/sar_encoder.py
17
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/decoders/sar_decoder.py
18
- """
19
-
20
- from __future__ import absolute_import
21
- from __future__ import division
22
- from __future__ import print_function
23
-
24
- import math
25
- import paddle
26
- from paddle import ParamAttr
27
- import paddle.nn as nn
28
- import paddle.nn.functional as F
29
-
30
-
31
- class SAREncoder(nn.Layer):
32
- """
33
- Args:
34
- enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
35
- enc_drop_rnn (float): Dropout probability of RNN layer in encoder.
36
- enc_gru (bool): If True, use GRU, else LSTM in encoder.
37
- d_model (int): Dim of channels from backbone.
38
- d_enc (int): Dim of encoder RNN layer.
39
- mask (bool): If True, mask padding in RNN sequence.
40
- """
41
-
42
- def __init__(self,
43
- enc_bi_rnn=False,
44
- enc_drop_rnn=0.1,
45
- enc_gru=False,
46
- d_model=512,
47
- d_enc=512,
48
- mask=True,
49
- **kwargs):
50
- super().__init__()
51
- assert isinstance(enc_bi_rnn, bool)
52
- assert isinstance(enc_drop_rnn, (int, float))
53
- assert 0 <= enc_drop_rnn < 1.0
54
- assert isinstance(enc_gru, bool)
55
- assert isinstance(d_model, int)
56
- assert isinstance(d_enc, int)
57
- assert isinstance(mask, bool)
58
-
59
- self.enc_bi_rnn = enc_bi_rnn
60
- self.enc_drop_rnn = enc_drop_rnn
61
- self.mask = mask
62
-
63
- # LSTM Encoder
64
- if enc_bi_rnn:
65
- direction = 'bidirectional'
66
- else:
67
- direction = 'forward'
68
- kwargs = dict(
69
- input_size=d_model,
70
- hidden_size=d_enc,
71
- num_layers=2,
72
- time_major=False,
73
- dropout=enc_drop_rnn,
74
- direction=direction)
75
- if enc_gru:
76
- self.rnn_encoder = nn.GRU(**kwargs)
77
- else:
78
- self.rnn_encoder = nn.LSTM(**kwargs)
79
-
80
- # global feature transformation
81
- encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
82
- self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size)
83
-
84
- def forward(self, feat, img_metas=None):
85
- if img_metas is not None:
86
- assert len(img_metas[0]) == feat.shape[0]
87
-
88
- valid_ratios = None
89
- if img_metas is not None and self.mask:
90
- valid_ratios = img_metas[-1]
91
-
92
- h_feat = feat.shape[2] # bsz c h w
93
- feat_v = F.max_pool2d(
94
- feat, kernel_size=(h_feat, 1), stride=1, padding=0)
95
- feat_v = feat_v.squeeze(2) # bsz * C * W
96
- feat_v = paddle.transpose(feat_v, perm=[0, 2, 1]) # bsz * W * C
97
- holistic_feat = self.rnn_encoder(feat_v)[0] # bsz * T * C
98
-
99
- if valid_ratios is not None:
100
- valid_hf = []
101
- T = holistic_feat.shape[1]
102
- for i, valid_ratio in enumerate(valid_ratios):
103
- valid_step = min(T, math.ceil(T * valid_ratio)) - 1
104
- valid_hf.append(holistic_feat[i, valid_step, :])
105
- valid_hf = paddle.stack(valid_hf, axis=0)
106
- else:
107
- valid_hf = holistic_feat[:, -1, :] # bsz * C
108
- holistic_feat = self.linear(valid_hf) # bsz * C
109
-
110
- return holistic_feat
111
-
112
-
113
- class BaseDecoder(nn.Layer):
114
- def __init__(self, **kwargs):
115
- super().__init__()
116
-
117
- def forward_train(self, feat, out_enc, targets, img_metas):
118
- raise NotImplementedError
119
-
120
- def forward_test(self, feat, out_enc, img_metas):
121
- raise NotImplementedError
122
-
123
- def forward(self,
124
- feat,
125
- out_enc,
126
- label=None,
127
- img_metas=None,
128
- train_mode=True):
129
- self.train_mode = train_mode
130
-
131
- if train_mode:
132
- return self.forward_train(feat, out_enc, label, img_metas)
133
- return self.forward_test(feat, out_enc, img_metas)
134
-
135
-
136
- class ParallelSARDecoder(BaseDecoder):
137
- """
138
- Args:
139
- out_channels (int): Output class number.
