pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/__init__.py +21 -21
- pyxllib/algo/__init__.py +8 -8
- pyxllib/algo/disjoint.py +54 -54
- pyxllib/algo/geo.py +541 -529
- pyxllib/algo/intervals.py +964 -964
- pyxllib/algo/matcher.py +389 -311
- pyxllib/algo/newbie.py +166 -166
- pyxllib/algo/pupil.py +629 -461
- pyxllib/algo/shapelylib.py +67 -67
- pyxllib/algo/specialist.py +241 -240
- pyxllib/algo/stat.py +494 -458
- pyxllib/algo/treelib.py +149 -149
- pyxllib/algo/unitlib.py +66 -66
- {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/__init__.py +5 -5
- pyxllib/cv/expert.py +267 -267
- pyxllib/cv/imfile.py +159 -159
- pyxllib/cv/imhash.py +39 -39
- pyxllib/cv/pupil.py +9 -9
- pyxllib/cv/rgbfmt.py +1525 -1525
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/cv/trackbartools.py +251 -251
- pyxllib/cv/xlcvlib.py +1040 -1040
- pyxllib/cv/xlpillib.py +423 -423
- pyxllib/data/echarts.py +240 -129
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/oss.py +72 -72
- pyxllib/data/pglib.py +1127 -643
- pyxllib/data/sqlite.py +568 -341
- pyxllib/data/sqllib.py +297 -297
- pyxllib/ext/JLineViewer.py +505 -492
- pyxllib/ext/__init__.py +6 -6
- pyxllib/ext/demolib.py +246 -246
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +12 -1606
- pyxllib/ext/old.py +663 -663
- pyxllib/ext/qt.py +449 -449
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/seleniumlib.py +76 -76
- pyxllib/ext/tk.py +173 -173
- pyxllib/ext/unixlib.py +827 -826
- pyxllib/ext/utools.py +351 -338
- pyxllib/ext/webhook.py +124 -101
- pyxllib/ext/win32lib.py +40 -40
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1105 -173
- pyxllib/file/__init__.py +17 -17
- pyxllib/file/docxlib.py +761 -761
- pyxllib/file/gitlib.py +309 -309
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +148 -139
- pyxllib/file/newbie.py +10 -10
- pyxllib/file/onenotelib.py +1469 -1469
- pyxllib/file/packlib/__init__.py +330 -293
- pyxllib/file/packlib/zipfile.py +2441 -2441
- pyxllib/file/pdflib.py +426 -426
- pyxllib/file/pupil.py +185 -185
- pyxllib/file/specialist/__init__.py +685 -685
- pyxllib/file/specialist/dirlib.py +799 -799
- pyxllib/file/specialist/download.py +193 -186
- pyxllib/file/specialist/filelib.py +2829 -2618
- pyxllib/file/xlsxlib.py +3131 -2976
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/__init__.py +5 -5
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/deprecatedlib.py +233 -233
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/ipyexec.py +253 -253
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +451 -444
- pyxllib/prog/pupil.py +1197 -1128
- pyxllib/prog/sitepackages.py +33 -33
- pyxllib/prog/specialist/__init__.py +391 -217
- pyxllib/prog/specialist/bc.py +203 -200
- pyxllib/prog/specialist/browser.py +497 -488
- pyxllib/prog/specialist/common.py +347 -347
- pyxllib/prog/specialist/datetime.py +199 -131
- pyxllib/prog/specialist/tictoc.py +240 -241
- pyxllib/prog/specialist/xllog.py +180 -180
- pyxllib/prog/xlosenv.py +108 -101
- pyxllib/stdlib/__init__.py +17 -17
