pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,629 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import argparse
16
- import os
17
- import sys
18
- import cv2
19
- import numpy as np
20
- import paddle
21
- from PIL import Image, ImageDraw, ImageFont
22
- import math
23
- from paddle import inference
24
- import time
25
- from pyxlpr.ppocr.utils.logging import get_logger
26
-
27
- from pyxllib.xl import get_font_file
28
-
29
- def str2bool(v):
30
- return v.lower() in ("true", "t", "1")
31
-
32
-
33
- def init_args():
34
- parser = argparse.ArgumentParser()
35
- # params for prediction engine
36
- parser.add_argument("--use_gpu", type=str2bool, default=True)
37
- parser.add_argument("--ir_optim", type=str2bool, default=True)
38
- parser.add_argument("--use_tensorrt", type=str2bool, default=False)
39
- parser.add_argument("--min_subgraph_size", type=int, default=15)
40
- parser.add_argument("--precision", type=str, default="fp32")
41
- parser.add_argument("--gpu_mem", type=int, default=500)
42
-
43
- # params for text detector
44
- parser.add_argument("--image_dir", type=str)
45
- parser.add_argument("--det_algorithm", type=str, default='DB')
46
- parser.add_argument("--det_model_dir", type=str)
47
- parser.add_argument("--det_limit_side_len", type=float, default=960)
48
- parser.add_argument("--det_limit_type", type=str, default='max')
49
-
50
- # DB parmas
51
- parser.add_argument("--det_db_thresh", type=float, default=0.3)
52
- parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
53
- parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
54
- parser.add_argument("--max_batch_size", type=int, default=10)
55
- parser.add_argument("--use_dilation", type=str2bool, default=False)
56
- parser.add_argument("--det_db_score_mode", type=str, default="fast")
57
- # EAST parmas
58
- parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
59
- parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
60
- parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
61
-
62
- # SAST parmas
63
- parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
64
- parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
65
- parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
66
-
67
- # PSE parmas
68
- parser.add_argument("--det_pse_thresh", type=float, default=0)
69
- parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
70
- parser.add_argument("--det_pse_min_area", type=float, default=16)
71
- parser.add_argument("--det_pse_box_type", type=str, default='box')
72
- parser.add_argument("--det_pse_scale", type=int, default=1)
73
-
74
- # params for text recognizer
75
- parser.add_argument("--rec_algorithm", type=str, default='CRNN')
76
- parser.add_argument("--rec_model_dir", type=str)
77
- parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
78
- parser.add_argument("--rec_batch_num", type=int, default=6)
79
- parser.add_argument("--max_text_length", type=int, default=25)
80
- parser.add_argument(
81
- "--rec_char_dict_path",
82
- type=str,
83
- default="./ppocr/utils/ppocr_keys_v1.txt")
84
- parser.add_argument("--use_space_char", type=str2bool, default=True)
85
- parser.add_argument(
86
- "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
87
- parser.add_argument("--drop_score", type=float, default=0.5)
88
-
89
- # params for e2e
90
- parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
91
- parser.add_argument("--e2e_model_dir", type=str)
92
- parser.add_argument("--e2e_limit_side_len", type=float, default=768)
93
- parser.add_argument("--e2e_limit_type", type=str, default='max')
94
-
95
- # PGNet parmas
96
- parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
97
- parser.add_argument(
98
- "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
99
- parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
100
- parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
101
-
102
- # params for text classifier
103
- parser.add_argument("--use_angle_cls", type=str2bool, default=False)
104
- parser.add_argument("--cls_model_dir", type=str)
105
- parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
106
- parser.add_argument("--label_list", type=list, default=['0', '180'])
107
- parser.add_argument("--cls_batch_num", type=int, default=6)
108
- parser.add_argument("--cls_thresh", type=float, default=0.9)
109
-
110
- parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