140
- enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
141
- dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
142
- dec_drop_rnn (float): Dropout of RNN layer in decoder.
143
- dec_gru (bool): If True, use GRU, else LSTM in decoder.
144
- d_model (int): Dim of channels from backbone.
145
- d_enc (int): Dim of encoder RNN layer.
146
- d_k (int): Dim of channels of attention module.
147
- pred_dropout (float): Dropout probability of prediction layer.
148
- max_seq_len (int): Maximum sequence length for decoding.
149
- mask (bool): If True, mask padding in feature map.
150
- start_idx (int): Index of start token.
151
- padding_idx (int): Index of padding token.
152
- pred_concat (bool): If True, concat glimpse feature from
153
- attention with holistic feature and hidden state.
154
- """
155
-
156
- def __init__(
157
- self,
158
- out_channels, # 90 + unknown + start + padding
159
- enc_bi_rnn=False,
160
- dec_bi_rnn=False,
161
- dec_drop_rnn=0.0,
162
- dec_gru=False,
163
- d_model=512,
164
- d_enc=512,
165
- d_k=64,
166
- pred_dropout=0.1,
167
- max_text_length=30,
168
- mask=True,
169
- pred_concat=True,
170
- **kwargs):
171
- super().__init__()
172
-
173
- self.num_classes = out_channels
174
- self.enc_bi_rnn = enc_bi_rnn
175
- self.d_k = d_k
176
- self.start_idx = out_channels - 2
177
- self.padding_idx = out_channels - 1
178
- self.max_seq_len = max_text_length
179
- self.mask = mask
180
- self.pred_concat = pred_concat
181
-
182
- encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
183
- decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
184
-
185
- # 2D attention layer
186
- self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
187
- self.conv3x3_1 = nn.Conv2D(
188
- d_model, d_k, kernel_size=3, stride=1, padding=1)
189
- self.conv1x1_2 = nn.Linear(d_k, 1)
190
-
191
- # Decoder RNN layer
192
- if dec_bi_rnn:
193
- direction = 'bidirectional'
194
- else:
195
- direction = 'forward'
196
-
197
- kwargs = dict(
198
- input_size=encoder_rnn_out_size,
199
- hidden_size=encoder_rnn_out_size,
200
- num_layers=2,
201
- time_major=False,
202
- dropout=dec_drop_rnn,
203
- direction=direction)
204
- if dec_gru:
205
- self.rnn_decoder = nn.GRU(**kwargs)
206
- else:
207
- self.rnn_decoder = nn.LSTM(**kwargs)
208
-
209
- # Decoder input embedding
210
- self.embedding = nn.Embedding(
211
- self.num_classes,
212
- encoder_rnn_out_size,
213
- padding_idx=self.padding_idx)
214
-
215
- # Prediction layer
216
- self.pred_dropout = nn.Dropout(pred_dropout)
217
- pred_num_classes = self.num_classes - 1
218
- if pred_concat:
219
- fc_in_channel = decoder_rnn_out_size + d_model + d_enc
220
- else:
221
- fc_in_channel = d_model
222
- self.prediction = nn.Linear(fc_in_channel, pred_num_classes)
223
-
224
- def _2d_attention(self,
225
- decoder_input,
226
- feat,
227
- holistic_feat,
228
- valid_ratios=None):
229
-
230
- y = self.rnn_decoder(decoder_input)[0]
231
- # y: bsz * (seq_len + 1) * hidden_size
232
-
233
- attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size
