pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/__init__.py +21 -21
- pyxllib/algo/__init__.py +8 -8
- pyxllib/algo/disjoint.py +54 -54
- pyxllib/algo/geo.py +541 -529
- pyxllib/algo/intervals.py +964 -964
- pyxllib/algo/matcher.py +389 -311
- pyxllib/algo/newbie.py +166 -166
- pyxllib/algo/pupil.py +629 -461
- pyxllib/algo/shapelylib.py +67 -67
- pyxllib/algo/specialist.py +241 -240
- pyxllib/algo/stat.py +494 -458
- pyxllib/algo/treelib.py +149 -149
- pyxllib/algo/unitlib.py +66 -66
- {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/__init__.py +5 -5
- pyxllib/cv/expert.py +267 -267
- pyxllib/cv/imfile.py +159 -159
- pyxllib/cv/imhash.py +39 -39
- pyxllib/cv/pupil.py +9 -9
- pyxllib/cv/rgbfmt.py +1525 -1525
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/cv/trackbartools.py +251 -251
- pyxllib/cv/xlcvlib.py +1040 -1040
- pyxllib/cv/xlpillib.py +423 -423
- pyxllib/data/echarts.py +240 -129
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/oss.py +72 -72
- pyxllib/data/pglib.py +1127 -643
- pyxllib/data/sqlite.py +568 -341
- pyxllib/data/sqllib.py +297 -297
- pyxllib/ext/JLineViewer.py +505 -492
- pyxllib/ext/__init__.py +6 -6
- pyxllib/ext/demolib.py +246 -246
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +12 -1606
- pyxllib/ext/old.py +663 -663
- pyxllib/ext/qt.py +449 -449
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/seleniumlib.py +76 -76
- pyxllib/ext/tk.py +173 -173
- pyxllib/ext/unixlib.py +827 -826
- pyxllib/ext/utools.py +351 -338
- pyxllib/ext/webhook.py +124 -101
- pyxllib/ext/win32lib.py +40 -40
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1105 -173
- pyxllib/file/__init__.py +17 -17
- pyxllib/file/docxlib.py +761 -761
- pyxllib/file/gitlib.py +309 -309
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +148 -139
- pyxllib/file/newbie.py +10 -10
- pyxllib/file/onenotelib.py +1469 -1469
- pyxllib/file/packlib/__init__.py +330 -293
- pyxllib/file/packlib/zipfile.py +2441 -2441
- pyxllib/file/pdflib.py +426 -426
- pyxllib/file/pupil.py +185 -185
- pyxllib/file/specialist/__init__.py +685 -685
- pyxllib/file/specialist/dirlib.py +799 -799
- pyxllib/file/specialist/download.py +193 -186
- pyxllib/file/specialist/filelib.py +2829 -2618
- pyxllib/file/xlsxlib.py +3131 -2976
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/__init__.py +5 -5
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/deprecatedlib.py +233 -233
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/ipyexec.py +253 -253
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +451 -444
- pyxllib/prog/pupil.py +1197 -1128
- pyxllib/prog/sitepackages.py +33 -33
- pyxllib/prog/specialist/__init__.py +391 -217
- pyxllib/prog/specialist/bc.py +203 -200
- pyxllib/prog/specialist/browser.py +497 -488
- pyxllib/prog/specialist/common.py +347 -347
- pyxllib/prog/specialist/datetime.py +199 -131
- pyxllib/prog/specialist/tictoc.py +240 -241
- pyxllib/prog/specialist/xllog.py +180 -180
- pyxllib/prog/xlosenv.py +108 -101
- pyxllib/stdlib/__init__.py +17 -17
- pyxllib/stdlib/tablepyxl/__init__.py +10 -10
- pyxllib/stdlib/tablepyxl/style.py +303 -303
- pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
- pyxllib/text/__init__.py +8 -8
- pyxllib/text/ahocorasick.py +39 -39
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +121 -109
- pyxllib/text/jiebalib.py +267 -264
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +922 -767
- pyxllib/text/latex/__init__.py +158 -158
