pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
pyxllib/ext/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
- # @Author : 陈坤泽
4
- # @Email : 877362867@qq.com
5
- # @Date : 2018/09/19 19:41
6
-
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # @Author : 陈坤泽
4
+ # @Email : 877362867@qq.com
5
+ # @Date : 2018/09/19 19:41
6
+
pyxllib/ext/demolib.py CHANGED
@@ -1,246 +1,246 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
- # @Author : 陈坤泽
4
- # @Email : 877362867@qq.com
5
- # @Date : 2020/03/16 09:19
6
-
7
-
8
- """一些python通用功能的性能测试
9
- 虽然其实大部分场合其实都是相通的
10
- 有时候test测试代码,其实也是演示如何使用的demo
11
-
12
- demo:示例代码,注重演示
13
- debug:调试代码,注重分析自己代码功能是否有bug
14
- test:测试代码,注重分析功能稳定性
15
- perf:性能测试,注重分析代码的运行效率
16
- """
17
-
18
- from pyxllib.xl import *
19
-
20
- ____stdlib = """
21
- 标准库相关
22
- """
23
-
24
-
25
- def test_re():
26
- """ 正则re模块相关功能测试
27
- """
28
- # 190103周四
29
- # py的正则[ ]语法,可以用连字符-匹配一个区间内的字符,
30
- # 例如数字0-9(你是不是蠢,不会用\d么),还有a-z、A-Z(\w),甚至①-⑩,但是一-十,注意'四'匹配不到
31
- dprint(re.sub(r'[一-十]', '', '一二三四五六七八九十'))
32
- # [05]demolib.py/98: re.sub(r'[一-十]', '', '一二三四五六七八九十')<str>='四'
33
-
34
- # 200319周四14:11,匹配顺序与内容有关,先出现的先匹配,而与正则里or语法参数顺序无关
35
- print(re.findall(r'(<(a|b)>.*?</\2>)', '<a><b></b></a>'))
36
- print(re.findall(r'(<(b|a)>.*?</\2>)', '<a><b></b></a>'))
37
- # 结果都是: [('<a><b></b></a>', 'a')]
38
- # TODO 200323周一17:22,其实是模式不够复杂,在特殊场景下,可选条件的前后顺序是有影响的
39
-
40
-
41
- def perf_concurrent():
42
- import time
43
- import concurrent.futures
44
-
45
- def func():
46
- s = 0
47
- for i in range(1000):
48
- for j in range(1000):
49
- s += j ** 5
50
- return s
51
-
52
- start = time.time()
53
- for i in range(5):
54
- func()
55
- print(f'单线程 During Time: {time.time() - start:.3f} s')
56
-
57
- start = time.time()
58
- executor = concurrent.futures.ThreadPoolExecutor(4)
59
- for i in range(5):
60
- executor.submit(func)
61
- executor.shutdown()
62
- print(f'多线程 During Time: {time.time() - start:.3f} s')
63
-
64
-
65
- ____pyxllib = """
66
- pyxllib库相关
67
- """
68
-
69
-
70
- def demo_timer():
71
- """ 该函数也可以用来测电脑性能
72
-
73
- 代码中附带的示例结果是我在自己小米笔记本上的测试结果
74
- Intel(R) Core(TM) i7-10510U CPU@ 1.80GHz 2.30 GHz,15G 64位
75
- """
76
- import math
77
- import numpy
78
-
79
- print('1、普通用法(循环5*1000万次用时)')
80
- timer = Timer('循环')
81
- timer.start()
82
- for _ in range(5):
83
- for _ in range(10 ** 7):
84
- pass
85
- timer.stop()
86
- timer.report()
87
- # 循环 用时: 0.727s
88
-
89
- print('2、循环多轮计时')
90
- timer = Timer('自己算均值标准差耗时')
91
-
92
- # 数据量=200是大概的临界值,往下自己算快,往上用numpy算快
93
- # 临界量时,每万次计时需要0.45秒。其实整体都很快影响不大,所以Timer最终统一采用numpy来运算。
94
- data = list(range(10)) * 20
95
-
96
- for _ in range(5):
97
- timer.start() # 必须明确指定每次的 开始、结束 时间
98
- for _ in range(10 ** 4):
99
- n, sum_ = len(data), sum(data)
100
- mean1 = sum_ / n
101
- std1 = math.sqrt((sum([(x - mean1) ** 2 for x in data]) / n))
102
- timer.stop() # 每轮结束时标记
103
- timer.report()
104
- # 自己算均值标准差耗时 总耗时: 2.214s 均值标准差: 0.443±0.008s 总数: 5 最小值: 0.435s 最大值: 0.459s
105
- dprint(mean1, std1)
106
- # [05]timer.py/97: mean1<float>=4.5 std1<float>=2.8722813232690143
107
-
108
- print('3、with上下文用法')
109
- with Timer('使用numpy算均值标准差耗时') as t:
110
- for _ in range(5):
111
- t.start()
112
- for _ in range(10 ** 4):
113