234
- bsz, seq_len, attn_size = attn_query.shape
235
- attn_query = paddle.unsqueeze(attn_query, axis=[3, 4])
236
- # (bsz, seq_len + 1, attn_size, 1, 1)
237
-
238
- attn_key = self.conv3x3_1(feat)
239
- # bsz * attn_size * h * w
240
- attn_key = attn_key.unsqueeze(1)
241
- # bsz * 1 * attn_size * h * w
242
-
243
- attn_weight = paddle.tanh(paddle.add(attn_key, attn_query))
244
-
245
- # bsz * (seq_len + 1) * attn_size * h * w
246
- attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 3, 4, 2])
247
- # bsz * (seq_len + 1) * h * w * attn_size
248
- attn_weight = self.conv1x1_2(attn_weight)
249
- # bsz * (seq_len + 1) * h * w * 1
250
- bsz, T, h, w, c = attn_weight.shape
251
- assert c == 1
252
-
253
- if valid_ratios is not None:
254
- # cal mask of attention weight
255
- for i, valid_ratio in enumerate(valid_ratios):
256
- valid_width = min(w, math.ceil(w * valid_ratio))
257
- if valid_width < w:
258
- attn_weight[i, :, :, valid_width:, :] = float('-inf')
259
-
260
- attn_weight = paddle.reshape(attn_weight, [bsz, T, -1])
261
- attn_weight = F.softmax(attn_weight, axis=-1)
262
-
263
- attn_weight = paddle.reshape(attn_weight, [bsz, T, h, w, c])
264
- attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 4, 2, 3])
265
- # attn_weight: bsz * T * c * h * w
266
- # feat: bsz * c * h * w
267
- attn_feat = paddle.sum(paddle.multiply(feat.unsqueeze(1), attn_weight),
268
- (3, 4),
269
- keepdim=False)
270
- # bsz * (seq_len + 1) * C
271
-
272
- # Linear transformation
273
- if self.pred_concat:
274
- hf_c = holistic_feat.shape[-1]
275
- holistic_feat = paddle.expand(
276
- holistic_feat, shape=[bsz, seq_len, hf_c])
277
- y = self.prediction(paddle.concat((y, attn_feat, holistic_feat), 2))
278
- else:
279
- y = self.prediction(attn_feat)
280
- # bsz * (seq_len + 1) * num_classes
281
- if self.train_mode:
282
- y = self.pred_dropout(y)
283
-
284
- return y
285
-
286
- def forward_train(self, feat, out_enc, label, img_metas):
287
- '''
288
- img_metas: [label, valid_ratio]
289
- '''
290
- if img_metas is not None:
291
- assert len(img_metas[0]) == feat.shape[0]
292
-
293
- valid_ratios = None
294
- if img_metas is not None and self.mask:
295
- valid_ratios = img_metas[-1]
296
-
297
- lab_embedding = self.embedding(label)
298
- # bsz * seq_len * emb_dim
299
- out_enc = out_enc.unsqueeze(1)
300
- # bsz * 1 * emb_dim
301
- in_dec = paddle.concat((out_enc, lab_embedding), axis=1)
302
- # bsz * (seq_len + 1) * C
303
- out_dec = self._2d_attention(
304
- in_dec, feat, out_enc, valid_ratios=valid_ratios)
305
- # bsz * (seq_len + 1) * num_classes
306
-
307
- return out_dec[:, 1:, :] # bsz * seq_len * num_classes
308
-
309
- def forward_test(self, feat, out_enc, img_metas):
310
- if img_metas is not None:
311
- assert len(img_metas[0]) == feat.shape[0]
312
-
313
- valid_ratios = None
314
- if img_metas is not None and self.mask:
315
- valid_ratios = img_metas[-1]
316
-
317
- seq_len = self.max_seq_len
318
- bsz = feat.shape[0]
319
- start_token = paddle.full(
