pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,406 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import math
20
-
21
- import paddle
22
- from paddle import ParamAttr, nn
23
- from paddle import nn, ParamAttr
24
- from paddle.nn import functional as F
25
- import paddle.fluid as fluid
26
- import numpy as np
27
- gradient_clip = 10
28
-
29
-
30
- class WrapEncoderForFeature(nn.Layer):
31
- def __init__(self,
32
- src_vocab_size,
33
- max_length,
34
- n_layer,
35
- n_head,
36
- d_key,
37
- d_value,
38
- d_model,
39
- d_inner_hid,
40
- prepostprocess_dropout,
41
- attention_dropout,
42
- relu_dropout,
43
- preprocess_cmd,
44
- postprocess_cmd,
45
- weight_sharing,
46
- bos_idx=0):
47
- super(WrapEncoderForFeature, self).__init__()
48
-
49
- self.prepare_encoder = PrepareEncoder(
50
- src_vocab_size,
51
- d_model,
52
- max_length,
53
- prepostprocess_dropout,
54
- bos_idx=bos_idx,
55
- word_emb_param_name="src_word_emb_table")
56
- self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
57
- d_inner_hid, prepostprocess_dropout,
58
- attention_dropout, relu_dropout, preprocess_cmd,
59
- postprocess_cmd)
60
-
61
- def forward(self, enc_inputs):
62
- conv_features, src_pos, src_slf_attn_bias = enc_inputs
63
- enc_input = self.prepare_encoder(conv_features, src_pos)
64
- enc_output = self.encoder(enc_input, src_slf_attn_bias)
65
- return enc_output
66
-
67
-
68
- class WrapEncoder(nn.Layer):
69
- """
70
- embedder + encoder
71
- """
72
-
73
- def __init__(self,
74
- src_vocab_size,
75
- max_length,
76
- n_layer,
77
- n_head,
78
- d_key,
79
- d_value,
80
- d_model,
81
- d_inner_hid,
82
- prepostprocess_dropout,
83
- attention_dropout,
84
- relu_dropout,
85
- preprocess_cmd,
86
- postprocess_cmd,
87
- weight_sharing,
88
- bos_idx=0):
89
- super(WrapEncoder, self).__init__()
90
-
91
- self.prepare_decoder = PrepareDecoder(
92
- src_vocab_size,
93
- d_model,
94
- max_length,
95
- prepostprocess_dropout,
96
- bos_idx=bos_idx)
97
- self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model,
98
- d_inner_hid, prepostprocess_dropout,
99
- attention_dropout, relu_dropout, preprocess_cmd,
100
- postprocess_cmd)
101
-
102
- def forward(self, enc_inputs):
103
- src_word, src_pos, src_slf_attn_bias = enc_inputs
104
- enc_input = self.prepare_decoder(src_word, src_pos)
105
- enc_output = self.encoder(enc_input, src_slf_attn_bias)
106
- return enc_output
107
-
108
-
109
- class Encoder(nn.Layer):
110
- """
111
- encoder
112
- """
113
-
114
- def __init__(self,
115
- n_layer,
116
- n_head,
117
- d_key,
118
- d_value,
119
- d_model,
120
- d_inner_hid,
121
- prepostprocess_dropout,
122
- attention_dropout,
123
- relu_dropout,
124
- preprocess_cmd="n",
125
- postprocess_cmd="da"):
126
-
127
- super(Encoder, self).__init__()
128
-
129
- self.encoder_layers = list()
130
- for i in range(n_layer):
131
- self.encoder_layers.append(
132
- self.add_sublayer(
133
- "layer_%d" % i,
134
- EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid,
135
- prepostprocess_dropout, attention_dropout,
136
- relu_dropout, preprocess_cmd,
137
- postprocess_cmd)))
138
- self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
139
- prepostprocess_dropout)
140
-
141
- def forward(self, enc_input, attn_bias):
142
- for encoder_layer in self.encoder_layers:
143
- enc_output = encoder_layer(enc_input, attn_bias)
144
- enc_input = enc_output
145
- enc_output = self.processer(enc_output)
146
- return enc_output
147
-
148
-
149
- class EncoderLayer(nn.Layer):