111
- parser.add_argument("--cpu_threads", type=int, default=10)
112
- parser.add_argument("--use_pdserving", type=str2bool, default=False)
113
- parser.add_argument("--warmup", type=str2bool, default=False)
114
-
115
- #
116
- parser.add_argument(
117
- "--draw_img_save_dir", type=str, default="./inference_results")
118
- parser.add_argument("--save_crop_res", type=str2bool, default=False)
119
- parser.add_argument("--crop_res_save_dir", type=str, default="./output")
120
-
121
- # multi-process
122
- parser.add_argument("--use_mp", type=str2bool, default=False)
123
- parser.add_argument("--total_process_num", type=int, default=1)
124
- parser.add_argument("--process_id", type=int, default=0)
125
-
126
- parser.add_argument("--benchmark", type=str2bool, default=False)
127
- parser.add_argument("--save_log_path", type=str, default="./log_output/")
128
-
129
- parser.add_argument("--show_log", type=str2bool, default=True)
130
- parser.add_argument("--use_onnx", type=str2bool, default=False)
131
- return parser
132
-
133
-
134
- def parse_args():
135
- parser = init_args()
136
- return parser.parse_args()
137
-
138
-
139
- def create_predictor(args, mode, logger):
140
- if mode == "det":
141
- model_dir = args.det_model_dir
142
- elif mode == 'cls':
143
- model_dir = args.cls_model_dir
144
- elif mode == 'rec':
145
- model_dir = args.rec_model_dir
146
- elif mode == 'table':
147
- model_dir = args.table_model_dir
148
- else:
149
- model_dir = args.e2e_model_dir
150
-
151
- if model_dir is None:
152
- logger.info("not find {} model file path {}".format(mode, model_dir))
153
- sys.exit(0)
154
- if args.use_onnx:
155
- import onnxruntime as ort
156
- model_file_path = model_dir
157
- if not os.path.exists(model_file_path):
158
- raise ValueError("not find model file path {}".format(
159
- model_file_path))
160
- sess = ort.InferenceSession(model_file_path)
161
- return sess, sess.get_inputs()[0], None, None
162
-
163
- else:
164
- model_file_path = model_dir + "/inference.pdmodel"
165
- params_file_path = model_dir + "/inference.pdiparams"
166
- if not os.path.exists(model_file_path):
167
- raise ValueError("not find model file path {}".format(
168
- model_file_path))
169
- if not os.path.exists(params_file_path):
170
- raise ValueError("not find params file path {}".format(
171
- params_file_path))
172
-
173
- config = inference.Config(model_file_path, params_file_path)
174
-
175
- if hasattr(args, 'precision'):
176
- if args.precision == "fp16" and args.use_tensorrt:
177
- precision = inference.PrecisionType.Half
178
- elif args.precision == "int8":
179
- precision = inference.PrecisionType.Int8
180
- else:
181
- precision = inference.PrecisionType.Float32
182
- else:
183
- precision = inference.PrecisionType.Float32
184
-
185
- if args.use_gpu:
186
- gpu_id = get_infer_gpuid()
187
- if gpu_id is None:
188
- logger.warning(
189
- "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jeston."
190
- )
191
- config.enable_use_gpu(args.gpu_mem, 0)
192
- if args.use_tensorrt:
193
- config.enable_tensorrt_engine(
194
- workspace_size=1 << 30,
195
- precision_mode=precision,
196
- max_batch_size=args.max_batch_size,
197
- min_subgraph_size=args.min_subgraph_size)
198
- # skip the minmum trt subgraph
199
- use_dynamic_shape = True
200
- if mode == "det":
201
- min_input_shape = {
202
- "x": [1, 3, 50, 50],
203
- "conv2d_92.tmp_0": [1, 120, 20, 20],
204
- "conv2d_91.tmp_0": [1, 24, 10, 10],
205
- "conv2d_59.tmp_0": [1, 96, 20, 20],
206
- "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
207
- "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
208
- "conv2d_124.tmp_0": [1, 256, 20, 20],
209
- "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
210
- "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
211
- "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
212
- "elementwise_add_7": [1, 56, 2, 2],
213
- "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
214
- }
215
- max_input_shape = {
216
- "x": [1, 3, 1536, 1536],
217
- "conv2d_92.tmp_0": [1, 120, 400, 400],
218
- "conv2d_91.tmp_0": [1, 24, 200, 200],
219
- "conv2d_59.tmp_0": [1, 96, 400, 400],
220
- "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
221
- "conv2d_124.tmp_0": [1, 256, 400, 400],
222
- "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
223
- "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