320
- (bsz, ), fill_value=self.start_idx, dtype='int64')
321
- # bsz
322
- start_token = self.embedding(start_token)
323
- # bsz * emb_dim
324
- emb_dim = start_token.shape[1]
325
- start_token = start_token.unsqueeze(1)
326
- start_token = paddle.expand(start_token, shape=[bsz, seq_len, emb_dim])
327
- # bsz * seq_len * emb_dim
328
- out_enc = out_enc.unsqueeze(1)
329
- # bsz * 1 * emb_dim
330
- decoder_input = paddle.concat((out_enc, start_token), axis=1)
331
- # bsz * (seq_len + 1) * emb_dim
332
-
333
- outputs = []
334
- for i in range(1, seq_len + 1):
335
- decoder_output = self._2d_attention(
336
- decoder_input, feat, out_enc, valid_ratios=valid_ratios)
337
- char_output = decoder_output[:, i, :] # bsz * num_classes
338
- char_output = F.softmax(char_output, -1)
339
- outputs.append(char_output)
340
- max_idx = paddle.argmax(char_output, axis=1, keepdim=False)
341
- char_embedding = self.embedding(max_idx) # bsz * emb_dim
342
- if i < seq_len:
343
- decoder_input[:, i + 1, :] = char_embedding
344
-
345
- outputs = paddle.stack(outputs, 1) # bsz * seq_len * num_classes
346
-
347
- return outputs
348
-
349
-
350
- class SARHead(nn.Layer):
351
- def __init__(self,
352
- out_channels,
353
- enc_bi_rnn=False,
354
- enc_drop_rnn=0.1,
355
- enc_gru=False,
356
- dec_bi_rnn=False,
357
- dec_drop_rnn=0.0,
358
- dec_gru=False,
359
- d_k=512,
360
- pred_dropout=0.1,
361
- max_text_length=30,
362
- pred_concat=True,
363
- **kwargs):
364
- super(SARHead, self).__init__()
365
-
366
- # encoder module
367
- self.encoder = SAREncoder(
368
- enc_bi_rnn=enc_bi_rnn, enc_drop_rnn=enc_drop_rnn, enc_gru=enc_gru)
369
-
370
- # decoder module
371
- self.decoder = ParallelSARDecoder(
372
- out_channels=out_channels,
373
- enc_bi_rnn=enc_bi_rnn,
374
- dec_bi_rnn=dec_bi_rnn,
375
- dec_drop_rnn=dec_drop_rnn,
376
- dec_gru=dec_gru,
377
- d_k=d_k,
378
- pred_dropout=pred_dropout,
379
- max_text_length=max_text_length,
380
- pred_concat=pred_concat)
381
-
382
- def forward(self, feat, targets=None):
383
- '''
384
- img_metas: [label, valid_ratio]
385
- '''
386
- holistic_feat = self.encoder(feat, targets) # bsz c
387
-
388
- if self.training:
389
- label = targets[0] # label
390
- label = paddle.to_tensor(label, dtype='int64')
391
- final_out = self.decoder(
392
- feat, holistic_feat, label, img_metas=targets)
393
- if not self.training:
394
- final_out = self.decoder(
395
- feat,
396
- holistic_feat,
397
- label=None,
398
- img_metas=targets,
399
- train_mode=False)
400
- # (bsz, seq_len, num_classes)
401
-
402
- return final_out
@@ -1,280 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import math
20
- import paddle
21
- from paddle import nn, ParamAttr
22
- from paddle.nn import functional as F
23
- import paddle.fluid as fluid
24
- import numpy as np
25
- from .self_attention import WrapEncoderForFeature
26
- from .self_attention import WrapEncoder
27
- from paddle.static import Program
28
- from pyxlpr.ppocr.modeling.backbones.rec_resnet_fpn import ResNetFPN
29