150
- """
151
- EncoderLayer
152
- """
153
-
154
- def __init__(self,
155
- n_head,
156
- d_key,
157
- d_value,
158
- d_model,
159
- d_inner_hid,
160
- prepostprocess_dropout,
161
- attention_dropout,
162
- relu_dropout,
163
- preprocess_cmd="n",
164
- postprocess_cmd="da"):
165
-
166
- super(EncoderLayer, self).__init__()
167
- self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
168
- prepostprocess_dropout)
169
- self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
170
- attention_dropout)
171
- self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
172
- prepostprocess_dropout)
173
-
174
- self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
175
- prepostprocess_dropout)
176
- self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
177
- self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
178
- prepostprocess_dropout)
179
-
180
- def forward(self, enc_input, attn_bias):
181
- attn_output = self.self_attn(
182
- self.preprocesser1(enc_input), None, None, attn_bias)
183
- attn_output = self.postprocesser1(attn_output, enc_input)
184
- ffn_output = self.ffn(self.preprocesser2(attn_output))
185
- ffn_output = self.postprocesser2(ffn_output, attn_output)
186
- return ffn_output
187
-
188
-
189
- class MultiHeadAttention(nn.Layer):
190
- """
191
- Multi-Head Attention
192
- """
193
-
194
- def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.):
195
- super(MultiHeadAttention, self).__init__()
196
- self.n_head = n_head
197
- self.d_key = d_key
198
- self.d_value = d_value
199
- self.d_model = d_model
200
- self.dropout_rate = dropout_rate
201
- self.q_fc = paddle.nn.Linear(
202
- in_features=d_model, out_features=d_key * n_head, bias_attr=False)
203
- self.k_fc = paddle.nn.Linear(
204
- in_features=d_model, out_features=d_key * n_head, bias_attr=False)
205
- self.v_fc = paddle.nn.Linear(
206
- in_features=d_model, out_features=d_value * n_head, bias_attr=False)
207
- self.proj_fc = paddle.nn.Linear(
208
- in_features=d_value * n_head, out_features=d_model, bias_attr=False)
209
-
210
- def _prepare_qkv(self, queries, keys, values, cache=None):
211
- if keys is None: # self-attention
212
- keys, values = queries, queries
213
- static_kv = False
214
- else: # cross-attention
215
- static_kv = True
216
-
217
- q = self.q_fc(queries)
218
- q = paddle.reshape(x=q, shape=[0, 0, self.n_head, self.d_key])
219
- q = paddle.transpose(x=q, perm=[0, 2, 1, 3])
220
-
221
- if cache is not None and static_kv and "static_k" in cache:
222
- # for encoder-decoder attention in inference and has cached
223
- k = cache["static_k"]
224
- v = cache["static_v"]
225
- else:
226
- k = self.k_fc(keys)
227
- v = self.v_fc(values)
228
- k = paddle.reshape(x=k, shape=[0, 0, self.n_head, self.d_key])
229
- k = paddle.transpose(x=k, perm=[0, 2, 1, 3])
230
- v = paddle.reshape(x=v, shape=[0, 0, self.n_head, self.d_value])
231
- v = paddle.transpose(x=v, perm=[0, 2, 1, 3])
232
-
233
- if cache is not None:
234
- if static_kv and not "static_k" in cache:
235
- # for encoder-decoder attention in inference and has not cached
236
- cache["static_k"], cache["static_v"] = k, v
237
- elif not static_kv:
238
- # for decoder self-attention in inference
239
- cache_k, cache_v = cache["k"], cache["v"]
240
- k = paddle.concat([cache_k, k], axis=2)
241
- v = paddle.concat([cache_v, v], axis=2)
242
- cache["k"], cache["v"] = k, v
243
-
244
- return q, k, v
245
-
246
- def forward(self, queries, keys, values, attn_bias, cache=None):