- pyxllib/text/levenshtein.py +303 -303
- pyxllib/text/nestenv.py +1215 -1215
- pyxllib/text/newbie.py +300 -288
- pyxllib/text/pupil/__init__.py +8 -8
- pyxllib/text/pupil/common.py +1121 -1095
- pyxllib/text/pupil/xlalign.py +326 -326
- pyxllib/text/pycode.py +47 -47
- pyxllib/text/specialist/__init__.py +8 -8
- pyxllib/text/specialist/common.py +112 -112
- pyxllib/text/specialist/ptag.py +186 -186
- pyxllib/text/spellchecker.py +172 -172
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/vbacode.py +17 -17
- pyxllib/text/xmllib.py +747 -685
- pyxllib/xl.py +42 -38
- pyxllib/xlcv.py +17 -17
- pyxllib-0.3.200.dist-info/METADATA +48 -0
- pyxllib-0.3.200.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
@@ -1,406 +0,0 @@
|
|
1
|
-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import math
|
20
|
-
|
21
|
-
import paddle
|
22
|
-
from paddle import ParamAttr, nn
|
23
|
-
from paddle import nn, ParamAttr
|
24
|
-
from paddle.nn import functional as F
|
25
|
-
import paddle.fluid as fluid
|
26
|
-
import numpy as np
|
27
|
-
gradient_clip = 10
|
28
|
-
|
29
|
-
|
30
|
-
class WrapEncoderForFeature(nn.Layer):
|
31
|
-
def __init__(self,
|
32
|
-
src_vocab_size,
|
33
|
-
max_length,
|
34
|
-
n_layer,
|
35
|
-
n_head,
|
36
|
-
d_key,
|
37
|
-
d_value,
|
38
|
-
d_model,
|
39
|
-
d_inner_hid,
|
40
|
-
prepostprocess_dropout,
|
41
|
-
attention_dropout,
|
42
|
-
relu_dropout,
|
43
|
-
preprocess_cmd,
|
44
|
-
postprocess_cmd,
|
45
|
-
weight_sharing,
|
46
|
-
bos_idx=0):
|
47
|
-
super(WrapEncoderForFeature, self).__init__()
|
48
|
-
|
49
|
-
self.prepare_encoder = PrepareEncoder(
|
50
|
-
src_vocab_size,
|
51
|
-
d_model,
|
52
|
-
max_length,
|
53
|
-
prepostprocess_dropout,
|
54
|
-
bos_idx=bos_idx,
|
55
|
-
word_emb_param_name="src_word_emb_table")
|
56
|
-
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
|
57
|
-
d_inner_hid, prepostprocess_dropout,
|
58
|
-
attention_dropout, relu_dropout, preprocess_cmd,
|
59
|
-
postprocess_cmd)
|
60
|
-
|
61
|
-
def forward(self, enc_inputs):
|
62
|
-
conv_features, src_pos, src_slf_attn_bias = enc_inputs
|
63
|
-
enc_input = self.prepare_encoder(conv_features, src_pos)
|
64
|
-
enc_output = self.encoder(enc_input, src_slf_attn_bias)
|
65
|
-
return enc_output
|
66
|
-
|
67
|
-
|
68
|
-
class WrapEncoder(nn.Layer):
|
69
|
-
"""
|
70
|
-
embedder + encoder
|
71
|
-
"""
|
72
|
-
|
73
|
-
def __init__(self,
|
74
|
-
src_vocab_size,
|
75
|
-
max_length,
|
76
|
-
n_layer,
|
77
|
-
n_head,
|
78
|
-
d_key,
|
79
|
-
d_value,
|
80
|
-
d_model,
|
81
|
-
d_inner_hid,
|
82
|
-
prepostprocess_dropout,
|
83
|
-
attention_dropout,
|
84
|
-
relu_dropout,
|
85
|
-
preprocess_cmd,
|
86
|
-
postprocess_cmd,
|
87
|
-
weight_sharing,
|
88
|
-
bos_idx=0):
|
89
|
-
super(WrapEncoder, self).__init__()
|
90
|
-
|
91
|
-
self.prepare_decoder = PrepareDecoder(
|
92
|
-
src_vocab_size,
|
93
|
-
d_model,
|
94
|
-
max_length,
|
95
|
-
prepostprocess_dropout,
|
96
|
-
bos_idx=bos_idx)
|
97
|
-
self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
|
98
|
-
d_inner_hid, prepostprocess_dropout,
|
99
|
-
attention_dropout, relu_dropout, preprocess_cmd,
|
100
|
-
postprocess_cmd)
|
101
|
-
|
102
|
-
def forward(self, enc_inputs):
|
103
|
-
src_word, src_pos, src_slf_attn_bias = enc_inputs
|
104
|
-
enc_input = self.prepare_decoder(src_word, src_pos)
|
105
|
-
enc_output = self.encoder(enc_input, src_slf_attn_bias)
|
106
|
-
return enc_output
|
107
|
-
|
108
|
-