- import paddle.fluid.framework as framework
30
-
31
- from collections import OrderedDict
32
- gradient_clip = 10
33
-
34
-
35
- class PVAM(nn.Layer):
36
- def __init__(self, in_channels, char_num, max_text_length, num_heads,
37
- num_encoder_tus, hidden_dims):
38
- super(PVAM, self).__init__()
39
- self.char_num = char_num
40
- self.max_length = max_text_length
41
- self.num_heads = num_heads
42
- self.num_encoder_TUs = num_encoder_tus
43
- self.hidden_dims = hidden_dims
44
- # Transformer encoder
45
- t = 256
46
- c = 512
47
- self.wrap_encoder_for_feature = WrapEncoderForFeature(
48
- src_vocab_size=1,
49
- max_length=t,
50
- n_layer=self.num_encoder_TUs,
51
- n_head=self.num_heads,
52
- d_key=int(self.hidden_dims / self.num_heads),
53
- d_value=int(self.hidden_dims / self.num_heads),
54
- d_model=self.hidden_dims,
55
- d_inner_hid=self.hidden_dims,
56
- prepostprocess_dropout=0.1,
57
- attention_dropout=0.1,
58
- relu_dropout=0.1,
59
- preprocess_cmd="n",
60
- postprocess_cmd="da",
61
- weight_sharing=True)
62
-
63
- # PVAM
64
- self.flatten0 = paddle.nn.Flatten(start_axis=0, stop_axis=1)
65
- self.fc0 = paddle.nn.Linear(
66
- in_features=in_channels,
67
- out_features=in_channels, )
68
- self.emb = paddle.nn.Embedding(
69
- num_embeddings=self.max_length, embedding_dim=in_channels)
70
- self.flatten1 = paddle.nn.Flatten(start_axis=0, stop_axis=2)
71
- self.fc1 = paddle.nn.Linear(
72
- in_features=in_channels, out_features=1, bias_attr=False)
73
-
74
- def forward(self, inputs, encoder_word_pos, gsrm_word_pos):
75
- b, c, h, w = inputs.shape
76
- conv_features = paddle.reshape(inputs, shape=[-1, c, h * w])
77
- conv_features = paddle.transpose(conv_features, perm=[0, 2, 1])
78
- # transformer encoder
79
- b, t, c = conv_features.shape
80
-
81
- enc_inputs = [conv_features, encoder_word_pos, None]
82
- word_features = self.wrap_encoder_for_feature(enc_inputs)
83
-
84
- # pvam
85
- b, t, c = word_features.shape
86
- word_features = self.fc0(word_features)
87
- word_features_ = paddle.reshape(word_features, [-1, 1, t, c])
88
- word_features_ = paddle.tile(word_features_, [1, self.max_length, 1, 1])
89
- word_pos_feature = self.emb(gsrm_word_pos)
90
- word_pos_feature_ = paddle.reshape(word_pos_feature,
91
- [-1, self.max_length, 1, c])
92
- word_pos_feature_ = paddle.tile(word_pos_feature_, [1, 1, t, 1])
93
- y = word_pos_feature_ + word_features_
94
- y = F.tanh(y)
95
- attention_weight = self.fc1(y)
96
- attention_weight = paddle.reshape(
97
- attention_weight, shape=[-1, self.max_length, t])
98
- attention_weight = F.softmax(attention_weight, axis=-1)
99
- pvam_features = paddle.matmul(attention_weight,
100
- word_features) #[b, max_length, c]
101
- return pvam_features
102
-
103
-
104
- class GSRM(nn.Layer):
105
- def __init__(self, in_channels, char_num, max_text_length, num_heads,
106
- num_encoder_tus, num_decoder_tus, hidden_dims):
107
- super(GSRM, self).__init__()
108
- self.char_num = char_num
109
- self.max_length = max_text_length
110