247
- # compute q ,k ,v
248
- keys = queries if keys is None else keys
249
- values = keys if values is None else values
250
- q, k, v = self._prepare_qkv(queries, keys, values, cache)
251
-
252
- # scale dot product attention
253
- product = paddle.matmul(x=q, y=k, transpose_y=True)
254
- product = product * self.d_model**-0.5
255
- if attn_bias is not None:
256
- product += attn_bias
257
- weights = F.softmax(product)
258
- if self.dropout_rate:
259
- weights = F.dropout(
260
- weights, p=self.dropout_rate, mode="downscale_in_infer")
261
- out = paddle.matmul(weights, v)
262
-
263
- # combine heads
264
- out = paddle.transpose(out, perm=[0, 2, 1, 3])
265
- out = paddle.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
266
-
267
- # project to output
268
- out = self.proj_fc(out)
269
-
270
- return out
271
-
272
-
273
- class PrePostProcessLayer(nn.Layer):
274
- """
275
- PrePostProcessLayer
276
- """
277
-
278
- def __init__(self, process_cmd, d_model, dropout_rate):
279
- super(PrePostProcessLayer, self).__init__()
280
- self.process_cmd = process_cmd
281
- self.functors = []
282
- for cmd in self.process_cmd:
283
- if cmd == "a": # add residual connection
284
- self.functors.append(lambda x, y: x + y if y is not None else x)
285
- elif cmd == "n": # add layer normalization
286
- self.functors.append(
287
- self.add_sublayer(
288
- "layer_norm_%d" % len(self.sublayers()),
289
- paddle.nn.LayerNorm(
290
- normalized_shape=d_model,
291
- weight_attr=fluid.ParamAttr(
292
- initializer=fluid.initializer.Constant(1.)),
293
- bias_attr=fluid.ParamAttr(
294
- initializer=fluid.initializer.Constant(0.)))))
295
- elif cmd == "d": # add dropout
296
- self.functors.append(lambda x: F.dropout(
297
- x, p=dropout_rate, mode="downscale_in_infer")
298
- if dropout_rate else x)
299
-
300
- def forward(self, x, residual=None):
301
- for i, cmd in enumerate(self.process_cmd):
302
- if cmd == "a":
303
- x = self.functors[i](x, residual)
304
- else:
305
- x = self.functors[i](x)
306
- return x
307
-
308
-
309
- class PrepareEncoder(nn.Layer):
310
- def __init__(self,
311
- src_vocab_size,
312
- src_emb_dim,
313
- src_max_len,
314
- dropout_rate=0,
315
- bos_idx=0,
316
- word_emb_param_name=None,
317
- pos_enc_param_name=None):
318
- super(PrepareEncoder, self).__init__()
319
- self.src_emb_dim = src_emb_dim
320
- self.src_max_len = src_max_len
321
- self.emb = paddle.nn.Embedding(
322
- num_embeddings=self.src_max_len, embedding_dim=self.src_emb_dim)
323
- self.dropout_rate = dropout_rate
324
-
325
- def forward(self, src_word, src_pos):
326
- src_word_emb = src_word
327
- src_word_emb = fluid.layers.cast(src_word_emb, 'float32')
328
- src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
329
- src_pos = paddle.squeeze(src_pos, axis=-1)
330
- src_pos_enc = self.emb(src_pos)
331
- src_pos_enc.stop_gradient = True
332
- enc_input = src_word_emb + src_pos_enc
333
- if self.dropout_rate:
334
- out = F.dropout(
335
- x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
336
- else:
337
- out = enc_input
338
- return out
339
-
340
-
341
- class PrepareDecoder(nn.Layer):
342
- def __init__(self,
343
- src_vocab_size,
344
- src_emb_dim,
345
- src_max_len,
346
- dropout_rate=0,
347
- bos_idx=0,
348
- word_emb_param_name=None,
349
- pos_enc_param_name=None):
350
- super(PrepareDecoder, self).__init__()
351
- self.src_emb_dim = src_emb_dim
352
- """
353
- self.emb0 = Embedding(num_embeddings=src_vocab_size,
354
- embedding_dim=src_emb_dim)
355