|
109
|
-
class Encoder(nn.Layer):
|
110
|
-
"""
|
111
|
-
encoder
|
112
|
-
"""
|
113
|
-
|
114
|
-
def __init__(self,
|
115
|
-
n_layer,
|
116
|
-
n_head,
|
117
|
-
d_key,
|
118
|
-
d_value,
|
119
|
-
d_model,
|
120
|
-
d_inner_hid,
|
121
|
-
prepostprocess_dropout,
|
122
|
-
attention_dropout,
|
123
|
-
relu_dropout,
|
124
|
-
preprocess_cmd="n",
|
125
|
-
postprocess_cmd="da"):
|
126
|
-
|
127
|
-
super(Encoder, self).__init__()
|
128
|
-
|
129
|
-
self.encoder_layers = list()
|
130
|
-
for i in range(n_layer):
|
131
|
-
self.encoder_layers.append(
|
132
|
-
self.add_sublayer(
|
133
|
-
"layer_%d" % i,
|
134
|
-
EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid,
|
135
|
-
prepostprocess_dropout, attention_dropout,
|
136
|
-
relu_dropout, preprocess_cmd,
|
137
|
-
postprocess_cmd)))
|
138
|
-
self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
|
139
|
-
prepostprocess_dropout)
|
140
|
-
|
141
|
-
def forward(self, enc_input, attn_bias):
|
142
|
-
for encoder_layer in self.encoder_layers:
|
143
|
-
enc_output = encoder_layer(enc_input, attn_bias)
|
144
|
-
enc_input = enc_output
|
145
|
-
enc_output = self.processer(enc_output)
|
146
|
-
return enc_output
|
147
|
-
|
148
|
-
|
149
|
-
class EncoderLayer(nn.Layer):
|
150
|
-
"""
|
151
|
-
EncoderLayer
|
152
|
-
"""
|
153
|
-
|
154
|
-
def __init__(self,
|
155
|
-
n_head,
|
156
|
-
d_key,
|
157
|
-
d_value,
|
158
|
-
d_model,
|
159
|
-
d_inner_hid,
|
160
|
-
prepostprocess_dropout,
|
161
|
-
attention_dropout,
|
162
|
-
relu_dropout,
|
163
|
-
preprocess_cmd="n",
|
164
|
-
postprocess_cmd="da"):
|
165
|
-
|
166
|
-
super(EncoderLayer, self).__init__()
|
167
|
-
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
|
168
|
-
prepostprocess_dropout)
|
169
|
-
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
|
170
|
-
attention_dropout)
|
171
|
-
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
|
172
|
-
prepostprocess_dropout)
|
173
|
-
|
174
|
-
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
|
175
|
-
prepostprocess_dropout)
|
176
|
-
self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
|
177
|
-
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
|
178
|
-
prepostprocess_dropout)
|
179
|
-
|
180
|
-
def forward(self, enc_input, attn_bias):
|
181
|
-
attn_output = self.self_attn(
|
182
|
-
self.preprocesser1(enc_input), None, None, attn_bias)
|
183
|
-
attn_output = self.postprocesser1(attn_output, enc_input)
|
184
|
-
ffn_output = self.ffn(self.preprocesser2(attn_output))
|
185
|
-
ffn_output = self.postprocesser2(ffn_output, attn_output)
|
186
|
-
return ffn_output
|
187
|
-
|
188
|
-
|
189
|
-
class MultiHeadAttention(nn.Layer):
|
190
|
-
"""
|
191
|
-
Multi-Head Attention
|
192
|
-
"""
|
193
|
-
|
194
|
-
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.):
|
195
|
-
super(MultiHeadAttention, self).__init__()
|
196
|
-
self.n_head = n_head
|
197
|
-
self.d_key = d_key
|
198
|
-
self.d_value = d_value
|
199
|
-
self.d_model = d_model
|
200
|
-
self.dropout_rate = dropout_rate
|
201
|
-
self.q_fc = paddle.nn.Linear(
|
202
|
-
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
|
203
|
-
self.k_fc = paddle.nn.Linear(
|
204
|
-
in_features=d_model, out_features=d_key * n_head, bias_attr=False)
|
205
|
-
self.v_fc = paddle.nn.Linear(
|
206
|
-
in_features=d_model, out_features=d_value * n_head, bias_attr=False)
|
207
|
-
self.proj_fc = paddle.nn.Linear(
|
208
|
-
