pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,533 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import math
16
- import cv2
17
- import numpy as np
18
- import random
19
- from PIL import Image
20
- from .text_image_aug import tia_perspective, tia_stretch, tia_distort
21
-
22
-
23
- class RecAug(object):
24
- def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
25
- self.use_tia = use_tia
26
- self.aug_prob = aug_prob
27
-
28
- def __call__(self, data):
29
- img = data['image']
30
- img = warp(img, 10, self.use_tia, self.aug_prob)
31
- data['image'] = img
32
- return data
33
-
34
-
35
- class ClsResizeImg(object):
36
- def __init__(self, image_shape, **kwargs):
37
- self.image_shape = image_shape
38
-
39
- def __call__(self, data):
40
- img = data['image']
41
- norm_img = resize_norm_img(img, self.image_shape)
42
- data['image'] = norm_img
43
- return data
44
-
45
-
46
- class NRTRRecResizeImg(object):
47
- def __init__(self, image_shape, resize_type, padding=False, **kwargs):
48
- self.image_shape = image_shape
49
- self.resize_type = resize_type
50
- self.padding = padding
51
-
52
- def __call__(self, data):
53
- img = data['image']
54
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
55
- image_shape = self.image_shape
56
- if self.padding:
57
- imgC, imgH, imgW = image_shape
58
- # todo: change to 0 and modified image shape
59
- h = img.shape[0]
60
- w = img.shape[1]
61
- ratio = w / float(h)
62
- if math.ceil(imgH * ratio) > imgW:
63
- resized_w = imgW
64
- else:
65
- resized_w = int(math.ceil(imgH * ratio))
66
- resized_image = cv2.resize(img, (resized_w, imgH))
67
- norm_img = np.expand_dims(resized_image, -1)
68
- norm_img = norm_img.transpose((2, 0, 1))
69
- resized_image = norm_img.astype(np.float32) / 128. - 1.
70
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
71
- padding_im[:, :, 0:resized_w] = resized_image
72
- data['image'] = padding_im
73
- return data
74
- if self.resize_type == 'PIL':
75
- image_pil = Image.fromarray(np.uint8(img))
76
- img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
77
- img = np.array(img)
78
- if self.resize_type == 'OpenCV':
79
- img = cv2.resize(img, self.image_shape)
80
- norm_img = np.expand_dims(img, -1)
81
- norm_img = norm_img.transpose((2, 0, 1))
82
- data['image'] = norm_img.astype(np.float32) / 128. - 1.
83
- return data
84
-
85
-
86
- class RecResizeImg(object):
87
- def __init__(self,
88
- image_shape,
89
- infer_mode=False,
90
- character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
91
- padding=True,
92
- **kwargs):
93
- self.image_shape = image_shape
94
- self.infer_mode = infer_mode
95
- self.character_dict_path = character_dict_path
96
- self.padding = padding
97
-
98
- def __call__(self, data):
99
- img = data['image']
100
- if self.infer_mode and self.character_dict_path is not None:
101
- norm_img = resize_norm_img_chinese(img, self.image_shape)
102
- else:
103
- norm_img = resize_norm_img(img, self.image_shape, self.padding)
104
- data['image'] = norm_img
105
- return data
106
-
107
-
108
- class SRNRecResizeImg(object):
109
- def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
110
- self.image_shape = image_shape
111
- self.num_heads = num_heads
112
- self.max_text_length = max_text_length
113
-
114
- def __call__(self, data):
115
- img = data['image']
116
- norm_img = resize_norm_img_srn(img, self.image_shape)
117
- data['image'] = norm_img
118
- [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
119
- srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)
120
-
121
- data['encoder_word_pos'] = encoder_word_pos
122
- data['gsrm_word_pos'] = gsrm_word_pos
123
- data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
124
- data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
125
- return data
126
-
127
-
128
- class SARRecResizeImg(object):
129
- def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
130
- self.image_shape = image_shape
131
- self.width_downsample_ratio = width_downsample_ratio
132
-
133
- def __call__(self, data):
134
- img = data['image']
135
- norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
136
- img, self.image_shape, self.width_downsample_ratio)
137
- data['image'] = norm_img
138
- data['resized_shape'] = resize_shape
139
- data['pad_shape'] = pad_shape
140
- data['valid_ratio'] = valid_ratio
141
- return data
142
-
143
-
144
- def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
145
- imgC, imgH, imgW_min, imgW_max = image_shape
146
- h = img.shape[0]
147
- w = img.shape[1]
148
- valid_ratio = 1.0
149
- # make sure new_width is an integral multiple of width_divisor.
