pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,99 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
-
22
-
23
- class CosineEmbeddingLoss(nn.Layer):
24
- def __init__(self, margin=0.):
25
- super(CosineEmbeddingLoss, self).__init__()
26
- self.margin = margin
27
- self.epsilon = 1e-12
28
-
29
- def forward(self, x1, x2, target):
30
- similarity = paddle.fluid.layers.reduce_sum(
31
- x1 * x2, dim=-1) / (paddle.norm(
32
- x1, axis=-1) * paddle.norm(
33
- x2, axis=-1) + self.epsilon)
34
- one_list = paddle.full_like(target, fill_value=1)
35
- out = paddle.fluid.layers.reduce_mean(
36
- paddle.where(
37
- paddle.equal(target, one_list), 1. - similarity,
38
- paddle.maximum(
39
- paddle.zeros_like(similarity), similarity - self.margin)))
40
-
41
- return out
42
-
43
-
44
- class AsterLoss(nn.Layer):
45
- def __init__(self,
46
- weight=None,
47
- size_average=True,
48
- ignore_index=-100,
49
- sequence_normalize=False,
50
- sample_normalize=True,
51
- **kwargs):
52
- super(AsterLoss, self).__init__()
53
- self.weight = weight
54
- self.size_average = size_average
55
- self.ignore_index = ignore_index
56
- self.sequence_normalize = sequence_normalize
57
- self.sample_normalize = sample_normalize
58
- self.loss_sem = CosineEmbeddingLoss()
59
- self.is_cosin_loss = True
60
- self.loss_func_rec = nn.CrossEntropyLoss(weight=None, reduction='none')
61
-
62
- def forward(self, predicts, batch):
63
- targets = batch[1].astype("int64")
64
- label_lengths = batch[2].astype('int64')
65
- sem_target = batch[3].astype('float32')
66
- embedding_vectors = predicts['embedding_vectors']
67
- rec_pred = predicts['rec_pred']
68
-
69
- if not self.is_cosin_loss:
70
- sem_loss = paddle.sum(self.loss_sem(embedding_vectors, sem_target))
71
- else:
72
- label_target = paddle.ones([embedding_vectors.shape[0]])
73
- sem_loss = paddle.sum(
74
- self.loss_sem(embedding_vectors, sem_target, label_target))
75
-
76
- # rec loss
77
- batch_size, def_max_length = targets.shape[0], targets.shape[1]
78
-
79
- mask = paddle.zeros([batch_size, def_max_length])
80
- for i in range(batch_size):
81
- mask[i, :label_lengths[i]] = 1
82
- mask = paddle.cast(mask, "float32")
83
- max_length = max(label_lengths)
84
- assert max_length == rec_pred.shape[1]
85
- targets = targets[:, :max_length]
86
- mask = mask[:, :max_length]
87
- rec_pred = paddle.reshape(rec_pred, [-1, rec_pred.shape[2]])
88
- input = nn.functional.log_softmax(rec_pred, axis=1)
89
- targets = paddle.reshape(targets, [-1, 1])
90
- mask = paddle.reshape(mask, [-1, 1])
91
- output = -paddle.index_sample(input, index=targets) * mask
92
- output = paddle.sum(output)
93
- if self.sequence_normalize:
94
- output = output / paddle.sum(mask)
95
- if self.sample_normalize:
96
- output = output / batch_size
97
-
98
- loss = output + sem_loss * 0.1
99
- return {'loss': loss}
@@ -1,39 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
-
22
-
23
- class AttentionLoss(nn.Layer):
24
- def __init__(self, **kwargs):
25
- super(AttentionLoss, self).__init__()
26
- self.loss_func = nn.CrossEntropyLoss(weight=None, reduction='none')
27
-
28
- def forward(self, predicts, batch):
29
- targets = batch[1].astype("int64")
30
- label_lengths = batch[2].astype('int64')
31
- batch_size, num_steps, num_classes = predicts.shape[0], predicts.shape[
32
- 1], predicts.shape[2]
33