in_features=d_value * n_head, out_features=d_model, bias_attr=False)
|
209
|
-
|
210
|
-
def _prepare_qkv(self, queries, keys, values, cache=None):
|
211
|
-
if keys is None: # self-attention
|
212
|
-
keys, values = queries, queries
|
213
|
-
static_kv = False
|
214
|
-
else: # cross-attention
|
215
|
-
static_kv = True
|
216
|
-
|
217
|
-
q = self.q_fc(queries)
|
218
|
-
q = paddle.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
|
219
|
-
q = paddle.transpose(x=q, perm=[0, 2, 1, 3])
|
220
|
-
|
221
|
-
if cache is not None and static_kv and "static_k" in cache:
|
222
|
-
# for encoder-decoder attention in inference and has cached
|
223
|
-
k = cache["static_k"]
|
224
|
-
v = cache["static_v"]
|
225
|
-
else:
|
226
|
-
k = self.k_fc(keys)
|
227
|
-
v = self.v_fc(values)
|
228
|
-
k = paddle.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
|
229
|
-
k = paddle.transpose(x=k, perm=[0, 2, 1, 3])
|
230
|
-
v = paddle.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
|
231
|
-
v = paddle.transpose(x=v, perm=[0, 2, 1, 3])
|
232
|
-
|
233
|
-
if cache is not None:
|
234
|
-
if static_kv and not "static_k" in cache:
|
235
|
-
# for encoder-decoder attention in inference and has not cached
|
236
|
-
cache["static_k"], cache["static_v"] = k, v
|
237
|
-
elif not static_kv:
|
238
|
-
# for decoder self-attention in inference
|
239
|
-
cache_k, cache_v = cache["k"], cache["v"]
|
240
|
-
k = paddle.concat([cache_k, k], axis=2)
|
241
|
-
v = paddle.concat([cache_v, v], axis=2)
|
242
|
-
cache["k"], cache["v"] = k, v
|
243
|
-
|
244
|
-
return q, k, v
|
245
|
-
|
246
|
-
def forward(self, queries, keys, values, attn_bias, cache=None):
|
247
|
-
# compute q ,k ,v
|
248
|
-
keys = queries if keys is None else keys
|
249
|
-
values = keys if values is None else values
|
250
|
-
q, k, v = self._prepare_qkv(queries, keys, values, cache)
|
251
|
-
|
252
|
-
# scale dot product attention
|
253
|
-
product = paddle.matmul(x=q, y=k, transpose_y=True)
|
254
|
-
product = product * self.d_model**-0.5
|
255
|
-
if attn_bias is not None:
|
256
|
-
product += attn_bias
|
257
|
-
weights = F.softmax(product)
|
258
|
-
if self.dropout_rate:
|
259
|
-
weights = F.dropout(
|
260
|
-
weights, p=self.dropout_rate, mode="downscale_in_infer")
|
261
|
-
out = paddle.matmul(weights, v)
|
262
|
-
|
263
|
-
# combine heads
|
264
|
-
out = paddle.transpose(out, perm=[0, 2, 1, 3])
|
265
|
-
out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
|
266
|
-
|
267
|
-
# project to output
|
268
|
-
out = self.proj_fc(out)
|
269
|
-
|
270
|
-
return out
|
271
|
-
|
272
|
-
|
273
|
-
class PrePostProcessLayer(nn.Layer):
|
274
|
-
"""
|
275
|
-
PrePostProcessLayer
|
276
|
-
"""
|
277
|
-
|
278
|
-
def __init__(self, process_cmd, d_model, dropout_rate):
|
279
|
-
super(PrePostProcessLayer, self).__init__()
|
280
|
-
self.process_cmd = process_cmd
|
281
|
-
self.functors = []
|
282
|
-
for cmd in self.process_cmd:
|
283
|
-
if cmd == "a": # add residual connection
|
284
|
-
self.functors.append(lambda x, y: x + y if y is not None else x)
|
285
|
-
elif cmd == "n": # add layer normalization
|
286
|
-
self.functors.append(
|
287
|
-
self.add_sublayer(
|
288
|
-
"layer_norm_%d" % len(self.sublayers()),
|
289
|
-
paddle.nn.LayerNorm(
|
290
|
-
normalized_shape=d_model,
|
291
|
-
weight_attr=fluid.ParamAttr(
|
292
|
-
initializer=fluid.initializer.Constant(1.)),
|
293
|
-
bias_attr=fluid.ParamAttr(
|
294
|
-
initializer=fluid.initializer.Constant(0.)))))