224
- "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
225
- "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
226
- "elementwise_add_7": [1, 56, 400, 400],
227
- "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
228
- }
229
- opt_input_shape = {
230
- "x": [1, 3, 640, 640],
231
- "conv2d_92.tmp_0": [1, 120, 160, 160],
232
- "conv2d_91.tmp_0": [1, 24, 80, 80],
233
- "conv2d_59.tmp_0": [1, 96, 160, 160],
234
- "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
235
- "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
236
- "conv2d_124.tmp_0": [1, 256, 160, 160],
237
- "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
238
- "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
239
- "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
240
- "elementwise_add_7": [1, 56, 40, 40],
241
- "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
242
- }
243
- min_pact_shape = {
244
- "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
245
- "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
246
- "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
247
- "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
248
- }
249
- max_pact_shape = {
250
- "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
251
- "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
252
- "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
253
- "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
254
- }
255
- opt_pact_shape = {
256
- "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
257
- "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
258
- "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
259
- "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
260
- }
261
- min_input_shape.update(min_pact_shape)
262
- max_input_shape.update(max_pact_shape)
263
- opt_input_shape.update(opt_pact_shape)
264
- elif mode == "rec":
265
- if args.rec_algorithm != "CRNN":
266
- use_dynamic_shape = False
267
- min_input_shape = {"x": [1, 3, 32, 10]}
268
- max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1536]}
269
- opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
270
- elif mode == "cls":
271
- min_input_shape = {"x": [1, 3, 48, 10]}
272
- max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
273
- opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
274
- else:
275
- use_dynamic_shape = False
276
- if use_dynamic_shape:
277
- config.set_trt_dynamic_shape_info(
278
- min_input_shape, max_input_shape, opt_input_shape)
279
-
280
- else:
281
- config.disable_gpu()
282
- if hasattr(args, "cpu_threads"):
283
- config.set_cpu_math_library_num_threads(args.cpu_threads)
284
- else:
285
- # default cpu threads as 10
286
- config.set_cpu_math_library_num_threads(10)
287
- if args.enable_mkldnn:
288
- # cache 10 different shapes for mkldnn to avoid memory leak
289
- config.set_mkldnn_cache_capacity(10)
290
- config.enable_mkldnn()
291
- if args.precision == "fp16":
292
- config.enable_mkldnn_bfloat16()
293
- # enable memory optim
294
- config.enable_memory_optim()
295
- config.disable_glog_info()
296
-
297
- config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
298
- if mode == 'table':
299
- config.delete_pass("fc_fuse_pass") # not supported for table
300
- config.switch_use_feed_fetch_ops(False)
301
- config.switch_ir_optim(True)
302
-
303
- # create predictor
304
- predictor = inference.create_predictor(config)
305
- input_names = predictor.get_input_names()
306
- for name in input_names:
307
- input_tensor = predictor.get_input_handle(name)
308
- output_names = predictor.get_output_names()
309
- output_tensors = []
310
- for output_name in output_names:
311
- output_tensor = predictor.get_output_handle(output_name)
312
- output_tensors.append(output_tensor)
313
- return predictor, input_tensor, output_tensors, config
314
-
315
-
316
- def get_infer_gpuid():
317
- if os.name == 'nt':
318
- try:
319
- return int(os.environ['CUDA_VISIBLE_DEVICES'].split(',')[0])
320
- except KeyError:
321
- return 0
322
- if not paddle.fluid.core.is_compiled_with_rocm():
323
- cmd = "env | grep CUDA_VISIBLE_DEVICES"
324
- else:
325
- cmd = "env | grep HIP_VISIBLE_DEVICES"
326
- env_cuda = os.popen(cmd).readlines()
327
- if len(env_cuda) == 0:
328
- return 0
329
- else:
330
- gpu_id = env_cuda[0].strip().split("=")[1]
331
- return int(gpu_id[0])
332
-
333
-