- pyxllib/stdlib/tablepyxl/__init__.py +10 -10
- pyxllib/stdlib/tablepyxl/style.py +303 -303
- pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
- pyxllib/text/__init__.py +8 -8
- pyxllib/text/ahocorasick.py +39 -39
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +121 -109
- pyxllib/text/jiebalib.py +267 -264
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +922 -767
- pyxllib/text/latex/__init__.py +158 -158
- pyxllib/text/levenshtein.py +303 -303
- pyxllib/text/nestenv.py +1215 -1215
- pyxllib/text/newbie.py +300 -288
- pyxllib/text/pupil/__init__.py +8 -8
- pyxllib/text/pupil/common.py +1121 -1095
- pyxllib/text/pupil/xlalign.py +326 -326
- pyxllib/text/pycode.py +47 -47
- pyxllib/text/specialist/__init__.py +8 -8
- pyxllib/text/specialist/common.py +112 -112
- pyxllib/text/specialist/ptag.py +186 -186
- pyxllib/text/spellchecker.py +172 -172
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/vbacode.py +17 -17
- pyxllib/text/xmllib.py +747 -685
- pyxllib/xl.py +42 -38
- pyxllib/xlcv.py +17 -17
- pyxllib-0.3.200.dist-info/METADATA +48 -0
- pyxllib-0.3.200.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
@@ -1,206 +0,0 @@
|
|
1
|
-
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import math
|
20
|
-
import paddle
|
21
|
-
from paddle import nn
|
22
|
-
import paddle.nn.functional as F
|
23
|
-
from paddle import ParamAttr
|
24
|
-
|
25
|
-
|
26
|
-
class SDMGRHead(nn.Layer):
|
27
|
-
def __init__(self,
|
28
|
-
in_channels,
|
29
|
-
num_chars=92,
|
30
|
-
visual_dim=16,
|
31
|
-
fusion_dim=1024,
|
32
|
-
node_input=32,
|
33
|
-
node_embed=256,
|
34
|
-
edge_input=5,
|
35
|
-
edge_embed=256,
|
36
|
-
num_gnn=2,
|
37
|
-
num_classes=26,
|
38
|
-
bidirectional=False):
|
39
|
-
super().__init__()
|
40
|
-
|
41
|
-
self.fusion = Block([visual_dim, node_embed], node_embed, fusion_dim)
|
42
|
-
self.node_embed = nn.Embedding(num_chars, node_input, 0)
|
43
|
-
hidden = node_embed // 2 if bidirectional else node_embed
|
44
|
-
self.rnn = nn.LSTM(
|
45
|
-
input_size=node_input, hidden_size=hidden, num_layers=1)
|
46
|
-
self.edge_embed = nn.Linear(edge_input, edge_embed)
|
47
|
-
self.gnn_layers = nn.LayerList(
|
48
|
-
[GNNLayer(node_embed, edge_embed) for _ in range(num_gnn)])
|
49
|
-
self.node_cls = nn.Linear(node_embed, num_classes)
|
50
|
-
self.edge_cls = nn.Linear(edge_embed, 2)
|
51
|
-
|
52
|
-
def forward(self, input, targets):
|
53
|
-
relations, texts, x = input
|
54
|
-
node_nums, char_nums = [], []
|
55
|
-
for text in texts:
|
56
|
-
node_nums.append(text.shape[0])
|
57
|
-
char_nums.append(paddle.sum((text > -1).astype(int), axis=-1))
|
58
|
-
|
59
|
-
max_num = max([char_num.max() for char_num in char_nums])
|
60
|
-
all_nodes = paddle.concat([
|
61
|
-
paddle.concat(
|
62
|
-
[text, paddle.zeros(
|
63
|
-
(text.shape[0], max_num - text.shape[1]))], -1)
|
64
|
-
for text in texts
|
65
|
-
])
|
66
|
-
temp = paddle.clip(all_nodes, min=0).astype(int)
|
67
|
-
embed_nodes = self.node_embed(temp)
|
68
|
-
rnn_nodes, _ = self.rnn(embed_nodes)
|
69
|
-
|
70
|
-