|
295
|
-
elif cmd == "d": # add dropout
|
296
|
-
self.functors.append(lambda x: F.dropout(
|
297
|
-
x, p=dropout_rate, mode="downscale_in_infer")
|
298
|
-
if dropout_rate else x)
|
299
|
-
|
300
|
-
def forward(self, x, residual=None):
|
301
|
-
for i, cmd in enumerate(self.process_cmd):
|
302
|
-
if cmd == "a":
|
303
|
-
x = self.functors[i](x, residual)
|
304
|
-
else:
|
305
|
-
x = self.functors[i](x)
|
306
|
-
return x
|
307
|
-
|
308
|
-
|
309
|
-
class PrepareEncoder(nn.Layer):
|
310
|
-
def __init__(self,
|
311
|
-
src_vocab_size,
|
312
|
-
src_emb_dim,
|
313
|
-
src_max_len,
|
314
|
-
dropout_rate=0,
|
315
|
-
bos_idx=0,
|
316
|
-
word_emb_param_name=None,
|
317
|
-
pos_enc_param_name=None):
|
318
|
-
super(PrepareEncoder, self).__init__()
|
319
|
-
self.src_emb_dim = src_emb_dim
|
320
|
-
self.src_max_len = src_max_len
|
321
|
-
self.emb = paddle.nn.Embedding(
|
322
|
-
num_embeddings=self.src_max_len, embedding_dim=self.src_emb_dim)
|
323
|
-
self.dropout_rate = dropout_rate
|
324
|
-
|
325
|
-
def forward(self, src_word, src_pos):
|
326
|
-
src_word_emb = src_word
|
327
|
-
src_word_emb = fluid.layers.cast(src_word_emb, 'float32')
|
328
|
-
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
|
329
|
-
src_pos = paddle.squeeze(src_pos, axis=-1)
|
330
|
-
src_pos_enc = self.emb(src_pos)
|
331
|
-
src_pos_enc.stop_gradient = True
|
332
|
-
enc_input = src_word_emb + src_pos_enc
|
333
|
-
if self.dropout_rate:
|
334
|
-
out = F.dropout(
|
335
|
-
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
|
336
|
-
else:
|
337
|
-
out = enc_input
|
338
|
-
return out
|
339
|
-
|
340
|
-
|
341
|
-
class PrepareDecoder(nn.Layer):
|
342
|
-
def __init__(self,
|
343
|
-
src_vocab_size,
|
344
|
-
src_emb_dim,
|
345
|
-
src_max_len,
|
346
|
-
dropout_rate=0,
|
347
|
-
bos_idx=0,
|
348
|
-
word_emb_param_name=None,
|
349
|
-
pos_enc_param_name=None):
|
350
|
-
super(PrepareDecoder, self).__init__()
|
351
|
-
self.src_emb_dim = src_emb_dim
|
352
|
-
"""
|
353
|
-
self.emb0 = Embedding(num_embeddings=src_vocab_size,
|
354
|
-
embedding_dim=src_emb_dim)
|
355
|
-
"""
|
356
|
-
self.emb0 = paddle.nn.Embedding(
|
357
|
-
num_embeddings=src_vocab_size,
|
358
|
-
embedding_dim=self.src_emb_dim,
|
359
|
-
padding_idx=bos_idx,
|
360
|
-
weight_attr=paddle.ParamAttr(
|
361
|
-
name=word_emb_param_name,
|
362
|
-
initializer=nn.initializer.Normal(0., src_emb_dim**-0.5)))
|
363
|
-
self.emb1 = paddle.nn.Embedding(
|
364
|
-
num_embeddings=src_max_len,
|
365
|
-
embedding_dim=self.src_emb_dim,
|
366
|
-
weight_attr=paddle.ParamAttr(name=pos_enc_param_name))
|
367
|
-
self.dropout_rate = dropout_rate
|
368
|
-
|
369
|
-
def forward(self, src_word, src_pos):
|
370
|
-
src_word = fluid.layers.cast(src_word, 'int64')
|
371
|
-
src_word = paddle.squeeze(src_word, axis=-1)
|
372
|
-
src_word_emb = self.emb0(src_word)
|
373
|
-
src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
|
374
|
-
src_pos = paddle.squeeze(src_pos, axis=-1)
|
375
|
-
src_pos_enc = self.emb1(src_pos)
|
376
|
-
src_pos_enc.stop_gradient = True
|
377
|
-
enc_input = src_word_emb + src_pos_enc
|
378
|
-
if self.dropout_rate:
|
379
|
-
out = F.dropout(
|
380
|
-
x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
|
381
|
-
else:
|
382
|
-
out = enc_input
|
383
|
-
return out
|
384
|
-
|
385
|
-
|
386
|
-
class FFN(nn.Layer):
|
387
|
-
"""
|
388
|
-
Feed-Forward Network
|
389
|
-
"""
|
390
|
-
|
391
|
-
def __init__(self, d_inner_hid, d_model, dropout_rate):
|
392
|
-
super(FFN, self).__init__()
|
393
|
-
self.dropout_rate = dropout_rate
|
394
|
-