- assert len(targets.shape) == len(list(predicts.shape)) - 1, \
34
- "The target's shape and inputs's shape is [N, d] and [N, num_steps]"
35
-
36
- inputs = paddle.reshape(predicts, [-1, predicts.shape[-1]])
37
- targets = paddle.reshape(targets, [-1])
38
-
39
- return {'loss': paddle.sum(self.loss_func(inputs, targets))}
@@ -1,44 +0,0 @@
1
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
-
22
-
23
- class CTCLoss(nn.Layer):
24
- def __init__(self, use_focal_loss=False, **kwargs):
25
- super(CTCLoss, self).__init__()
26
- self.loss_func = nn.CTCLoss(blank=0, reduction='none')
27
- self.use_focal_loss = use_focal_loss
28
-
29
- def forward(self, predicts, batch):
30
- if isinstance(predicts, (list, tuple)):
31
- predicts = predicts[-1]
32
- predicts = predicts.transpose((1, 0, 2))
33
- N, B, _ = predicts.shape
34
- preds_lengths = paddle.to_tensor([N] * B, dtype='int64')
35
- labels = batch[1].astype("int32")
36
- label_lengths = batch[2].astype('int64')
37
- loss = self.loss_func(predicts, labels, preds_lengths, label_lengths)
38
- if self.use_focal_loss:
39
- weight = paddle.exp(-loss)
40
- weight = paddle.subtract(paddle.to_tensor([1.0]), weight)
41
- weight = paddle.square(weight)
42
- loss = paddle.multiply(loss, weight)
43
- loss = loss.mean()
44
- return {'loss': loss}
@@ -1,70 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
- from .ace_loss import ACELoss
22
- from .center_loss import CenterLoss
23
- from .rec_ctc_loss import CTCLoss
24
-
25
-
26
- class EnhancedCTCLoss(nn.Layer):
27
- def __init__(self,
28
- use_focal_loss=False,
29
- use_ace_loss=False,
30
- ace_loss_weight=0.1,
31
- use_center_loss=False,
32
- center_loss_weight=0.05,
33
- num_classes=6625,
34
- feat_dim=96,
35
- init_center=False,
36
- center_file_path=None,
37
- **kwargs):
38
- super(EnhancedCTCLoss, self).__init__()
39
- self.ctc_loss_func = CTCLoss(use_focal_loss=use_focal_loss)
40
-
41
- self.use_ace_loss = False
42
- if use_ace_loss:
43
- self.use_ace_loss = use_ace_loss
44
- self.ace_loss_func = ACELoss()
45
- self.ace_loss_weight = ace_loss_weight
46
-
47
- self.use_center_loss = False
48
- if use_center_loss:
49
- self.use_center_loss = use_center_loss
50
- self.center_loss_func = CenterLoss(
51
- num_classes=num_classes,
52
- feat_dim=feat_dim,
53
- init_center=init_center,
54
- center_file_path=center_file_path)
55
- self.center_loss_weight = center_loss_weight
56
-
57
- def __call__(self, predicts, batch):
58
- loss = self.ctc_loss_func(predicts, batch)["loss"]
59
-
60
- if self.use_center_loss:
61
- center_loss = self.center_loss_func(
62
- predicts, batch)["loss_center"] * self.center_loss_weight
63
- loss = loss + center_loss
64
-
65
- if self.use_ace_loss:
66
- ace_loss = self.ace_loss_func(
67
- predicts, batch)["loss_ace"] * self.ace_loss_weight
68
- loss = loss + ace_loss
69
-
70
- return {'enhanced_ctc_loss': loss}
@@ -1,30 +0,0 @@
1
- import paddle
2
- from paddle import nn
3
- import paddle.nn.functional as F
4
-
5
-
6
- class NRTRLoss(nn.Layer):
7
- def __init__(self, smoothing=True, **kwargs):
8
- super(NRTRLoss, self).__init__()
9
- self.loss_func = nn.CrossEntropyLoss(reduction='mean', ignore_index=0)
10
- self.smoothing = smoothing
11
-
12
- def forward(self, pred, batch):
13
- pred = pred.reshape([-1, pred.shape[2]])
14
- max_len = batch[2].max()
15
- tgt = batch[1][:, 1:2 + max_len]
16
- tgt = tgt.reshape([-1])