b, h, w = rnn_nodes.shape
|
71
|
-
nodes = paddle.zeros([b, w])
|
72
|
-
all_nums = paddle.concat(char_nums)
|
73
|
-
valid = paddle.nonzero((all_nums > 0).astype(int))
|
74
|
-
temp_all_nums = (
|
75
|
-
paddle.gather(all_nums, valid) - 1).unsqueeze(-1).unsqueeze(-1)
|
76
|
-
temp_all_nums = paddle.expand(temp_all_nums, [
|
77
|
-
temp_all_nums.shape[0], temp_all_nums.shape[1], rnn_nodes.shape[-1]
|
78
|
-
])
|
79
|
-
temp_all_nodes = paddle.gather(rnn_nodes, valid)
|
80
|
-
N, C, A = temp_all_nodes.shape
|
81
|
-
one_hot = F.one_hot(
|
82
|
-
temp_all_nums[:, 0, :], num_classes=C).transpose([0, 2, 1])
|
83
|
-
one_hot = paddle.multiply(
|
84
|
-
temp_all_nodes, one_hot.astype("float32")).sum(axis=1, keepdim=True)
|
85
|
-
t = one_hot.expand([N, 1, A]).squeeze(1)
|
86
|
-
nodes = paddle.scatter(nodes, valid.squeeze(1), t)
|
87
|
-
|
88
|
-
if x is not None:
|
89
|
-
nodes = self.fusion([x, nodes])
|
90
|
-
|
91
|
-
all_edges = paddle.concat(
|
92
|
-
[rel.reshape([-1, rel.shape[-1]]) for rel in relations])
|
93
|
-
embed_edges = self.edge_embed(all_edges.astype('float32'))
|
94
|
-
embed_edges = F.normalize(embed_edges)
|
95
|
-
|
96
|
-
for gnn_layer in self.gnn_layers:
|
97
|
-
nodes, cat_nodes = gnn_layer(nodes, embed_edges, node_nums)
|
98
|
-
|
99
|
-
node_cls, edge_cls = self.node_cls(nodes), self.edge_cls(cat_nodes)
|
100
|
-
return node_cls, edge_cls
|
101
|
-
|
102
|
-
|
103
|
-
class GNNLayer(nn.Layer):
|
104
|
-
def __init__(self, node_dim=256, edge_dim=256):
|
105
|
-
super().__init__()
|
106
|
-
self.in_fc = nn.Linear(node_dim * 2 + edge_dim, node_dim)
|
107
|
-
self.coef_fc = nn.Linear(node_dim, 1)
|
108
|
-
self.out_fc = nn.Linear(node_dim, node_dim)
|
109
|
-
self.relu = nn.ReLU()
|
110
|
-
|
111
|
-
def forward(self, nodes, edges, nums):
|
112
|
-
start, cat_nodes = 0, []
|
113
|
-
for num in nums:
|
114
|
-
sample_nodes = nodes[start:start + num]
|
115
|
-
cat_nodes.append(
|
116
|
-
paddle.concat([
|
117
|
-
paddle.expand(sample_nodes.unsqueeze(1), [-1, num, -1]),
|
118
|
-
paddle.expand(sample_nodes.unsqueeze(0), [num, -1, -1])
|
119
|
-
], -1).reshape([num**2, -1]))
|
120
|
-
start += num
|
121
|
-
cat_nodes = paddle.concat([paddle.concat(cat_nodes), edges], -1)
|
122
|
-
cat_nodes = self.relu(self.in_fc(cat_nodes))
|
123
|
-
coefs = self.coef_fc(cat_nodes)
|
124
|
-
|
125
|
-
start, residuals = 0, []
|
126
|
-
for num in nums:
|
127
|
-
residual = F.softmax(
|
128
|
-
-paddle.eye(num).unsqueeze(-1) * 1e9 +
|
129
|
-
coefs[start:start + num**2].reshape([num, num, -1]), 1)
|
130
|
-
residuals.append((residual * cat_nodes[start:start + num**2]
|
131
|
-
.reshape([num, num, -1])).sum(1))
|
132
|
-
start += num**2
|
133
|
-
|
134
|
-
nodes += self.relu(self.out_fc(paddle.concat(residuals)))
|
135
|
-
return [nodes, cat_nodes]
|
136
|
-
|
137
|
-
|
138
|
-
class Block(nn.Layer):
|
139
|
-
def __init__(self,
|
140
|
-
input_dims,
|
141
|
-
output_dim,
|
142
|
-
mm_dim=1600,
|
143
|
-
chunks=20,
|
144
|
-
rank=15,
|
145
|
-
shared=False,
|
146
|
-
dropout_input=0.,
|
