pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,121 +0,0 @@
1
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
- from .det_basic_loss import DiceLoss
22
- import numpy as np
23
-
24
-
25
- class SASTLoss(nn.Layer):
26
- """
27
- """
28
-
29
- def __init__(self, eps=1e-6, **kwargs):
30
- super(SASTLoss, self).__init__()
31
- self.dice_loss = DiceLoss(eps=eps)
32
-
33
- def forward(self, predicts, labels):
34
- """
35
- tcl_pos: N x 128 x 3
36
- tcl_mask: N x 128 x 1
37
- tcl_label: N x X list or LoDTensor
38
- """
39
-
40
- f_score = predicts['f_score']
41
- f_border = predicts['f_border']
42
- f_tvo = predicts['f_tvo']
43
- f_tco = predicts['f_tco']
44
-
45
- l_score, l_border, l_mask, l_tvo, l_tco = labels[1:]
46
-
47
- #score_loss
48
- intersection = paddle.sum(f_score * l_score * l_mask)
49
- union = paddle.sum(f_score * l_mask) + paddle.sum(l_score * l_mask)
50
- score_loss = 1.0 - 2 * intersection / (union + 1e-5)
51
-
52
- #border loss
53
- l_border_split, l_border_norm = paddle.split(
54
- l_border, num_or_sections=[4, 1], axis=1)
55
- f_border_split = f_border
56
- border_ex_shape = l_border_norm.shape * np.array([1, 4, 1, 1])
57
- l_border_norm_split = paddle.expand(
58
- x=l_border_norm, shape=border_ex_shape)
59
- l_border_score = paddle.expand(x=l_score, shape=border_ex_shape)
60
- l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape)
61
-
62
- border_diff = l_border_split - f_border_split
63
- abs_border_diff = paddle.abs(border_diff)
64
- border_sign = abs_border_diff < 1.0
65
- border_sign = paddle.cast(border_sign, dtype='float32')
66
- border_sign.stop_gradient = True
67
- border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
68
- (abs_border_diff - 0.5) * (1.0 - border_sign)
69
- border_out_loss = l_border_norm_split * border_in_loss
70
- border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \
71
- (paddle.sum(l_border_score * l_border_mask) + 1e-5)
72
-
73
- #tvo_loss
74
- l_tvo_split, l_tvo_norm = paddle.split(
75
- l_tvo, num_or_sections=[8, 1], axis=1)
76
- f_tvo_split = f_tvo
77
- tvo_ex_shape = l_tvo_norm.shape * np.array([1, 8, 1, 1])
78
- l_tvo_norm_split = paddle.expand(x=l_tvo_norm, shape=tvo_ex_shape)
79
- l_tvo_score = paddle.expand(x=l_score, shape=tvo_ex_shape)
80
- l_tvo_mask = paddle.expand(x=l_mask, shape=tvo_ex_shape)
81
- #
82
- tvo_geo_diff = l_tvo_split - f_tvo_split
83
- abs_tvo_geo_diff = paddle.abs(tvo_geo_diff)
84
- tvo_sign = abs_tvo_geo_diff < 1.0
85
- tvo_sign = paddle.cast(tvo_sign, dtype='float32')
86
- tvo_sign.stop_gradient = True
87
- tvo_in_loss = 0.5 * abs_tvo_geo_diff * abs_tvo_geo_diff * tvo_sign + \
88
- (abs_tvo_geo_diff - 0.5) * (1.0 - tvo_sign)
89
- tvo_out_loss = l_tvo_norm_split * tvo_in_loss
90
- tvo_loss = paddle.sum(tvo_out_loss * l_tvo_score * l_tvo_mask) / \
91
- (paddle.sum(l_tvo_score * l_tvo_mask) + 1e-5)
92
-
93
- #tco_loss
94
- l_tco_split, l_tco_norm = paddle.split(
95
- l_tco, num_or_sections=[2, 1], axis=1)
96
- f_tco_split = f_tco
97
- tco_ex_shape = l_tco_norm.shape * np.array([1, 2, 1, 1])
98
- l_tco_norm_split = paddle.expand(x=l_tco_norm, shape=tco_ex_shape)
99
- l_tco_score = paddle.expand(x=l_score, shape=tco_ex_shape)
100
- l_tco_mask = paddle.expand(x=l_mask, shape=tco_ex_shape)
101
-
102
- tco_geo_diff = l_tco_split - f_tco_split
103
- abs_tco_geo_diff = paddle.abs(tco_geo_diff)
104
- tco_sign = abs_tco_geo_diff < 1.0
105
- tco_sign = paddle.cast(tco_sign, dtype='float32')
106
- tco_sign.stop_gradient = True
107
- tco_in_loss = 0.5 * abs_tco_geo_diff * abs_tco_geo_diff * tco_sign + \
108
- (abs_tco_geo_diff - 0.5) * (1.0 - tco_sign)
109
- tco_out_loss = l_tco_norm_split * tco_in_loss
110