- self.num_heads = num_heads
111
- self.num_encoder_TUs = num_encoder_tus
112
- self.num_decoder_TUs = num_decoder_tus
113
- self.hidden_dims = hidden_dims
114
-
115
- self.fc0 = paddle.nn.Linear(
116
- in_features=in_channels, out_features=self.char_num)
117
- self.wrap_encoder0 = WrapEncoder(
118
- src_vocab_size=self.char_num + 1,
119
- max_length=self.max_length,
120
- n_layer=self.num_decoder_TUs,
121
- n_head=self.num_heads,
122
- d_key=int(self.hidden_dims / self.num_heads),
123
- d_value=int(self.hidden_dims / self.num_heads),
124
- d_model=self.hidden_dims,
125
- d_inner_hid=self.hidden_dims,
126
- prepostprocess_dropout=0.1,
127
- attention_dropout=0.1,
128
- relu_dropout=0.1,
129
- preprocess_cmd="n",
130
- postprocess_cmd="da",
131
- weight_sharing=True)
132
-
133
- self.wrap_encoder1 = WrapEncoder(
134
- src_vocab_size=self.char_num + 1,
135
- max_length=self.max_length,
136
- n_layer=self.num_decoder_TUs,
137
- n_head=self.num_heads,
138
- d_key=int(self.hidden_dims / self.num_heads),
139
- d_value=int(self.hidden_dims / self.num_heads),
140
- d_model=self.hidden_dims,
141
- d_inner_hid=self.hidden_dims,
142
- prepostprocess_dropout=0.1,
143
- attention_dropout=0.1,
144
- relu_dropout=0.1,
145
- preprocess_cmd="n",
146
- postprocess_cmd="da",
147
- weight_sharing=True)
148
-
149
- self.mul = lambda x: paddle.matmul(x=x,
150
- y=self.wrap_encoder0.prepare_decoder.emb0.weight,
151
- transpose_y=True)
152
-
153
- def forward(self, inputs, gsrm_word_pos, gsrm_slf_attn_bias1,
154
- gsrm_slf_attn_bias2):
155
- # ===== GSRM Visual-to-semantic embedding block =====
156
- b, t, c = inputs.shape
157
- pvam_features = paddle.reshape(inputs, [-1, c])
158
- word_out = self.fc0(pvam_features)
159
- word_ids = paddle.argmax(F.softmax(word_out), axis=1)
160
- word_ids = paddle.reshape(x=word_ids, shape=[-1, t, 1])
161
-
162
- #===== GSRM Semantic reasoning block =====
163
- """
164
- This module is achieved through bi-transformers,
165
- ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
166
- """
167
- pad_idx = self.char_num
168
-
169
- word1 = paddle.cast(word_ids, "float32")
170
- word1 = F.pad(word1, [1, 0], value=1.0 * pad_idx, data_format="NLC")
171
- word1 = paddle.cast(word1, "int64")
172
- word1 = word1[:, :-1, :]
173
- word2 = word_ids
174
-
175
- enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
176
- enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]
177
-
178
- gsrm_feature1 = self.wrap_encoder0(enc_inputs_1)
179
- gsrm_feature2 = self.wrap_encoder1(enc_inputs_2)
180
-
181
- gsrm_feature2 = F.pad(gsrm_feature2, [0, 1],
182
- value=0.,
183
- data_format="NLC")
184
- gsrm_feature2 = gsrm_feature2[:, 1:, ]
185
- gsrm_features = gsrm_feature1 + gsrm_feature2
186
-
187
- gsrm_out = self.mul(gsrm_features)
188
-
189
- b, t, c = gsrm_out.shape
190
- gsrm_out = paddle.reshape(gsrm_out, [-1, c])
191
-
192
- return gsrm_features, word_out, gsrm_out
193
-
194
-
195
- class VSFD(nn.Layer):
196
- def __init__(self, in_channels=512, pvam_ch=512, char_num=38):