334
- def draw_e2e_res(dt_boxes, strs, img_path):
335
- src_im = cv2.imread(img_path)
336
- for box, str in zip(dt_boxes, strs):
337
- box = box.astype(np.int32).reshape((-1, 1, 2))
338
- cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
339
- cv2.putText(
340
- src_im,
341
- str,
342
- org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
343
- fontFace=cv2.FONT_HERSHEY_COMPLEX,
344
- fontScale=0.7,
345
- color=(0, 255, 0),
346
- thickness=1)
347
- return src_im
348
-
349
-
350
- def draw_text_det_res(dt_boxes, img_path):
351
- src_im = cv2.imread(img_path)
352
- for box in dt_boxes:
353
- box = np.array(box).astype(np.int32).reshape(-1, 2)
354
- cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
355
- return src_im
356
-
357
-
358
- def resize_img(img, input_size=600):
359
- """
360
- resize img and limit the longest side of the image to input_size
361
- """
362
- img = np.array(img)
363
- im_shape = img.shape
364
- im_size_max = np.max(im_shape[0:2])
365
- im_scale = float(input_size) / float(im_size_max)
366
- img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
367
- return img
368
-
369
-
370
- def draw_ocr(image,
371
- boxes,
372
- txts=None,
373
- scores=None,
374
- drop_score=0.5,
375
- font_path='simfang.ttf'):
376
- """
377
- Visualize the results of OCR detection and recognition
378
- args:
379
- image(Image|array): RGB image
380
- boxes(list): boxes with shape(N, 4, 2)
381
- txts(list): the texts
382
- scores(list): txxs corresponding scores
383
- drop_score(float): only scores greater than drop_threshold will be visualized
384
- font_path: the path of font which is used to draw text
385
- return(array):
386
- the visualized img
387
- """
388
- if scores is None:
389
- scores = [1] * len(boxes)
390
- box_num = len(boxes)
391
- for i in range(box_num):
392
- if scores is not None and (scores[i] < drop_score or
393
- math.isnan(scores[i])):
394
- continue
395
- box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
396
- image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
397
- if txts is not None:
398
- img = np.array(resize_img(image, input_size=600))
399
- txt_img = text_visual(
400
- txts,
401
- scores,
402
- img_h=img.shape[0],
403
- img_w=600,
404
- threshold=drop_score,
405
- font_path=font_path)
406
- img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
407
- return img
408
- return image
409
-
410
-
411
- def draw_ocr_box_txt(image,
412
- boxes,
413
- txts,
414
- scores=None,
415
- drop_score=0.5,
416
- font_path='simfang.ttf'):
417
- h, w = image.height, image.width
418
- img_left = image.copy()
419
- img_right = Image.new('RGB', (w, h), (255, 255, 255))
420
-
421
- import random
422
-
423
- random.seed(0)
424
- draw_left = ImageDraw.Draw(img_left)
425
- draw_right = ImageDraw.Draw(img_right)
426
- for idx, (box, txt) in enumerate(zip(boxes, txts)):
427
- if scores is not None and scores[idx] < drop_score:
428
- continue
429
- color = (random.randint(0, 255), random.randint(0, 255),
430
- random.randint(0, 255))
431
- draw_left.polygon(box, fill=color)
432
- draw_right.polygon(
433
- [
434
- box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
435
- box[2][1], box[3][0], box[3][1]
436
- ],
437
- outline=color)
438
- box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
439
- 1])**2)
440
- box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
441
- 1])**2)
442
- if box_height > 2 * box_width:
443
- font_size = max(int(box_width * 0.9), 10)
444
- font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
445
- cur_y = box[0][1]
446
- for c in txt:
447
- char_size = font.getsize(c)
448
- draw_right.text(
449
- (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
450
- cur_y += char_size[1]
451
- else:
452
- font_size = max(int(box_height * 0.8), 10)
453
- font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
454
- draw_right.text(
455
- [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
456
- img_left = Image.blend(image, img_left, 0.5)
457
- img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
458
- img_show.paste(img_left, (0, 0, w, h))
459
- img_show.paste(img_right, (w, 0, w * 2, h))
460
- return np.array(img_show)
461
-
462
-
463
- def str_count(s):
464
- """
465
- Count the number of Chinese characters,
466
- a single English character and a single number
467
- equal to half the length of Chinese characters.