- tco_loss = paddle.sum(tco_out_loss * l_tco_score * l_tco_mask) / \
111
- (paddle.sum(l_tco_score * l_tco_mask) + 1e-5)
112
-
113
- # total loss
114
- tvo_lw, tco_lw = 1.5, 1.5
115
- score_lw, border_lw = 1.0, 1.0
116
- total_loss = score_loss * score_lw + border_loss * border_lw + \
117
- tvo_loss * tvo_lw + tco_loss * tco_lw
118
-
119
- losses = {'loss':total_loss, "score_loss":score_loss,\
120
- "border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss}
121
- return losses
@@ -1,272 +0,0 @@
1
- #copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- #Licensed under the Apache License, Version 2.0 (the "License");
4
- #you may not use this file except in compliance with the License.
5
- #You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- #Unless required by applicable law or agreed to in writing, software
10
- #distributed under the License is distributed on an "AS IS" BASIS,
11
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- #See the License for the specific language governing permissions and
13
- #limitations under the License.
14
-
15
- import paddle
16
- import paddle.nn as nn
17
- import numpy as np
18
- import cv2
19
-
20
- from .rec_ctc_loss import CTCLoss
21
- from .basic_loss import DMLLoss
22
- from .basic_loss import DistanceLoss
23
- from .det_db_loss import DBLoss
24
- from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
25
-
26
-
27
- def _sum_loss(loss_dict):
28
- if "loss" in loss_dict.keys():
29
- return loss_dict
30
- else:
31
- loss_dict["loss"] = 0.
32
- for k, value in loss_dict.items():
33
- if k == "loss":
34
- continue
35
- else:
36
- loss_dict["loss"] += value
37
- return loss_dict
38
-
39
-
40
- class DistillationDMLLoss(DMLLoss):
41
- """
42
- """
43
-
44
- def __init__(self,
45
- model_name_pairs=[],
46
- act=None,
47
- use_log=False,
48
- key=None,
49
- maps_name=None,
50
- name="dml"):
51
- super().__init__(act=act, use_log=use_log)
52
- assert isinstance(model_name_pairs, list)
53
- self.key = key
54
- self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
55
- self.name = name
56
- self.maps_name = self._check_maps_name(maps_name)
57
-
58
- def _check_model_name_pairs(self, model_name_pairs):
59
- if not isinstance(model_name_pairs, list):
60
- return []
61
- elif isinstance(model_name_pairs[0], list) and isinstance(
62
- model_name_pairs[0][0], str):
63
- return model_name_pairs
64
- else:
65
- return [model_name_pairs]
66
-
67
- def _check_maps_name(self, maps_name):
68
- if maps_name is None:
69
- return None
70
- elif type(maps_name) == str:
71
- return [maps_name]
72
- elif type(maps_name) == list:
73
- return [maps_name]
74
- else:
75
- return None
76
-
77
- def _slice_out(self, outs):
78
- new_outs = {}
79
- for k in self.maps_name:
80
- if k == "thrink_maps":
81
- new_outs[k] = outs[:, 0, :, :]
82
- elif k == "threshold_maps":
83
- new_outs[k] = outs[:, 1, :, :]
84
- elif k == "binary_maps":
85
- new_outs[k] = outs[:, 2, :, :]
86
- else:
87
- continue
88
- return new_outs
89
-
90
- def forward(self, predicts, batch):
91
- loss_dict = dict()
92
- for idx, pair in enumerate(self.model_name_pairs):
93
- out1 = predicts[pair[0]]
94
- out2 = predicts[pair[1]]
95
- if self.key is not None:
96
- out1 = out1[self.key]
97
- out2 = out2[self.key]
98
-
99
- if self.maps_name is None:
100
- loss = super().forward(out1, out2)
101
- if isinstance(loss, dict):
102
- for key in loss:
103
- loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
104
- idx)] = loss[key]
105
- else:
106
- loss_dict["{}_{}".format(self.name, idx)] = loss
107
- else:
108
- outs1 = self._slice_out(out1)
109
- outs2 = self._slice_out(out2)
110
- for _c, k in enumerate(outs1.keys()):
111
- loss = super().forward(outs1[k], outs2[k])