self.fc1 = paddle.nn.Linear(
|
395
|
-
in_features=d_model, out_features=d_inner_hid)
|
396
|
-
self.fc2 = paddle.nn.Linear(
|
397
|
-
in_features=d_inner_hid, out_features=d_model)
|
398
|
-
|
399
|
-
def forward(self, x):
|
400
|
-
hidden = self.fc1(x)
|
401
|
-
hidden = F.relu(hidden)
|
402
|
-
if self.dropout_rate:
|
403
|
-
hidden = F.dropout(
|
404
|
-
hidden, p=self.dropout_rate, mode="downscale_in_infer")
|
405
|
-
out = self.fc2(hidden)
|
406
|
-
return out
|
@@ -1,246 +0,0 @@
|
|
1
|
-
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import paddle
|
20
|
-
import paddle.nn as nn
|
21
|
-
import paddle.nn.functional as F
|
22
|
-
import numpy as np
|
23
|
-
|
24
|
-
|
25
|
-
class TableAttentionHead(nn.Layer):
|
26
|
-
def __init__(self,
|
27
|
-
in_channels,
|
28
|
-
hidden_size,
|
29
|
-
loc_type,
|
30
|
-
in_max_len=488,
|
31
|
-
max_text_length=100,
|
32
|
-
max_elem_length=800,
|
33
|
-
max_cell_num=500,
|
34
|
-
**kwargs):
|
35
|
-
super(TableAttentionHead, self).__init__()
|
36
|
-
self.input_size = in_channels[-1]
|
37
|
-
self.hidden_size = hidden_size
|
38
|
-
self.elem_num = 30
|
39
|
-
self.max_text_length = max_text_length
|
40
|
-
self.max_elem_length = max_elem_length
|
41
|
-
self.max_cell_num = max_cell_num
|
42
|
-
|
43
|
-
self.structure_attention_cell = AttentionGRUCell(
|
44
|
-
self.input_size, hidden_size, self.elem_num, use_gru=False)
|
45
|
-
self.structure_generator = nn.Linear(hidden_size, self.elem_num)
|
46
|
-
self.loc_type = loc_type
|
47
|
-
self.in_max_len = in_max_len
|
48
|
-
|
49
|
-
if self.loc_type == 1:
|
50
|
-
self.loc_generator = nn.Linear(hidden_size, 4)
|
51
|
-
else:
|
52
|
-
if self.in_max_len == 640:
|
53
|
-
self.loc_fea_trans = nn.Linear(400, self.max_elem_length + 1)
|
54
|
-
elif self.in_max_len == 800:
|
55
|
-
self.loc_fea_trans = nn.Linear(625, self.max_elem_length + 1)
|
56
|
-
else:
|
57
|
-
self.loc_fea_trans = nn.Linear(256, self.max_elem_length + 1)
|
58
|
-
self.loc_generator = nn.Linear(self.input_size + hidden_size, 4)
|
59
|
-
|
60
|
-
def _char_to_onehot(self, input_char, onehot_dim):
|
61
|
-
input_ont_hot = F.one_hot(input_char, onehot_dim)
|
62
|
-
return input_ont_hot
|
63
|
-
|
64
|
-
def forward(self, inputs, targets=None):
|
65
|
-
# if and else branch are both needed when you want to assign a variable
|
66
|
-
# if you modify the var in just one branch, then the modification will not work.
|
67
|
-
fea = inputs[-1]
|
68
|
-
if len(fea.shape) == 3:
|
69
|
-
pass
|
70
|
-
else:
|
71
|
-
last_shape = int(np.prod(fea.shape[2:])) # gry added
|
72
|
-
fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
|
73
|
-
fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
|
74
|
-
batch_size = fea.shape[0]
|
75
|
-
|
76
|
-
hidden = paddle.zeros((batch_size, self.hidden_size))
|
77
|
-
output_hiddens = []
|
78
|
-
if self.training and targets is not None:
|
79
|
-
structure = targets[0]
|
80
|
-
for i in range(self.max_elem_length + 1):
|
81
|
-
elem_onehots = self._char_to_onehot(
|
82
|
-
structure[:, i], onehot_dim=self.elem_num)
|
83
|
-
(outputs, hidden), alpha = self.structure_attention_cell(
|
84
|
-
hidden, fea, elem_onehots)
|
85
|
-
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
|
86
|
-
output = paddle.concat(output_hiddens, axis=1)
|
87
|
-
structure_probs = self.structure_generator(output)
|
88
|
-
if self.loc_type == 1:
|
89
|
-
loc_preds = self.loc_generator(output)
|
90
|
-
loc_preds = F.sigmoid(loc_preds)
|
91
|
-
else:
|
92
|
-
loc_fea = fea.transpose([0, 2, 1])
|
93
|
-
loc_fea = self.loc_fea_trans(loc_fea)
|
94
|
-