- """
356
- self.emb0 = paddle.nn.Embedding(
357
- num_embeddings=src_vocab_size,
358
- embedding_dim=self.src_emb_dim,
359
- padding_idx=bos_idx,
360
- weight_attr=paddle.ParamAttr(
361
- name=word_emb_param_name,
362
- initializer=nn.initializer.Normal(0., src_emb_dim**-0.5)))
363
- self.emb1 = paddle.nn.Embedding(
364
- num_embeddings=src_max_len,
365
- embedding_dim=self.src_emb_dim,
366
- weight_attr=paddle.ParamAttr(name=pos_enc_param_name))
367
- self.dropout_rate = dropout_rate
368
-
369
- def forward(self, src_word, src_pos):
370
- src_word = fluid.layers.cast(src_word, 'int64')
371
- src_word = paddle.squeeze(src_word, axis=-1)
372
- src_word_emb = self.emb0(src_word)
373
- src_word_emb = paddle.scale(x=src_word_emb, scale=self.src_emb_dim**0.5)
374
- src_pos = paddle.squeeze(src_pos, axis=-1)
375
- src_pos_enc = self.emb1(src_pos)
376
- src_pos_enc.stop_gradient = True
377
- enc_input = src_word_emb + src_pos_enc
378
- if self.dropout_rate:
379
- out = F.dropout(
380
- x=enc_input, p=self.dropout_rate, mode="downscale_in_infer")
381
- else:
382
- out = enc_input
383
- return out
384
-
385
-
386
- class FFN(nn.Layer):
387
- """
388
- Feed-Forward Network
389
- """
390
-
391
- def __init__(self, d_inner_hid, d_model, dropout_rate):
392
- super(FFN, self).__init__()
393
- self.dropout_rate = dropout_rate
394
- self.fc1 = paddle.nn.Linear(
395
- in_features=d_model, out_features=d_inner_hid)
396
- self.fc2 = paddle.nn.Linear(
397
- in_features=d_inner_hid, out_features=d_model)
398
-
399
- def forward(self, x):
400
- hidden = self.fc1(x)
401
- hidden = F.relu(hidden)
402
- if self.dropout_rate:
403
- hidden = F.dropout(
404
- hidden, p=self.dropout_rate, mode="downscale_in_infer")
405
- out = self.fc2(hidden)
406
- return out
@@ -1,246 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- import paddle.nn as nn
21
- import paddle.nn.functional as F
22
- import numpy as np
23
-
24
-
25
- class TableAttentionHead(nn.Layer):
26
- def __init__(self,
27
- in_channels,
28
- hidden_size,
29
- loc_type,
30
- in_max_len=488,
31
- max_text_length=100,
32
- max_elem_length=800,
33
- max_cell_num=500,
34
- **kwargs):
35
- super(TableAttentionHead, self).__init__()
36
- self.input_size = in_channels[-1]
37
- self.hidden_size = hidden_size
38
- self.elem_num = 30
39
- self.max_text_length = max_text_length
40
- self.max_elem_length = max_elem_length
41
- self.max_cell_num = max_cell_num
42
-
43
- self.structure_attention_cell = AttentionGRUCell(
44
- self.input_size, hidden_size, self.elem_num, use_gru=False)
45
- self.structure_generator = nn.Linear(hidden_size, self.elem_num)
46
- self.loc_type = loc_type
47
- self.in_max_len = in_max_len
48
-
49
- if self.loc_type == 1:
50
- self.loc_generator = nn.Linear(hidden_size, 4)
51
- else:
52
- if self.in_max_len == 640:
53
- self.loc_fea_trans = nn.Linear(400, self.max_elem_length + 1)
54
- elif self.in_max_len == 800:
55
- self.loc_fea_trans = nn.Linear(625, self.max_elem_length + 1)
56
- else:
57
- self.loc_fea_trans = nn.Linear(256, self.max_elem_length + 1)
58
- self.loc_generator = nn.Linear(self.input_size + hidden_size, 4)
59
-
60
- def _char_to_onehot(self, input_char, onehot_dim):
61
- input_ont_hot = F.one_hot(input_char, onehot_dim)
62
- return input_ont_hot
63
-
64
- def forward(self, inputs, targets=None):
65
- # if and else branch are both needed when you want to assign a variable
66
- # if you modify the var in just one branch, then the modification will not work.