112
- if isinstance(loss, dict):
113
- for key in loss:
114
- loss_dict["{}_{}_{}_{}_{}".format(key, pair[
115
- 0], pair[1], self.maps_name, idx)] = loss[key]
116
- else:
117
- loss_dict["{}_{}_{}".format(self.name, self.maps_name[
118
- _c], idx)] = loss
119
-
120
- loss_dict = _sum_loss(loss_dict)
121
-
122
- return loss_dict
123
-
124
-
125
- class DistillationCTCLoss(CTCLoss):
126
- def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
127
- super().__init__()
128
- self.model_name_list = model_name_list
129
- self.key = key
130
- self.name = name
131
-
132
- def forward(self, predicts, batch):
133
- loss_dict = dict()
134
- for idx, model_name in enumerate(self.model_name_list):
135
- out = predicts[model_name]
136
- if self.key is not None:
137
- out = out[self.key]
138
- loss = super().forward(out, batch)
139
- if isinstance(loss, dict):
140
- for key in loss:
141
- loss_dict["{}_{}_{}".format(self.name, model_name,
142
- idx)] = loss[key]
143
- else:
144
- loss_dict["{}_{}".format(self.name, model_name)] = loss
145
- return loss_dict
146
-
147
-
148
- class DistillationDBLoss(DBLoss):
149
- def __init__(self,
150
- model_name_list=[],
151
- balance_loss=True,
152
- main_loss_type='DiceLoss',
153
- alpha=5,
154
- beta=10,
155
- ohem_ratio=3,
156
- eps=1e-6,
157
- name="db",
158
- **kwargs):
159
- super().__init__()
160
- self.model_name_list = model_name_list
161
- self.name = name
162
- self.key = None
163
-
164
- def forward(self, predicts, batch):
165
- loss_dict = {}
166
- for idx, model_name in enumerate(self.model_name_list):
167
- out = predicts[model_name]
168
- if self.key is not None:
169
- out = out[self.key]
170
- loss = super().forward(out, batch)
171
-
172
- if isinstance(loss, dict):
173
- for key in loss.keys():
174
- if key == "loss":
175
- continue
176
- name = "{}_{}_{}".format(self.name, model_name, key)
177
- loss_dict[name] = loss[key]
178
- else:
179
- loss_dict["{}_{}".format(self.name, model_name)] = loss
180
-
181
- loss_dict = _sum_loss(loss_dict)
182
- return loss_dict
183
-
184
-
185
- class DistillationDilaDBLoss(DBLoss):
186
- def __init__(self,
187
- model_name_pairs=[],
188
- key=None,
189
- balance_loss=True,
190
- main_loss_type='DiceLoss',
191
- alpha=5,
192
- beta=10,
193
- ohem_ratio=3,
194
- eps=1e-6,
195
- name="dila_dbloss"):
196
- super().__init__()
197
- self.model_name_pairs = model_name_pairs
198
- self.name = name
199
- self.key = key
200
-
201
- def forward(self, predicts, batch):
202
- loss_dict = dict()
203
- for idx, pair in enumerate(self.model_name_pairs):
204
- stu_outs = predicts[pair[0]]
205
- tch_outs = predicts[pair[1]]
206
- if self.key is not None:
207
- stu_preds = stu_outs[self.key]
208
- tch_preds = tch_outs[self.key]
209
-
210
- stu_shrink_maps = stu_preds[:, 0, :, :]
211
- stu_binary_maps = stu_preds[:, 2, :, :]
212
-
213
- # dilation to teacher prediction
214
- dilation_w = np.array([[1, 1], [1, 1]])
215
- th_shrink_maps = tch_preds[:, 0, :, :]
216
- th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
217
- dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
218
- for i in range(th_shrink_maps.shape[0]):
219
- dilate_maps[i] = cv2.dilate(
220
- th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
221
- th_shrink_maps = paddle.to_tensor(dilate_maps)
222
-
223
- label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
224
- 1:]
225
-
226
- # calculate the shrink map loss
227
- bce_loss = self.alpha * self.bce_loss(
228
- stu_shrink_maps, th_shrink_maps, label_shrink_mask)
229
- loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
230
- label_shrink_mask)
231
-
232
- # k = f"{self.name}_{pair[0]}_{pair[1]}"
233