loc_fea = loc_fea.transpose([0, 2, 1])
|
95
|
-
loc_concat = paddle.concat([output, loc_fea], axis=2)
|
96
|
-
loc_preds = self.loc_generator(loc_concat)
|
97
|
-
loc_preds = F.sigmoid(loc_preds)
|
98
|
-
else:
|
99
|
-
temp_elem = paddle.zeros(shape=[batch_size], dtype="int32")
|
100
|
-
structure_probs = None
|
101
|
-
loc_preds = None
|
102
|
-
elem_onehots = None
|
103
|
-
outputs = None
|
104
|
-
alpha = None
|
105
|
-
max_elem_length = paddle.to_tensor(self.max_elem_length)
|
106
|
-
i = 0
|
107
|
-
while i < max_elem_length + 1:
|
108
|
-
elem_onehots = self._char_to_onehot(
|
109
|
-
temp_elem, onehot_dim=self.elem_num)
|
110
|
-
(outputs, hidden), alpha = self.structure_attention_cell(
|
111
|
-
hidden, fea, elem_onehots)
|
112
|
-
output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
|
113
|
-
structure_probs_step = self.structure_generator(outputs)
|
114
|
-
temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
|
115
|
-
i += 1
|
116
|
-
|
117
|
-
output = paddle.concat(output_hiddens, axis=1)
|
118
|
-
structure_probs = self.structure_generator(output)
|
119
|
-
structure_probs = F.softmax(structure_probs)
|
120
|
-
if self.loc_type == 1:
|
121
|
-
loc_preds = self.loc_generator(output)
|
122
|
-
loc_preds = F.sigmoid(loc_preds)
|
123
|
-
else:
|
124
|
-
loc_fea = fea.transpose([0, 2, 1])
|
125
|
-
loc_fea = self.loc_fea_trans(loc_fea)
|
126
|
-
loc_fea = loc_fea.transpose([0, 2, 1])
|
127
|
-
loc_concat = paddle.concat([output, loc_fea], axis=2)
|
128
|
-
loc_preds = self.loc_generator(loc_concat)
|
129
|
-
loc_preds = F.sigmoid(loc_preds)
|
130
|
-
return {'structure_probs': structure_probs, 'loc_preds': loc_preds}
|
131
|
-
|
132
|
-
|
133
|
-
class AttentionGRUCell(nn.Layer):
|
134
|
-
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
|
135
|
-
super(AttentionGRUCell, self).__init__()
|
136
|
-
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
|
137
|
-
self.h2h = nn.Linear(hidden_size, hidden_size)
|
138
|
-
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
|
139
|
-
self.rnn = nn.GRUCell(
|
140
|
-
input_size=input_size + num_embeddings, hidden_size=hidden_size)
|
141
|
-
self.hidden_size = hidden_size
|
142
|
-
|
143
|
-
def forward(self, prev_hidden, batch_H, char_onehots):
|
144
|
-
batch_H_proj = self.i2h(batch_H)
|
145
|
-
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)
|
146
|
-
res = paddle.add(batch_H_proj, prev_hidden_proj)
|
147
|
-
res = paddle.tanh(res)
|
148
|
-
e = self.score(res)
|
149
|
-
alpha = F.softmax(e, axis=1)
|
150
|
-
alpha = paddle.transpose(alpha, [0, 2, 1])
|
151
|
-
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
|
152
|
-
concat_context = paddle.concat([context, char_onehots], 1)
|
153
|
-
cur_hidden = self.rnn(concat_context, prev_hidden)
|
154
|
-
return cur_hidden, alpha
|
155
|
-
|
156
|
-
|
157
|
-
class AttentionLSTM(nn.Layer):
|
158
|
-
def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
|
159
|
-
super(AttentionLSTM, self).__init__()
|
160
|
-
self.input_size = in_channels
|
161
|
-
self.hidden_size = hidden_size
|
162
|
-
self.num_classes = out_channels
|
163
|
-
|
164
|
-
self.attention_cell = AttentionLSTMCell(
|
165
|
-
in_channels, hidden_size, out_channels, use_gru=False)
|
166
|
-
self.generator = nn.Linear(hidden_size, out_channels)
|
167
|
-
|
168
|
-
def _char_to_onehot(self, input_char, onehot_dim):
|
169
|
-
input_ont_hot = F.one_hot(input_char, onehot_dim)
|
170
|
-
return input_ont_hot
|
171
|
-
|
172
|
-
def forward(self, inputs, targets=None, batch_max_length=25):
|
173
|
-
batch_size = inputs.shape[0]
|
174
|
-