147
|
-
dropout_pre_lin=0.,
|
148
|
-
dropout_output=0.,
|
149
|
-
pos_norm='before_cat'):
|
150
|
-
super().__init__()
|
151
|
-
self.rank = rank
|
152
|
-
self.dropout_input = dropout_input
|
153
|
-
self.dropout_pre_lin = dropout_pre_lin
|
154
|
-
self.dropout_output = dropout_output
|
155
|
-
assert (pos_norm in ['before_cat', 'after_cat'])
|
156
|
-
self.pos_norm = pos_norm
|
157
|
-
# Modules
|
158
|
-
self.linear0 = nn.Linear(input_dims[0], mm_dim)
|
159
|
-
self.linear1 = (self.linear0
|
160
|
-
if shared else nn.Linear(input_dims[1], mm_dim))
|
161
|
-
self.merge_linears0 = nn.LayerList()
|
162
|
-
self.merge_linears1 = nn.LayerList()
|
163
|
-
self.chunks = self.chunk_sizes(mm_dim, chunks)
|
164
|
-
for size in self.chunks:
|
165
|
-
ml0 = nn.Linear(size, size * rank)
|
166
|
-
self.merge_linears0.append(ml0)
|
167
|
-
ml1 = ml0 if shared else nn.Linear(size, size * rank)
|
168
|
-
self.merge_linears1.append(ml1)
|
169
|
-
self.linear_out = nn.Linear(mm_dim, output_dim)
|
170
|
-
|
171
|
-
def forward(self, x):
|
172
|
-
x0 = self.linear0(x[0])
|
173
|
-
x1 = self.linear1(x[1])
|
174
|
-
bs = x1.shape[0]
|
175
|
-
if self.dropout_input > 0:
|
176
|
-
x0 = F.dropout(x0, p=self.dropout_input, training=self.training)
|
177
|
-
x1 = F.dropout(x1, p=self.dropout_input, training=self.training)
|
178
|
-
x0_chunks = paddle.split(x0, self.chunks, -1)
|
179
|
-
x1_chunks = paddle.split(x1, self.chunks, -1)
|
180
|
-
zs = []
|
181
|
-
for x0_c, x1_c, m0, m1 in zip(x0_chunks, x1_chunks, self.merge_linears0,
|
182
|
-
self.merge_linears1):
|
183
|
-
m = m0(x0_c) * m1(x1_c) # bs x split_size*rank
|
184
|
-
m = m.reshape([bs, self.rank, -1])
|
185
|
-
z = paddle.sum(m, 1)
|
186
|
-
if self.pos_norm == 'before_cat':
|
187
|
-
z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
|
188
|
-
z = F.normalize(z)
|
189
|
-
zs.append(z)
|
190
|
-
z = paddle.concat(zs, 1)
|
191
|
-
if self.pos_norm == 'after_cat':
|
192
|
-
z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
|
193
|
-
z = F.normalize(z)
|
194
|
-
|
195
|
-
if self.dropout_pre_lin > 0:
|
196
|
-
z = F.dropout(z, p=self.dropout_pre_lin, training=self.training)
|
197
|
-
z = self.linear_out(z)
|
198
|
-
if self.dropout_output > 0:
|
199
|
-
z = F.dropout(z, p=self.dropout_output, training=self.training)
|
200
|
-
return z
|
201
|
-
|
202
|
-
def chunk_sizes(self, dim, chunks):
|
203
|
-
split_size = (dim + chunks - 1) // chunks
|
204
|
-
sizes_list = [split_size] * chunks
|
205
|
-
sizes_list[-1] = sizes_list[-1] - (sum(sizes_list) - dim)
|
206
|
-
return sizes_list
|
@@ -1,163 +0,0 @@
|
|
1
|
-
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
import paddle
|
16
|
-
from paddle import nn
|
17
|
-
import paddle.nn.functional as F
|
18
|
-
from paddle.nn import Linear
|
19
|
-
from paddle.nn.initializer import XavierUniform as xavier_uniform_
|
20
|
-
from paddle.nn.initializer import Constant as constant_
|
21
|
-
from paddle.nn.initializer import XavierNormal as xavier_normal_
|
22
|
-
|
23
|
-
zeros_ = constant_(value=0.)