67
- fea = inputs[-1]
68
- if len(fea.shape) == 3:
69
- pass
70
- else:
71
- last_shape = int(np.prod(fea.shape[2:])) # gry added
72
- fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
73
- fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
74
- batch_size = fea.shape[0]
75
-
76
- hidden = paddle.zeros((batch_size, self.hidden_size))
77
- output_hiddens = []
78
- if self.training and targets is not None:
79
- structure = targets[0]
80
- for i in range(self.max_elem_length + 1):
81
- elem_onehots = self._char_to_onehot(
82
- structure[:, i], onehot_dim=self.elem_num)
83
- (outputs, hidden), alpha = self.structure_attention_cell(
84
- hidden, fea, elem_onehots)
85
- output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
86
- output = paddle.concat(output_hiddens, axis=1)
87
- structure_probs = self.structure_generator(output)
88
- if self.loc_type == 1:
89
- loc_preds = self.loc_generator(output)
90
- loc_preds = F.sigmoid(loc_preds)
91
- else:
92
- loc_fea = fea.transpose([0, 2, 1])
93
- loc_fea = self.loc_fea_trans(loc_fea)
94
- loc_fea = loc_fea.transpose([0, 2, 1])
95
- loc_concat = paddle.concat([output, loc_fea], axis=2)
96
- loc_preds = self.loc_generator(loc_concat)
97
- loc_preds = F.sigmoid(loc_preds)
98
- else:
99
- temp_elem = paddle.zeros(shape=[batch_size], dtype="int32")
100
- structure_probs = None
101
- loc_preds = None
102
- elem_onehots = None
103
- outputs = None
104
- alpha = None
105
- max_elem_length = paddle.to_tensor(self.max_elem_length)
106
- i = 0
107
- while i < max_elem_length + 1:
108
- elem_onehots = self._char_to_onehot(
109
- temp_elem, onehot_dim=self.elem_num)
110
- (outputs, hidden), alpha = self.structure_attention_cell(
111
- hidden, fea, elem_onehots)
112
- output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
113
- structure_probs_step = self.structure_generator(outputs)
114
- temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
115
- i += 1
116
-
117
- output = paddle.concat(output_hiddens, axis=1)
118
- structure_probs = self.structure_generator(output)
119
- structure_probs = F.softmax(structure_probs)
120
- if self.loc_type == 1:
121
- loc_preds = self.loc_generator(output)
122
- loc_preds = F.sigmoid(loc_preds)
123
- else:
124
- loc_fea = fea.transpose([0, 2, 1])
125
- loc_fea = self.loc_fea_trans(loc_fea)
126
- loc_fea = loc_fea.transpose([0, 2, 1])
127
- loc_concat = paddle.concat([output, loc_fea], axis=2)
128
- loc_preds = self.loc_generator(loc_concat)
129
- loc_preds = F.sigmoid(loc_preds)
130
- return {'structure_probs': structure_probs, 'loc_preds': loc_preds}
131
-
132
-
133
- class AttentionGRUCell(nn.Layer):
134
- def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
135
- super(AttentionGRUCell, self).__init__()
136
- self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
137
- self.h2h = nn.Linear(hidden_size, hidden_size)
138
- self.score = nn.Linear(hidden_size, 1, bias_attr=False)
139
- self.rnn = nn.GRUCell(
140
- input_size=input_size + num_embeddings, hidden_size=hidden_size)
141
- self.hidden_size = hidden_size
142
-
143
- def forward(self, prev_hidden, batch_H, char_onehots):
144
- batch_H_proj = self.i2h(batch_H)
145
- prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)
146
- res = paddle.add(batch_H_proj, prev_hidden_proj)
147
- res = paddle.tanh(res)
148
- e = self.score(res)
149
- alpha = F.softmax(e, axis=1)
150
- alpha = paddle.transpose(alpha, [0, 2, 1])
151
- context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
152
- concat_context = paddle.concat([context, char_onehots], 1)
153
- cur_hidden = self.rnn(concat_context, prev_hidden)
154
- return cur_hidden, alpha
155
-
156
-
157
- class AttentionLSTM(nn.Layer):
158
- def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
159
- super(AttentionLSTM, self).__init__()