- k = "{}_{}_{}".format(self.name, pair[0], pair[1])
234
- loss_dict[k] = bce_loss + loss_binary_maps
235
-
236
- loss_dict = _sum_loss(loss_dict)
237
- return loss_dict
238
-
239
-
240
- class DistillationDistanceLoss(DistanceLoss):
241
- """
242
- """
243
-
244
- def __init__(self,
245
- mode="l2",
246
- model_name_pairs=[],
247
- key=None,
248
- name="loss_distance",
249
- **kargs):
250
- super().__init__(mode=mode, **kargs)
251
- assert isinstance(model_name_pairs, list)
252
- self.key = key
253
- self.model_name_pairs = model_name_pairs
254
- self.name = name + "_l2"
255
-
256
- def forward(self, predicts, batch):
257
- loss_dict = dict()
258
- for idx, pair in enumerate(self.model_name_pairs):
259
- out1 = predicts[pair[0]]
260
- out2 = predicts[pair[1]]
261
- if self.key is not None:
262
- out1 = out1[self.key]
263
- out2 = out2[self.key]
264
- loss = super().forward(out1, out2)
265
- if isinstance(loss, dict):
266
- for key in loss:
267
- loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
268
- key]
269
- else:
270
- loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
271
- idx)] = loss
272
- return loss_dict
@@ -1,140 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- from paddle import nn
20
- import paddle
21
-
22
- from .det_basic_loss import DiceLoss
23
- from pyxlpr.ppocr.utils.e2e_utils.extract_batchsize import pre_process
24
-
25
-
26
- class PGLoss(nn.Layer):
27
- def __init__(self,
28
- tcl_bs,
29
- max_text_length,
30
- max_text_nums,
31
- pad_num,
32
- eps=1e-6,
33
- **kwargs):
34
- super(PGLoss, self).__init__()
35
- self.tcl_bs = tcl_bs
36
- self.max_text_nums = max_text_nums
37
- self.max_text_length = max_text_length
38
- self.pad_num = pad_num
39
- self.dice_loss = DiceLoss(eps=eps)
40
-
41
- def border_loss(self, f_border, l_border, l_score, l_mask):
42
- l_border_split, l_border_norm = paddle.tensor.split(
43
- l_border, num_or_sections=[4, 1], axis=1)
44
- f_border_split = f_border
45
- b, c, h, w = l_border_norm.shape
46
- l_border_norm_split = paddle.expand(
47
- x=l_border_norm, shape=[b, 4 * c, h, w])
48
- b, c, h, w = l_score.shape
49
- l_border_score = paddle.expand(x=l_score, shape=[b, 4 * c, h, w])
50
- b, c, h, w = l_mask.shape
51
- l_border_mask = paddle.expand(x=l_mask, shape=[b, 4 * c, h, w])
52
- border_diff = l_border_split - f_border_split
53
- abs_border_diff = paddle.abs(border_diff)
54
- border_sign = abs_border_diff < 1.0
55
- border_sign = paddle.cast(border_sign, dtype='float32')
56
- border_sign.stop_gradient = True
57
- border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
58
- (abs_border_diff - 0.5) * (1.0 - border_sign)
59
- border_out_loss = l_border_norm_split * border_in_loss
60
- border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \
61
- (paddle.sum(l_border_score * l_border_mask) + 1e-5)
62
- return border_loss
63
-
64
- def direction_loss(self, f_direction, l_direction, l_score, l_mask):
65
- l_direction_split, l_direction_norm = paddle.tensor.split(
66
- l_direction, num_or_sections=[2, 1], axis=1)
67
- f_direction_split = f_direction
68
- b, c, h, w = l_direction_norm.shape
69
- l_direction_norm_split = paddle.expand(
70
- x=l_direction_norm, shape=[b, 2 * c, h, w])
71
- b, c, h, w = l_score.shape
72
- l_direction_score = paddle.expand(x=l_score, shape=[b, 2 * c, h, w])
73
- b, c, h, w = l_mask.shape
74
- l_direction_mask = paddle.expand(x=l_mask, shape=[b, 2 * c, h, w])
75
- direction_diff = l_direction_split - f_direction_split
76
- abs_direction_diff = paddle.abs(direction_diff)
77
- direction_sign = abs_direction_diff < 1.0
78
- direction_sign = paddle.cast(direction_sign, dtype='float32')
79
- direction_sign.stop_gradient = True
80