17
- if self.smoothing:
18
- eps = 0.1
19
- n_class = pred.shape[1]
20
- one_hot = F.one_hot(tgt, pred.shape[1])
21
- one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
22
- log_prb = F.log_softmax(pred, axis=1)
23
- non_pad_mask = paddle.not_equal(
24
- tgt, paddle.zeros(
25
- tgt.shape, dtype=tgt.dtype))
26
- loss = -(one_hot * log_prb).sum(axis=1)
27
- loss = loss.masked_select(non_pad_mask).mean()
28
- else:
29
- loss = self.loss_func(pred, tgt)
30
- return {'loss': loss}
@@ -1,28 +0,0 @@
1
- from __future__ import absolute_import
2
- from __future__ import division
3
- from __future__ import print_function
4
-
5
- import paddle
6
- from paddle import nn
7
-
8
-
9
- class SARLoss(nn.Layer):
10
- def __init__(self, **kwargs):
11
- super(SARLoss, self).__init__()
12
- self.loss_func = paddle.nn.loss.CrossEntropyLoss(
13
- reduction="mean", ignore_index=92)
14
-
15
- def forward(self, predicts, batch):
16
- predict = predicts[:, :
17
- -1, :] # ignore last index of outputs to be in same seq_len with targets
18
- label = batch[1].astype(
19
- "int64")[:, 1:] # ignore first index of target in loss calculation
20
- batch_size, num_steps, num_classes = predict.shape[0], predict.shape[
21
- 1], predict.shape[2]
22
- assert len(label.shape) == len(list(predict.shape)) - 1, \
23
- "The target's shape and inputs's shape is [N, d] and [N, num_steps]"
24
-
25
- inputs = paddle.reshape(predict, [-1, num_classes])
26
- targets = paddle.reshape(label, [-1])
27
- loss = self.loss_func(inputs, targets)
28
- return {'loss': loss}
@@ -1,47 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
-
22
-
23
- class SRNLoss(nn.Layer):
24
- def __init__(self, **kwargs):
25
- super(SRNLoss, self).__init__()
26
- self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="sum")
27
-
28
- def forward(self, predicts, batch):
29
- predict = predicts['predict']
30
- word_predict = predicts['word_out']
31
- gsrm_predict = predicts['gsrm_out']
32
- label = batch[1]
33
-
34
- casted_label = paddle.cast(x=label, dtype='int64')
35
- casted_label = paddle.reshape(x=casted_label, shape=[-1, 1])
36
-
37
- cost_word = self.loss_func(word_predict, label=casted_label)
38
- cost_gsrm = self.loss_func(gsrm_predict, label=casted_label)
39
- cost_vsfd = self.loss_func(predict, label=casted_label)
40
-
41
- cost_word = paddle.reshape(x=paddle.sum(cost_word), shape=[1])
42
- cost_gsrm = paddle.reshape(x=paddle.sum(cost_gsrm), shape=[1])
43
- cost_vsfd = paddle.reshape(x=paddle.sum(cost_vsfd), shape=[1])
44
-
45
- sum_cost = cost_word * 3.0 + cost_vsfd + cost_gsrm * 0.15
46
-
47
- return {'loss': sum_cost, 'word_loss': cost_word, 'img_loss': cost_vsfd}
@@ -1,109 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
- from paddle.nn import functional as F
22
- from paddle import fluid
23
-
24
- class TableAttentionLoss(nn.Layer):
25
- def __init__(self, structure_weight, loc_weight, use_giou=False, giou_weight=1.0, **kwargs):
26
- super(TableAttentionLoss, self).__init__()
27
- self.loss_func = nn.CrossEntropyLoss(weight=None, reduction='none')
28
- self.structure_weight = structure_weight
29
- self.loc_weight = loc_weight
30
- self.use_giou = use_giou
31
- self.giou_weight = giou_weight
32
-
33
- def giou_loss(self, preds, bbox, eps=1e-7, reduction='mean'):
34
- '''
35
- :param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
36