150
- width_divisor = int(1 / width_downsample_ratio)
151
- # resize
152
- ratio = w / float(h)
153
- resize_w = math.ceil(imgH * ratio)
154
- if resize_w % width_divisor != 0:
155
- resize_w = round(resize_w / width_divisor) * width_divisor
156
- if imgW_min is not None:
157
- resize_w = max(imgW_min, resize_w)
158
- if imgW_max is not None:
159
- valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
160
- resize_w = min(imgW_max, resize_w)
161
- resized_image = cv2.resize(img, (resize_w, imgH))
162
- resized_image = resized_image.astype('float32')
163
- # norm
164
- if image_shape[0] == 1:
165
- resized_image = resized_image / 255
166
- resized_image = resized_image[np.newaxis, :]
167
- else:
168
- resized_image = resized_image.transpose((2, 0, 1)) / 255
169
- resized_image -= 0.5
170
- resized_image /= 0.5
171
- resize_shape = resized_image.shape
172
- padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
173
- padding_im[:, :, 0:resize_w] = resized_image
174
- pad_shape = padding_im.shape
175
-
176
- return padding_im, resize_shape, pad_shape, valid_ratio
177
-
178
-
179
- def resize_norm_img(img, image_shape, padding=True):
180
- imgC, imgH, imgW = image_shape
181
- h = img.shape[0]
182
- w = img.shape[1]
183
- if not padding:
184
- resized_image = cv2.resize(
185
- img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
186
- resized_w = imgW
187
- else:
188
- ratio = w / float(h)
189
- if math.ceil(imgH * ratio) > imgW:
190
- resized_w = imgW
191
- else:
192
- resized_w = int(math.ceil(imgH * ratio))
193
- resized_image = cv2.resize(img, (resized_w, imgH))
194
- resized_image = resized_image.astype('float32')
195
- if image_shape[0] == 1:
196
- resized_image = resized_image / 255
197
- resized_image = resized_image[np.newaxis, :]
198
- else:
199
- resized_image = resized_image.transpose((2, 0, 1)) / 255
200
- resized_image -= 0.5
201
- resized_image /= 0.5
202
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
203
- padding_im[:, :, 0:resized_w] = resized_image
204
- return padding_im
205
-
206
-
207
- def resize_norm_img_chinese(img, image_shape):
208
- imgC, imgH, imgW = image_shape
209
- # todo: change to 0 and modified image shape
210
- max_wh_ratio = imgW * 1.0 / imgH
211
- h, w = img.shape[0], img.shape[1]
212
- ratio = w * 1.0 / h
213
- max_wh_ratio = max(max_wh_ratio, ratio)
214
- imgW = int(32 * max_wh_ratio)
215
- if math.ceil(imgH * ratio) > imgW:
216
- resized_w = imgW
217
- else:
218
- resized_w = int(math.ceil(imgH * ratio))
219
- resized_image = cv2.resize(img, (resized_w, imgH))
220
- resized_image = resized_image.astype('float32')
221
- if image_shape[0] == 1:
222
- resized_image = resized_image / 255
223
- resized_image = resized_image[np.newaxis, :]
224
- else:
225
- resized_image = resized_image.transpose((2, 0, 1)) / 255
226
- resized_image -= 0.5
227
- resized_image /= 0.5
228
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
229
- padding_im[:, :, 0:resized_w] = resized_image
230
- return padding_im
231
-
232
-
233
- def resize_norm_img_srn(img, image_shape):
234
- imgC, imgH, imgW = image_shape
235
-
236
- img_black = np.zeros((imgH, imgW))
237
- im_hei = img.shape[0]
238
- im_wid = img.shape[1]
239
-
240
- if im_wid <= im_hei * 1:
241
- img_new = cv2.resize(img, (imgH * 1, imgH))
242
- elif im_wid <= im_hei * 2:
243
- img_new = cv2.resize(img, (imgH * 2, imgH))
244
- elif im_wid <= im_hei * 3:
245
- img_new = cv2.resize(img, (imgH * 3, imgH))
246
- else:
247
- img_new = cv2.resize(img, (imgW, imgH))
248
-
249
- img_np = np.asarray(img_new)
250
- img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
251
- img_black[:, 0:img_np.shape[1]] = img_np
252
- img_black = img_black[:, :, np.newaxis]
253
-
254
- row, col, c = img_black.shape
255
- c = 1
256
-
257
- return np.reshape(img_black, (c, row, col)).astype(np.float32)
258
-
259
-
260