|
24
|
-
ones_ = constant_(value=1.)
|
25
|
-
|
26
|
-
|
27
|
-
class MultiheadAttention(nn.Layer):
|
28
|
-
"""Allows the model to jointly attend to information
|
29
|
-
from different representation subspaces.
|
30
|
-
See reference: Attention Is All You Need
|
31
|
-
|
32
|
-
.. math::
|
33
|
-
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
34
|
-
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
|
35
|
-
|
36
|
-
Args:
|
37
|
-
embed_dim: total dimension of the model
|
38
|
-
num_heads: parallel attention layers, or heads
|
39
|
-
|
40
|
-
"""
|
41
|
-
|
42
|
-
def __init__(self,
|
43
|
-
embed_dim,
|
44
|
-
num_heads,
|
45
|
-
dropout=0.,
|
46
|
-
bias=True,
|
47
|
-
add_bias_kv=False,
|
48
|
-
add_zero_attn=False):
|
49
|
-
super(MultiheadAttention, self).__init__()
|
50
|
-
self.embed_dim = embed_dim
|
51
|
-
self.num_heads = num_heads
|
52
|
-
self.dropout = dropout
|
53
|
-
self.head_dim = embed_dim // num_heads
|
54
|
-
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
55
|
-
self.scaling = self.head_dim**-0.5
|
56
|
-
self.out_proj = Linear(embed_dim, embed_dim, bias_attr=bias)
|
57
|
-
self._reset_parameters()
|
58
|
-
self.conv1 = paddle.nn.Conv2D(
|
59
|
-
in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
|
60
|
-
self.conv2 = paddle.nn.Conv2D(
|
61
|
-
in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
|
62
|
-
self.conv3 = paddle.nn.Conv2D(
|
63
|
-
in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
|
64
|
-
|
65
|
-
def _reset_parameters(self):
|
66
|
-
xavier_uniform_(self.out_proj.weight)
|
67
|
-
|
68
|
-
def forward(self,
|
69
|
-
query,
|
70
|
-
key,
|
71
|
-
value,
|
72
|
-
key_padding_mask=None,
|
73
|
-
incremental_state=None,
|
74
|
-
attn_mask=None):
|
75
|
-
"""
|
76
|
-
Inputs of forward function
|
77
|
-
query: [target length, batch size, embed dim]
|
78
|
-
key: [sequence length, batch size, embed dim]
|
79
|
-
value: [sequence length, batch size, embed dim]
|
80
|
-
key_padding_mask: if True, mask padding based on batch size
|
81
|
-
incremental_state: if provided, previous time steps are cashed
|
82
|
-
need_weights: output attn_output_weights
|
83
|
-
static_kv: key and value are static
|
84
|
-
|
85
|
-
Outputs of forward function
|
86
|
-
attn_output: [target length, batch size, embed dim]
|
87
|
-
attn_output_weights: [batch size, target length, sequence length]
|
88
|
-
"""
|
89
|
-
q_shape = paddle.shape(query)
|
90
|
-
src_shape = paddle.shape(key)
|
91
|
-
q = self._in_proj_q(query)
|
92
|
-
k = self._in_proj_k(key)
|
93
|
-
v = self._in_proj_v(value)
|
94
|
-
q *= self.scaling
|
95
|
-
q = paddle.transpose(
|
96
|
-
paddle.reshape(
|
97
|
-
q, [q_shape[0], q_shape[1], self.num_heads, self.head_dim]),
|
98
|
-
[1, 2, 0, 3])