- :param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
37
- :return: loss
38
- '''
39
- ix1 = fluid.layers.elementwise_max(preds[:, 0], bbox[:, 0])
40
- iy1 = fluid.layers.elementwise_max(preds[:, 1], bbox[:, 1])
41
- ix2 = fluid.layers.elementwise_min(preds[:, 2], bbox[:, 2])
42
- iy2 = fluid.layers.elementwise_min(preds[:, 3], bbox[:, 3])
43
-
44
- iw = fluid.layers.clip(ix2 - ix1 + 1e-3, 0., 1e10)
45
- ih = fluid.layers.clip(iy2 - iy1 + 1e-3, 0., 1e10)
46
-
47
- # overlap
48
- inters = iw * ih
49
-
50
- # union
51
- uni = (preds[:, 2] - preds[:, 0] + 1e-3) * (preds[:, 3] - preds[:, 1] + 1e-3
52
- ) + (bbox[:, 2] - bbox[:, 0] + 1e-3) * (
53
- bbox[:, 3] - bbox[:, 1] + 1e-3) - inters + eps
54
-
55
- # ious
56
- ious = inters / uni
57
-
58
- ex1 = fluid.layers.elementwise_min(preds[:, 0], bbox[:, 0])
59
- ey1 = fluid.layers.elementwise_min(preds[:, 1], bbox[:, 1])
60
- ex2 = fluid.layers.elementwise_max(preds[:, 2], bbox[:, 2])
61
- ey2 = fluid.layers.elementwise_max(preds[:, 3], bbox[:, 3])
62
- ew = fluid.layers.clip(ex2 - ex1 + 1e-3, 0., 1e10)
63
- eh = fluid.layers.clip(ey2 - ey1 + 1e-3, 0., 1e10)
64
-
65
- # enclose erea
66
- enclose = ew * eh + eps
67
- giou = ious - (enclose - uni) / enclose
68
-
69
- loss = 1 - giou
70
-
71
- if reduction == 'mean':
72
- loss = paddle.mean(loss)
73
- elif reduction == 'sum':
74
- loss = paddle.sum(loss)
75
- else:
76
- raise NotImplementedError
77
- return loss
78
-
79
- def forward(self, predicts, batch):
80
- structure_probs = predicts['structure_probs']
81
- structure_targets = batch[1].astype("int64")
82
- structure_targets = structure_targets[:, 1:]
83
- if len(batch) == 6:
84
- structure_mask = batch[5].astype("int64")
85
- structure_mask = structure_mask[:, 1:]
86
- structure_mask = paddle.reshape(structure_mask, [-1])
87
- structure_probs = paddle.reshape(structure_probs, [-1, structure_probs.shape[-1]])
88
- structure_targets = paddle.reshape(structure_targets, [-1])
89
- structure_loss = self.loss_func(structure_probs, structure_targets)
90
-
91
- if len(batch) == 6:
92
- structure_loss = structure_loss * structure_mask
93
-
94
- # structure_loss = paddle.sum(structure_loss) * self.structure_weight
95
- structure_loss = paddle.mean(structure_loss) * self.structure_weight
96
-
97
- loc_preds = predicts['loc_preds']
98
- loc_targets = batch[2].astype("float32")
99
- loc_targets_mask = batch[4].astype("float32")
100
- loc_targets = loc_targets[:, 1:, :]
101
- loc_targets_mask = loc_targets_mask[:, 1:, :]
102
- loc_loss = F.mse_loss(loc_preds * loc_targets_mask, loc_targets) * self.loc_weight
103
- if self.use_giou:
104
- loc_loss_giou = self.giou_loss(loc_preds * loc_targets_mask, loc_targets) * self.giou_weight
105
- total_loss = structure_loss + loc_loss + loc_loss_giou
106
- return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss, "loc_loss_giou":loc_loss_giou}
107
- else:
108
- total_loss = structure_loss + loc_loss
109
- return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss}
@@ -1,44 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
- from __future__ import unicode_literals
19
-
20
- import copy
21
-
22
- __all__ = ["build_metric"]
23
-
24
- from .det_metric import DetMetric
25
- from .rec_metric import RecMetric
26
- from .cls_metric import ClsMetric
27
- from .e2e_metric import E2EMetric
28
- from .distillation_metric import DistillationMetric