- direction_in_loss = 0.5 * abs_direction_diff * abs_direction_diff * direction_sign + \
81
- (abs_direction_diff - 0.5) * (1.0 - direction_sign)
82
- direction_out_loss = l_direction_norm_split * direction_in_loss
83
- direction_loss = paddle.sum(direction_out_loss * l_direction_score * l_direction_mask) / \
84
- (paddle.sum(l_direction_score * l_direction_mask) + 1e-5)
85
- return direction_loss
86
-
87
- def ctcloss(self, f_char, tcl_pos, tcl_mask, tcl_label, label_t):
88
- f_char = paddle.transpose(f_char, [0, 2, 3, 1])
89
- tcl_pos = paddle.reshape(tcl_pos, [-1, 3])
90
- tcl_pos = paddle.cast(tcl_pos, dtype=int)
91
- f_tcl_char = paddle.gather_nd(f_char, tcl_pos)
92
- f_tcl_char = paddle.reshape(f_tcl_char,
93
- [-1, 64, 37]) # len(Lexicon_Table)+1
94
- f_tcl_char_fg, f_tcl_char_bg = paddle.split(f_tcl_char, [36, 1], axis=2)
95
- f_tcl_char_bg = f_tcl_char_bg * tcl_mask + (1.0 - tcl_mask) * 20.0
96
- b, c, l = tcl_mask.shape
97
- tcl_mask_fg = paddle.expand(x=tcl_mask, shape=[b, c, 36 * l])
98
- tcl_mask_fg.stop_gradient = True
99
- f_tcl_char_fg = f_tcl_char_fg * tcl_mask_fg + (1.0 - tcl_mask_fg) * (
100
- -20.0)
101
- f_tcl_char_mask = paddle.concat([f_tcl_char_fg, f_tcl_char_bg], axis=2)
102
- f_tcl_char_ld = paddle.transpose(f_tcl_char_mask, (1, 0, 2))
103
- N, B, _ = f_tcl_char_ld.shape
104
- input_lengths = paddle.to_tensor([N] * B, dtype='int64')
105
- cost = paddle.nn.functional.ctc_loss(
106
- log_probs=f_tcl_char_ld,
107
- labels=tcl_label,
108
- input_lengths=input_lengths,
109
- label_lengths=label_t,
110
- blank=self.pad_num,
111
- reduction='none')
112
- cost = cost.mean()
113
- return cost
114
-
115
- def forward(self, predicts, labels):
116
- images, tcl_maps, tcl_label_maps, border_maps \
117
- , direction_maps, training_masks, label_list, pos_list, pos_mask = labels
118
- # for all the batch_size
119
- pos_list, pos_mask, label_list, label_t = pre_process(
120
- label_list, pos_list, pos_mask, self.max_text_length,
121
- self.max_text_nums, self.pad_num, self.tcl_bs)
122
-
123
- f_score, f_border, f_direction, f_char = predicts['f_score'], predicts['f_border'], predicts['f_direction'], \
124
- predicts['f_char']
125
- score_loss = self.dice_loss(f_score, tcl_maps, training_masks)
126
- border_loss = self.border_loss(f_border, border_maps, tcl_maps,
127
- training_masks)
128
- direction_loss = self.direction_loss(f_direction, direction_maps,
129
- tcl_maps, training_masks)
130
- ctc_loss = self.ctcloss(f_char, pos_list, pos_mask, label_list, label_t)
131
- loss_all = score_loss + border_loss + direction_loss + 5 * ctc_loss
132
-
133
- losses = {
134
- 'loss': loss_all,
135
- "score_loss": score_loss,
136
- "border_loss": border_loss,
137
- "direction_loss": direction_loss,
138
- "ctc_loss": ctc_loss
139
- }
140
- return losses
@@ -1,113 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- from paddle import nn
20
- import paddle
21
-
22
-
23
- class SDMGRLoss(nn.Layer):
24
- def __init__(self, node_weight=1.0, edge_weight=1.0, ignore=0):
25
- super().__init__()
26
- self.loss_node = nn.CrossEntropyLoss(ignore_index=ignore)
27
- self.loss_edge = nn.CrossEntropyLoss(ignore_index=-1)
28
- self.node_weight = node_weight
29
- self.edge_weight = edge_weight
30
- self.ignore = ignore
31
-
32
- def pre_process(self, gts, tag):
33
- gts, tag = gts.numpy(), tag.numpy().tolist()
34
- temp_gts = []
35
- batch = len(tag)
36
- for i in range(batch):
37
- num, recoder_len = tag[i][0], tag[i][1]
38
- temp_gts.append(
39
- paddle.to_tensor(
40
- gts[i, :num, :num + 1], dtype='int64'))
41
- return temp_gts
42
-
43
- def accuracy(self, pred, target, topk=1, thresh=None):
44
- """Calculate accuracy according to the prediction and target.