160
- self.input_size = in_channels
161
- self.hidden_size = hidden_size
162
- self.num_classes = out_channels
163
-
164
- self.attention_cell = AttentionLSTMCell(
165
- in_channels, hidden_size, out_channels, use_gru=False)
166
- self.generator = nn.Linear(hidden_size, out_channels)
167
-
168
- def _char_to_onehot(self, input_char, onehot_dim):
169
- input_ont_hot = F.one_hot(input_char, onehot_dim)
170
- return input_ont_hot
171
-
172
- def forward(self, inputs, targets=None, batch_max_length=25):
173
- batch_size = inputs.shape[0]
174
- num_steps = batch_max_length
175
-
176
- hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
177
- (batch_size, self.hidden_size)))
178
- output_hiddens = []
179
-
180
- if targets is not None:
181
- for i in range(num_steps):
182
- # one-hot vectors for a i-th char
183
- char_onehots = self._char_to_onehot(
184
- targets[:, i], onehot_dim=self.num_classes)
185
- hidden, alpha = self.attention_cell(hidden, inputs,
186
- char_onehots)
187
-
188
- hidden = (hidden[1][0], hidden[1][1])
189
- output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
190
- output = paddle.concat(output_hiddens, axis=1)
191
- probs = self.generator(output)
192
-
193
- else:
194
- targets = paddle.zeros(shape=[batch_size], dtype="int32")
195
- probs = None
196
-
197
- for i in range(num_steps):
198
- char_onehots = self._char_to_onehot(
199
- targets, onehot_dim=self.num_classes)
200
- hidden, alpha = self.attention_cell(hidden, inputs,
201
- char_onehots)
202
- probs_step = self.generator(hidden[0])
203
- hidden = (hidden[1][0], hidden[1][1])
204
- if probs is None:
205
- probs = paddle.unsqueeze(probs_step, axis=1)
206
- else:
207
- probs = paddle.concat(
208
- [probs, paddle.unsqueeze(
209
- probs_step, axis=1)], axis=1)
210
-
211
- next_input = probs_step.argmax(axis=1)
212
-
213
- targets = next_input
214
-
215
- return probs
216
-
217
-
218
- class AttentionLSTMCell(nn.Layer):
219
- def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
220
- super(AttentionLSTMCell, self).__init__()
221
- self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
222
- self.h2h = nn.Linear(hidden_size, hidden_size)
223
- self.score = nn.Linear(hidden_size, 1, bias_attr=False)
224
- if not use_gru:
225
- self.rnn = nn.LSTMCell(
226
- input_size=input_size + num_embeddings, hidden_size=hidden_size)
227
- else:
228
- self.rnn = nn.GRUCell(
229
- input_size=input_size + num_embeddings, hidden_size=hidden_size)
230
-
231
- self.hidden_size = hidden_size
232
-
233
- def forward(self, prev_hidden, batch_H, char_onehots):
234
- batch_H_proj = self.i2h(batch_H)
235
- prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
236
- res = paddle.add(batch_H_proj, prev_hidden_proj)
237
- res = paddle.tanh(res)
238
- e = self.score(res)
239
-
240
- alpha = F.softmax(e, axis=1)
241
- alpha = paddle.transpose(alpha, [0, 2, 1])
242
- context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
243
- concat_context = paddle.concat([context, char_onehots], 1)
244
- cur_hidden = self.rnn(concat_context, prev_hidden)
245
-
246
- return cur_hidden, alpha
@@ -1,32 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- __all__ = ['build_neck']
16
-
17
-
18
- def build_neck(config):
19
- from .db_fpn import DBFPN
20
- from .east_fpn import EASTFPN
21
- from .sast_fpn import SASTFPN
22
- from .rnn import SequenceEncoder
23
- from .pg_fpn import PGFPN
24
- from .table_fpn import TableFPN
25
- from .fpn import FPN
26
- support_dict = ['FPN','DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN']
27
-
28
- module_name = config.pop('name')
29
- assert module_name in support_dict, Exception('neck only support {}'.format(
30
- support_dict))
31
- module_class = eval(module_name)(**config)
32
- return module_class