29
- from .table_metric import TableMetric
30
- from .kie_metric import KIEMetric
31
-
32
-
33
- def build_metric(config):
34
- support_dict = [
35
- "DetMetric", "RecMetric", "ClsMetric", "E2EMetric",
36
- "DistillationMetric", "TableMetric", 'KIEMetric'
37
- ]
38
-
39
- config = copy.deepcopy(config)
40
- module_name = config.pop("name")
41
- assert module_name in support_dict, Exception(
42
- "metric only support {}".format(support_dict))
43
- module_class = eval(module_name)(**config)
44
- return module_class
@@ -1,45 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- class ClsMetric(object):
17
- def __init__(self, main_indicator='acc', **kwargs):
18
- self.main_indicator = main_indicator
19
- self.reset()
20
-
21
- def __call__(self, pred_label, *args, **kwargs):
22
- preds, labels = pred_label
23
- correct_num = 0
24
- all_num = 0
25
- for (pred, pred_conf), (target, _) in zip(preds, labels):
26
- if pred == target:
27
- correct_num += 1
28
- all_num += 1
29
- self.correct_num += correct_num
30
- self.all_num += all_num
31
- return {'acc': correct_num / all_num, }
32
-
33
- def get_metric(self):
34
- """
35
- return metrics {
36
- 'acc': 0
37
- }
38
- """
39
- acc = self.correct_num / self.all_num
40
- self.reset()
41
- return {'acc': acc}
42
-
43
- def reset(self):
44
- self.correct_num = 0
45
- self.all_num = 0
@@ -1,82 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- __all__ = ['DetMetric']
20
-
21
- from .eval_det_iou import DetectionIoUEvaluator
22
-
23
-
24
- class DetMetric(object):
25
- def __init__(self, main_indicator='hmean', **kwargs):
26
- self.evaluator = DetectionIoUEvaluator()
27
- self.main_indicator = main_indicator
28
- self.reset()
29
-
30
- def __call__(self, preds, batch, **kwargs):
31
- '''
32
- batch: a list produced by dataloaders.
33
- image: np.ndarray of shape (N, C, H, W).
34
- ratio_list: np.ndarray of shape(N,2)
35
- polygons: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
36
- ignore_tags: np.ndarray of shape (N, K), indicates whether a region is ignorable or not.
37
- preds: a list of dict produced by post process
38
- points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
39
-
40
- 自己调试补充的笔记:
41
- list batch:
42
- image: (1, 3, 736, 1280),原始图数据,应该只有一张图N=1,检测不方便多图批量处理吧
43
- ratio_list: (1, 4),与描述不符,这里应该是 (N, 4)
44
- polygons: (1, 4, 4, 2),K是检测框数量,这里是gt标注框
45
- ignore_tags: (1, 4),是否为难样本,一般都是False
46
- list[dict] preds: 一般长度只有1,直接取 preds[0]['points']
47
- points: (3, 4, 2),检测出3个框
48
- '''
49
- gt_polyons_batch = batch[2]
50
- ignore_tags_batch = batch[3]
51
- for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
52
- ignore_tags_batch):
53
- # prepare gt
54
- gt_info_list = [{
55
- 'points': gt_polyon,
56
- 'text': '',
57
- 'ignore': ignore_tag
58
- } for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
59
- # prepare det
60
- det_info_list = [{
61
- 'points': det_polyon,
62
- 'text': ''
63
- } for det_polyon in pred['points']]
64
- result = self.evaluator.evaluate_image(gt_info_list, det_info_list)
65
- self.results.append(result)
66
-
67
-
68
- def get_metric(self):
69
- """
70
- return metrics {
71
- 'precision': 0,
72
- 'recall': 0,
73
- 'hmean': 0
74
- }
75
- """
76
-
77
- metircs = self.evaluator.combine_results(self.results)
78
- self.reset()
79
- return metircs
80
-
81
- def reset(self):
82
- self.results = [] # clear results