45
-
46
- Args:
47
- pred (torch.Tensor): The model prediction, shape (N, num_class)
48
- target (torch.Tensor): The target of each prediction, shape (N, )
49
- topk (int | tuple[int], optional): If the predictions in ``topk``
50
- matches the target, the predictions will be regarded as
51
- correct ones. Defaults to 1.
52
- thresh (float, optional): If not None, predictions with scores under
53
- this threshold are considered incorrect. Default to None.
54
-
55
- Returns:
56
- float | tuple[float]: If the input ``topk`` is a single integer,
57
- the function will return a single float as accuracy. If
58
- ``topk`` is a tuple containing multiple integers, the
59
- function will return a tuple containing accuracies of
60
- each ``topk`` number.
61
- """
62
- assert isinstance(topk, (int, tuple))
63
- if isinstance(topk, int):
64
- topk = (topk, )
65
- return_single = True
66
- else:
67
- return_single = False
68
-
69
- maxk = max(topk)
70
- if pred.shape[0] == 0:
71
- accu = [pred.new_tensor(0.) for i in range(len(topk))]
72
- return accu[0] if return_single else accu
73
- pred_value, pred_label = paddle.topk(pred, maxk, axis=1)
74
- pred_label = pred_label.transpose(
75
- [1, 0]) # transpose to shape (maxk, N)
76
- correct = paddle.equal(pred_label,
77
- (target.reshape([1, -1]).expand_as(pred_label)))
78
- res = []
79
- for k in topk:
80
- correct_k = paddle.sum(correct[:k].reshape([-1]).astype('float32'),
81
- axis=0,
82
- keepdim=True)
83
- res.append(
84
- paddle.multiply(correct_k,
85
- paddle.to_tensor(100.0 / pred.shape[0])))
86
- return res[0] if return_single else res
87
-
88
- def forward(self, pred, batch):
89
- node_preds, edge_preds = pred
90
- gts, tag = batch[4], batch[5]
91
- gts = self.pre_process(gts, tag)
92
- node_gts, edge_gts = [], []
93
- for gt in gts:
94
- node_gts.append(gt[:, 0])
95
- edge_gts.append(gt[:, 1:].reshape([-1]))
96
- node_gts = paddle.concat(node_gts)
97
- edge_gts = paddle.concat(edge_gts)
98
-
99
- node_valids = paddle.nonzero(node_gts != self.ignore).reshape([-1])
100
- edge_valids = paddle.nonzero(edge_gts != -1).reshape([-1])
101
- loss_node = self.loss_node(node_preds, node_gts)
102
- loss_edge = self.loss_edge(edge_preds, edge_gts)
103
- loss = self.node_weight * loss_node + self.edge_weight * loss_edge
104
- return dict(
105
- loss=loss,
106
- loss_node=loss_node,
107
- loss_edge=loss_edge,
108
- acc_node=self.accuracy(
109
- paddle.gather(node_preds, node_valids),
110
- paddle.gather(node_gts, node_valids)),
111
- acc_edge=self.accuracy(
112
- paddle.gather(edge_preds, edge_valids),
113
- paddle.gather(edge_gts, edge_valids)))