197
- super(VSFD, self).__init__()
198
- self.char_num = char_num
199
- self.fc0 = paddle.nn.Linear(
200
- in_features=in_channels * 2, out_features=pvam_ch)
201
- self.fc1 = paddle.nn.Linear(
202
- in_features=pvam_ch, out_features=self.char_num)
203
-
204
- def forward(self, pvam_feature, gsrm_feature):
205
- b, t, c1 = pvam_feature.shape
206
- b, t, c2 = gsrm_feature.shape
207
- combine_feature_ = paddle.concat([pvam_feature, gsrm_feature], axis=2)
208
- img_comb_feature_ = paddle.reshape(
209
- combine_feature_, shape=[-1, c1 + c2])
210
- img_comb_feature_map = self.fc0(img_comb_feature_)
211
- img_comb_feature_map = F.sigmoid(img_comb_feature_map)
212
- img_comb_feature_map = paddle.reshape(
213
- img_comb_feature_map, shape=[-1, t, c1])
214
- combine_feature = img_comb_feature_map * pvam_feature + (
215
- 1.0 - img_comb_feature_map) * gsrm_feature
216
- img_comb_feature = paddle.reshape(combine_feature, shape=[-1, c1])
217
-
218
- out = self.fc1(img_comb_feature)
219
- return out
220
-
221
-
222
- class SRNHead(nn.Layer):
223
- def __init__(self, in_channels, out_channels, max_text_length, num_heads,
224
- num_encoder_TUs, num_decoder_TUs, hidden_dims, **kwargs):
225
- super(SRNHead, self).__init__()
226
- self.char_num = out_channels
227
- self.max_length = max_text_length
228
- self.num_heads = num_heads
229
- self.num_encoder_TUs = num_encoder_TUs
230
- self.num_decoder_TUs = num_decoder_TUs
231
- self.hidden_dims = hidden_dims
232
-
233
- self.pvam = PVAM(
234
- in_channels=in_channels,
235
- char_num=self.char_num,
236
- max_text_length=self.max_length,
237
- num_heads=self.num_heads,
238
- num_encoder_tus=self.num_encoder_TUs,
239
- hidden_dims=self.hidden_dims)
240
-
241
- self.gsrm = GSRM(
242
- in_channels=in_channels,
243
- char_num=self.char_num,
244
- max_text_length=self.max_length,
245
- num_heads=self.num_heads,
246
- num_encoder_tus=self.num_encoder_TUs,
247
- num_decoder_tus=self.num_decoder_TUs,
248
- hidden_dims=self.hidden_dims)
249
- self.vsfd = VSFD(in_channels=in_channels, char_num=self.char_num)
250
-
251
- self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0
252
-
253
- def forward(self, inputs, targets=None):
254
- others = targets[-4:]
255
- encoder_word_pos = others[0]
256
- gsrm_word_pos = others[1]
257
- gsrm_slf_attn_bias1 = others[2]
258
- gsrm_slf_attn_bias2 = others[3]
259
-
260
- pvam_feature = self.pvam(inputs, encoder_word_pos, gsrm_word_pos)
261
-
262
- gsrm_feature, word_out, gsrm_out = self.gsrm(
263
- pvam_feature, gsrm_word_pos, gsrm_slf_attn_bias1,
264
- gsrm_slf_attn_bias2)
265
-
266
- final_out = self.vsfd(pvam_feature, gsrm_feature)
267
- if not self.training:
268
- final_out = F.softmax(final_out, axis=1)
269
-
270
- _, decoded_out = paddle.topk(final_out, k=1)
271
-
272
- predicts = OrderedDict([
273
- ('predict', final_out),
274
- ('pvam_feature', pvam_feature),
275
- ('decoded_out', decoded_out),
276
- ('word_out', word_out),
277
- ('gsrm_out', gsrm_out),
278
- ])
279
-
280
- return predicts