468
- args:
469
- s(string): the input of string
470
- return(int):
471
- the number of Chinese characters
472
- """
473
- import string
474
- count_zh = count_pu = 0
475
- s_len = len(s)
476
- en_dg_count = 0
477
- for c in s:
478
- if c in string.ascii_letters or c.isdigit() or c.isspace():
479
- en_dg_count += 1
480
- elif c.isalpha():
481
- count_zh += 1
482
- else:
483
- count_pu += 1
484
- return s_len - math.ceil(en_dg_count / 2)
485
-
486
-
487
- def text_visual(texts,
488
- scores,
489
- img_h=400,
490
- img_w=600,
491
- threshold=0.,
492
- font_path='simfang.ttf'):
493
- """
494
- create new blank img and draw txt on it
495
- args:
496
- texts(list): the text will be draw
497
- scores(list|None): corresponding score of each txt
498
- img_h(int): the height of blank img
499
- img_w(int): the width of blank img
500
- font_path: the path of font which is used to draw text
501
- return(array):
502
- """
503
- if scores is not None:
504
- assert len(texts) == len(
505
- scores), "The number of txts and corresponding scores must match"
506
-
507
- def create_blank_img():
508
- blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
509
- blank_img[:, img_w - 1:] = 0
510
- blank_img = Image.fromarray(blank_img).convert("RGB")
511
- draw_txt = ImageDraw.Draw(blank_img)
512
- return blank_img, draw_txt
513
-
514
- blank_img, draw_txt = create_blank_img()
515
-
516
- font_size = 20
517
- txt_color = (0, 0, 0)
518
-
519
- if not os.path.isfile(font_path):
520
- font_path = str(get_font_file('simfang.ttf'))
521
-
522
- font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
523
-
524
- gap = font_size + 5
525
- txt_img_list = []
526
- count, index = 1, 0
527
- for idx, txt in enumerate(texts):
528
- index += 1
529
- if scores[idx] < threshold or math.isnan(scores[idx]):
530
- index -= 1
531
- continue
532
- first_line = True
533
- while str_count(txt) >= img_w // font_size - 4:
534
- tmp = txt
535
- txt = tmp[:img_w // font_size - 4]
536
- if first_line:
537
- new_txt = str(index) + ': ' + txt
538
- first_line = False
539
- else:
540
- new_txt = ' ' + txt
541
- draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
542
- txt = tmp[img_w // font_size - 4:]
543
- if count >= img_h // gap - 1:
544
- txt_img_list.append(np.array(blank_img))
545
- blank_img, draw_txt = create_blank_img()
546
- count = 0
547
- count += 1
548
- if first_line:
549
- new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
550
- else:
551
- new_txt = " " + txt + " " + '%.3f' % (scores[idx])
552
- draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
553
- # whether add new blank img or not
554
- if count >= img_h // gap - 1 and idx + 1 < len(texts):
555
- txt_img_list.append(np.array(blank_img))
556
- blank_img, draw_txt = create_blank_img()
557
- count = 0
558
- count += 1
559
- txt_img_list.append(np.array(blank_img))
560
- if len(txt_img_list) == 1:
561
- blank_img = np.array(txt_img_list[0])
562
- else:
563
- blank_img = np.concatenate(txt_img_list, axis=1)
564
- return np.array(blank_img)
565
-
566
-
567
- def base64_to_cv2(b64str):
568
- import base64
569
- data = base64.b64decode(b64str.encode('utf8'))
570
- data = np.fromstring(data, np.uint8)
571
- data = cv2.imdecode(data, cv2.IMREAD_COLOR)
572
- return data
573
-
574
-
575
- def draw_boxes(image, boxes, scores=None, drop_score=0.5):
576
- if scores is None:
577
- scores = [1] * len(boxes)
578
- for (box, score) in zip(boxes, scores):
579
- if score < drop_score:
580
- continue
581
- box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
582
- image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
583
- return image
584
-
585
-
586
- def get_rotate_crop_image(img, points):
587
- '''
588
- img_height, img_width = img.shape[0:2]
589
- left = int(np.min(points[:, 0]))
590
- right = int(np.max(points[:, 0]))
591
- top = int(np.min(points[:, 1]))
592
- bottom = int(np.max(points[:, 1]))
593
- img_crop = img[top:bottom, left:right, :].copy()
594
- points[:, 0] = points[:, 0] - left
595
- points[:, 1] = points[:, 1] - top
596
- '''
597
- assert len(points) == 4, "shape of points must be 4*2"
598
- img_crop_width = int(
599
- max(
600
- np.linalg.norm(points[0] - points[1]),
601
- np.linalg.norm(points[2] - points[3])))
602
- img_crop_height = int(
603
- max(
604
- np.linalg.norm(points[0] - points[3]),
605
- np.linalg.norm(points[1] - points[2])))
606
- pts_std = np.float32([[0, 0], [img_crop_width, 0],
607
- [img_crop_width, img_crop_height],
608
- [0, img_crop_height]])
609
- M = cv2.getPerspectiveTransform(points, pts_std)
610
- dst_img = cv2.warpPerspective(
611
- img,
612
- M, (img_crop_width, img_crop_height),
613
- borderMode=cv2.BORDER_REPLICATE,
614
- flags=cv2.INTER_CUBIC)
615
- dst_img_height, dst_img_width = dst_img.shape[0:2]
616
- if dst_img_height * 1.0 / dst_img_width >= 1.5:
617
- dst_img = np.rot90(dst_img)
618
- return dst_img
619
-
620
-
621
- def check_gpu(use_gpu):
622
- if use_gpu and not paddle.is_compiled_with_cuda():
623
-
624
- use_gpu = False
625
- return use_gpu
626
-
627
-
628
- if __name__ == '__main__':
629
- pass