- def srn_other_inputs(image_shape, num_heads, max_text_length):
261
-
262
- imgC, imgH, imgW = image_shape
263
- feature_dim = int((imgH / 8) * (imgW / 8))
264
-
265
- encoder_word_pos = np.array(range(0, feature_dim)).reshape(
266
- (feature_dim, 1)).astype('int64')
267
- gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
268
- (max_text_length, 1)).astype('int64')
269
-
270
- gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
271
- gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
272
- [1, max_text_length, max_text_length])
273
- gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
274
- [num_heads, 1, 1]) * [-1e9]
275
-
276
- gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
277
- [1, max_text_length, max_text_length])
278
- gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
279
- [num_heads, 1, 1]) * [-1e9]
280
-
281
- return [
282
- encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
283
- gsrm_slf_attn_bias2
284
- ]
285
-
286
-
287
- def flag():
288
- """
289
- flag
290
- """
291
- return 1 if random.random() > 0.5000001 else -1
292
-
293
-
294
- def cvtColor(img):
295
- """
296
- cvtColor
297
- """
298
- hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
299
- delta = 0.001 * random.random() * flag()
300
- hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
301
- new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
302
- return new_img
303
-
304
-
305
- def blur(img):
306
- """
307
- blur
308
- """
309
- h, w, _ = img.shape
310
- if h > 10 and w > 10:
311
- return cv2.GaussianBlur(img, (5, 5), 1)
312
- else:
313
- return img
314
-
315
-
316
- def jitter(img):
317
- """
318
- jitter
319
- """
320
- w, h, _ = img.shape
321
- if h > 10 and w > 10:
322
- thres = min(w, h)
323
- s = int(random.random() * thres * 0.01)
324
- src_img = img.copy()
325
- for i in range(s):
326
- img[i:, i:, :] = src_img[:w - i, :h - i, :]
327
- return img
328
- else:
329
- return img
330
-
331
-
332
- def add_gasuss_noise(image, mean=0, var=0.1):
333
- """
334
- Gasuss noise
335
- """
336
-
337
- noise = np.random.normal(mean, var**0.5, image.shape)
338
- out = image + 0.5 * noise
339
- out = np.clip(out, 0, 255)
340
- out = np.uint8(out)
341
- return out
342
-
343
-
344
- def get_crop(image):
345
- """
346
- random crop
347
- """
348
- h, w, _ = image.shape
349
- top_min = 1
350
- top_max = 8
351
- top_crop = int(random.randint(top_min, top_max))
352
- top_crop = min(top_crop, h - 1)
353
- crop_img = image.copy()
354
- ratio = random.randint(0, 1)
355
- if ratio:
356
- crop_img = crop_img[top_crop:h, :, :]
357
- else:
358
- crop_img = crop_img[0:h - top_crop, :, :]
359
- return crop_img
360
-
361
-
362
- class Config:
363
- """
364
- Config
365
- """
366
-
367
- def __init__(self, use_tia):
368
- self.anglex = random.random() * 30
369
- self.angley = random.random() * 15
370
- self.anglez = random.random() * 10
371
- self.fov = 42
372
- self.r = 0
373
- self.shearx = random.random() * 0.3
374
- self.sheary = random.random() * 0.05
375
- self.borderMode = cv2.BORDER_REPLICATE
376
- self.use_tia = use_tia
377
-
378
- def make(self, w, h, ang):
379
- """
380
- make
381
- """
382
- self.anglex = random.random() * 5 * flag()
383
- self.angley = random.random() * 5 * flag()
384
- self.anglez = -1 * random.random() * int(ang) * flag()
385
- self.fov = 42
386
- self.r = 0
387
- self.shearx = 0
388
- self.sheary = 0
389
- self.borderMode = cv2.BORDER_REPLICATE
390
- self.w = w
391
- self.h = h
392
-
393
- self.perspective = self.use_tia
394
- self.stretch = self.use_tia
395
- self.distort = self.use_tia
396
-
397
- self.crop = True
398
- self.affine = False
399
- self.reverse = True
400
- self.noise = True
401
- self.jitter = True
402
- self.blur = True
403
- self.color = True
404
-
405
-
406
- def rad(x):
407
- """
408
- rad
409
- """
410
- return x * np.pi / 180
411
-
412
-
413
- def get_warpR(config):
414
- """