|
99
|
-
k = paddle.transpose(
|
100
|
-
paddle.reshape(
|
101
|
-
k, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
|
102
|
-
[1, 2, 0, 3])
|
103
|
-
v = paddle.transpose(
|
104
|
-
paddle.reshape(
|
105
|
-
v, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
|
106
|
-
[1, 2, 0, 3])
|
107
|
-
if key_padding_mask is not None:
|
108
|
-
assert key_padding_mask.shape[0] == q_shape[1]
|
109
|
-
assert key_padding_mask.shape[1] == src_shape[0]
|
110
|
-
attn_output_weights = paddle.matmul(q,
|
111
|
-
paddle.transpose(k, [0, 1, 3, 2]))
|
112
|
-
if attn_mask is not None:
|
113
|
-
attn_mask = paddle.unsqueeze(paddle.unsqueeze(attn_mask, 0), 0)
|
114
|
-
attn_output_weights += attn_mask
|
115
|
-
if key_padding_mask is not None:
|
116
|
-
attn_output_weights = paddle.reshape(
|
117
|
-
attn_output_weights,
|
118
|
-
[q_shape[1], self.num_heads, q_shape[0], src_shape[0]])
|
119
|
-
key = paddle.unsqueeze(paddle.unsqueeze(key_padding_mask, 1), 2)
|
120
|
-
key = paddle.cast(key, 'float32')
|
121
|
-
y = paddle.full(
|
122
|
-
shape=paddle.shape(key), dtype='float32', fill_value='-inf')
|
123
|
-
y = paddle.where(key == 0., key, y)
|
124
|
-
attn_output_weights += y
|
125
|
-
attn_output_weights = F.softmax(
|
126
|
-
attn_output_weights.astype('float32'),
|
127
|
-
axis=-1,
|
128
|
-
dtype=paddle.float32 if attn_output_weights.dtype == paddle.float16
|
129
|
-
else attn_output_weights.dtype)
|
130
|
-
attn_output_weights = F.dropout(
|
131
|
-
attn_output_weights, p=self.dropout, training=self.training)
|
132
|
-
|
133
|
-
attn_output = paddle.matmul(attn_output_weights, v)
|
134
|
-
attn_output = paddle.reshape(
|
135
|
-
paddle.transpose(attn_output, [2, 0, 1, 3]),
|
136
|
-
[q_shape[0], q_shape[1], self.embed_dim])
|
137
|
-
attn_output = self.out_proj(attn_output)
|
138
|
-
|
139
|
-
return attn_output
|
140
|
-
|
141
|
-
def _in_proj_q(self, query):
|
142
|
-
query = paddle.transpose(query, [1, 2, 0])
|
143
|
-
query = paddle.unsqueeze(query, axis=2)
|
144
|
-
res = self.conv1(query)
|
145
|
-
res = paddle.squeeze(res, axis=2)
|
146
|
-
res = paddle.transpose(res, [2, 0, 1])
|
147
|
-
return res
|
148
|
-
|
149
|
-
def _in_proj_k(self, key):
|
150
|
-
key = paddle.transpose(key, [1, 2, 0])
|
151
|
-
key = paddle.unsqueeze(key, axis=2)
|
152
|
-
res = self.conv2(key)
|
153
|
-
res = paddle.squeeze(res, axis=2)
|
154
|
-
res = paddle.transpose(res, [2, 0, 1])
|
155
|
-
return res
|
156
|
-
|
157
|
-
def _in_proj_v(self, value):
|
158
|
-
value = paddle.transpose(value, [1, 2, 0]) #(1, 2, 0)
|
159
|
-
value = paddle.unsqueeze(value, axis=2)
|
160
|
-
res = self.conv3(value)
|
161
|
-
res = paddle.squeeze(res, axis=2)
|
162
|
-
res = paddle.transpose(res, [2, 0, 1])
|
163
|
-
return res
|