num_steps = batch_max_length
|
175
|
-
|
176
|
-
hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
|
177
|
-
(batch_size, self.hidden_size)))
|
178
|
-
output_hiddens = []
|
179
|
-
|
180
|
-
if targets is not None:
|
181
|
-
for i in range(num_steps):
|
182
|
-
# one-hot vectors for a i-th char
|
183
|
-
char_onehots = self._char_to_onehot(
|
184
|
-
targets[:, i], onehot_dim=self.num_classes)
|
185
|
-
hidden, alpha = self.attention_cell(hidden, inputs,
|
186
|
-
char_onehots)
|
187
|
-
|
188
|
-
hidden = (hidden[1][0], hidden[1][1])
|
189
|
-
output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
|
190
|
-
output = paddle.concat(output_hiddens, axis=1)
|
191
|
-
probs = self.generator(output)
|
192
|
-
|
193
|
-
else:
|
194
|
-
targets = paddle.zeros(shape=[batch_size], dtype="int32")
|
195
|
-
probs = None
|
196
|
-
|
197
|
-
for i in range(num_steps):
|
198
|
-
char_onehots = self._char_to_onehot(
|
199
|
-
targets, onehot_dim=self.num_classes)
|
200
|
-
hidden, alpha = self.attention_cell(hidden, inputs,
|
201
|
-
char_onehots)
|
202
|
-
probs_step = self.generator(hidden[0])
|
203
|
-
hidden = (hidden[1][0], hidden[1][1])
|
204
|
-
if probs is None:
|
205
|
-
probs = paddle.unsqueeze(probs_step, axis=1)
|
206
|
-
else:
|
207
|
-
probs = paddle.concat(
|
208
|
-
[probs, paddle.unsqueeze(
|
209
|
-
probs_step, axis=1)], axis=1)
|
210
|
-
|
211
|
-
next_input = probs_step.argmax(axis=1)
|
212
|
-
|
213
|
-
targets = next_input
|
214
|
-
|
215
|
-
return probs
|
216
|
-
|
217
|
-
|
218
|
-
class AttentionLSTMCell(nn.Layer):
|
219
|
-
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
|
220
|
-
super(AttentionLSTMCell, self).__init__()
|
221
|
-
self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
|
222
|
-
self.h2h = nn.Linear(hidden_size, hidden_size)
|
223
|
-
self.score = nn.Linear(hidden_size, 1, bias_attr=False)
|
224
|
-
if not use_gru:
|
225
|
-
self.rnn = nn.LSTMCell(
|
226
|
-
input_size=input_size + num_embeddings, hidden_size=hidden_size)
|
227
|
-
else:
|
228
|
-
self.rnn = nn.GRUCell(
|
229
|
-
input_size=input_size + num_embeddings, hidden_size=hidden_size)
|
230
|
-
|
231
|
-
self.hidden_size = hidden_size
|
232
|
-
|
233
|
-
def forward(self, prev_hidden, batch_H, char_onehots):
|
234
|
-
batch_H_proj = self.i2h(batch_H)
|
235
|
-
prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
|
236
|
-
res = paddle.add(batch_H_proj, prev_hidden_proj)
|
237
|
-
res = paddle.tanh(res)
|
238
|
-
e = self.score(res)
|
239
|
-
|
240
|
-
alpha = F.softmax(e, axis=1)
|
241
|
-
alpha = paddle.transpose(alpha, [0, 2, 1])
|
242
|
-
context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
|
243
|
-
concat_context = paddle.concat([context, char_onehots], 1)
|
244
|
-
cur_hidden = self.rnn(concat_context, prev_hidden)
|
245
|
-
|
246
|
-
return cur_hidden, alpha
|
@@ -1,32 +0,0 @@
|
|
1
|
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
__all__ = ['build_neck']
|
16
|
-
|
17
|
-
|
18
|
-
def build_neck(config):
|
19
|
-
from .db_fpn import DBFPN
|
20
|
-
from .east_fpn import EASTFPN
|
21
|
-
from .sast_fpn import SASTFPN
|
22
|
-
from .rnn import SequenceEncoder
|
23
|
-
from .pg_fpn import PGFPN
|
24
|
-
from .table_fpn import TableFPN
|
25
|
-
from .fpn import FPN
|
26
|
-
support_dict = ['FPN','DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN']
|
27
|
-
|
28
|
-
module_name = config.pop('name')
|
29
|
-
assert module_name in support_dict, Exception('neck only support {}'.format(
|
30
|
-
support_dict))
|
31
|
-
module_class = eval(module_name)(**config)
|
32
|
-
return module_class
|