415
- get_warpR
416
- """
417
- anglex, angley, anglez, fov, w, h, r = \
418
- config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
419
- if w > 69 and w < 112:
420
- anglex = anglex * 1.5
421
-
422
- z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
423
- # Homogeneous coordinate transformation matrix
424
- rx = np.array([[1, 0, 0, 0],
425
- [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
426
- 0,
427
- -np.sin(rad(anglex)),
428
- np.cos(rad(anglex)),
429
- 0,
430
- ], [0, 0, 0, 1]], np.float32)
431
- ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
432
- [0, 1, 0, 0], [
433
- -np.sin(rad(angley)),
434
- 0,
435
- np.cos(rad(angley)),
436
- 0,
437
- ], [0, 0, 0, 1]], np.float32)
438
- rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
439
- [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
440
- [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
441
- r = rx.dot(ry).dot(rz)
442
- # generate 4 points
443
- pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
444
- p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
445
- p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
446
- p3 = np.array([0, h, 0, 0], np.float32) - pcenter
447
- p4 = np.array([w, h, 0, 0], np.float32) - pcenter
448
- dst1 = r.dot(p1)
449
- dst2 = r.dot(p2)
450
- dst3 = r.dot(p3)
451
- dst4 = r.dot(p4)
452
- list_dst = np.array([dst1, dst2, dst3, dst4])
453
- org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
454
- dst = np.zeros((4, 2), np.float32)
455
- # Project onto the image plane
456
- dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
457
- dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]
458
-
459
- warpR = cv2.getPerspectiveTransform(org, dst)
460
-
461
- dst1, dst2, dst3, dst4 = dst
462
- r1 = int(min(dst1[1], dst2[1]))
463
- r2 = int(max(dst3[1], dst4[1]))
464
- c1 = int(min(dst1[0], dst3[0]))
465
- c2 = int(max(dst2[0], dst4[0]))
466
-
467
- try:
468
- ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))
469
-
470
- dx = -c1
471
- dy = -r1
472
- T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
473
- ret = T1.dot(warpR)
474
- except:
475
- ratio = 1.0
476
- T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
477
- ret = T1
478
- return ret, (-r1, -c1), ratio, dst
479
-
480
-
481
- def get_warpAffine(config):
482
- """
483
- get_warpAffine
484
- """
485
- anglez = config.anglez
486
- rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
487
- [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
488
- return rz
489
-
490
-
491
- def warp(img, ang, use_tia=True, prob=0.4):
492
- """
493
- warp
494
- """
495
- h, w, _ = img.shape
496
- config = Config(use_tia=use_tia)
497
- config.make(w, h, ang)
498
- new_img = img
499
-
500
- if config.distort:
501
- img_height, img_width = img.shape[0:2]
502
- if random.random() <= prob and img_height >= 20 and img_width >= 20:
503
- new_img = tia_distort(new_img, random.randint(3, 6))
504
-
505
- if config.stretch:
506
- img_height, img_width = img.shape[0:2]
507
- if random.random() <= prob and img_height >= 20 and img_width >= 20:
508
- new_img = tia_stretch(new_img, random.randint(3, 6))
509
-
510
- if config.perspective:
511
- if random.random() <= prob:
512
- new_img = tia_perspective(new_img)
513
-
514
- if config.crop:
515
- img_height, img_width = img.shape[0:2]
516
- if random.random() <= prob and img_height >= 20 and img_width >= 20:
517
- new_img = get_crop(new_img)
518
-
519
- if config.blur:
520
- if random.random() <= prob:
521
- new_img = blur(new_img)
522
- if config.color:
523
- if random.random() <= prob:
524
- new_img = cvtColor(new_img)
525
- if config.jitter:
526
- new_img = jitter(new_img)
527
- if config.noise:
528
- if random.random() <= prob:
529
- new_img = add_gasuss_noise(new_img)
530
- if config.reverse:
531
- if random.random() <= prob:
532
- new_img = 255 - new_img
533
- return new_img