- mean2, std2 = numpy.mean(data), numpy.std(data)
114
- t.stop()
115
- # 主要就是结束会自动report,其他没什么太大差别
116
- # 使用numpy算均值标准差耗时 总耗时: 2.282s 均值标准差: 0.456±0.015s 总数: 5 最小值: 0.442s 最大值: 0.483s
117
- dprint(mean2, std2)
118
- # [05]timer.py/109: mean2<numpy.float64>=4.5 std2<numpy.float64>=2.8722813232690143
119
-
120
- print('4、可以配合dformat输出定位信息')
121
- with Timer(dformat()) as t:
122
- for _ in range(5):
123
- t.start()
124
- for _ in range(10 ** 6):
125
- pass
126
- t.stop()
127
- # [04]timer.py/113: 总耗时: 0.096s 均值标准差: 0.019±0.002s 总数: 5 最小值: 0.018s 最大值: 0.023s
128
-
129
-
130
- def demo_dprint():
131
- """这里演示dprint常用功能
132
- """
133
- # 1 查看程序是否运行到某个位置
134
- dprint()
135
- # [05]dprint.py/169: 意思:这是堆栈的第5层,所运行的位置是 dprint.py文件的第169行
136
-
137
- # 2 查看变量、表达式的 '<类型>' 和 ':值'
138
- a, b, s = 1, 2, 'ab'
139
- dprint(a, b, a ^ b, s * 2)
140
- # [05]dprint.py/174: a<int>=1 b<int>=2 a ^ b<int>=3 s*2<str>='abab'
141
-
142
- # 3 异常警告
143
- b = 0
144
- if b:
145
- c = a / b
146
- else:
147
- c = 0
148
- dprint(a, b, c) # b=0不能作为除数,c默认值暂按0处理
149
- # [05]dprint.py/183: a<int>=1 b<int>=0 c<int>=0 # b=0不能作为除数,c默认值暂按0处理
150
-
151
- # 4 如果想在其他地方使用dprint的格式内容,可以调底层dformat函数实现
152
- with TicToc(dformat(fmt='[{depth:02}]{fullfilename}/{lineno}: {argmsg}')):
153
- for _ in range(10 ** 7):
154
- pass
155
- # [04]D:\slns\pyxllib\pyxllib\debug\pupil.py/187: 0.173 秒.
156
-
157
-
158
- def _test_getfile_speed():
159
- """
160
- 遍历D盘所有文件(205066个) 用时0.65秒
161
- 遍历D盘所有tex文件(7796个) 用时0.95秒
162
- 有筛选遍历D盘所有文件(193161个) 用时1.19秒
163
- 有筛选遍历D盘所有tex文件(4464个) 用时1.22秒
164
- + EnsureContent: 3.18秒,用list存储所有文本要 310 MB 开销,转str拼接差不多也是这个值
165
- + re.sub(r'\$.*?\$', r'', s): 4.48秒
166
- """
167
- timer = Timer(start_now=True)
168
- ls = list(getfiles(r'D:\\'))
169
- timer.stop_and_report(f'遍历D盘所有文件({len(ls)}个)')
170
-
171
- timer = Timer(start_now=True)
172
- ls = list(getfiles(r'D:\\', '.tex'))
173
- timer.stop_and_report(f'遍历D盘所有tex文件({len(ls)}个)')
174
-
175
- timer = Timer(start_now=True)
176
- ls = list(mygetfiles(r'D:\\'))
177
- timer.stop_and_report(f'有筛选遍历D盘所有文件({len(ls)}个)')
178
-
179
- timer = Timer(start_now=True)
180
- ls = list(mygetfiles(r'D:\\', '.tex'))
181
- timer.stop_and_report(f'有筛选遍历D盘所有tex文件({len(ls)}个)')
182
-
183
-
184
- ____perf = """
185
- """
186
-
187
-
188
- def check_os_status():
189
- """ 检查系统当前运行状态 """
190
- import time
191
- import psutil
192
-
193
- brief_str = [] # 简化显示
194
-
195
- # 1
196
- print(f'1 逻辑cpu数量:{psutil.cpu_count()} \t{psutil.cpu_percent(1) / 100:-3.0%}')
197
- brief_str.append(f'{psutil.cpu_count()}({psutil.cpu_percent(1) / 100:.0%})')
198
-
199
- # 2
200
- m = psutil.virtual_memory()
201
- print(f'2 内存大小:{m.total / (1024 ** 3):.0f} GB \t{m.percent / 100:-3.0%}')
202
- brief_str.append(f'{m.total / (1024 ** 3):.0f}GB({m.percent / 100:.0%})')
203
-
204
- # 3
205
- disks = psutil.disk_partitions()
206
- used, total = 0, 0
207
- for d in disks:
208
- msg = psutil.disk_usage(d.mountpoint)
209
- used += msg.used
210
- total += msg.total
211
- used /= 1024 ** 4
212
- total /= 1024 ** 4
213
- print(f'3 磁盘空间:{total:.2f} TB\t{used / total:-3.0%}')
214
- brief_str.append(f'{total:.2f}TB({used / total:.0%})')
215
- print('/'.join(brief_str))
216
-
217
- # 4
218
- msg1 = psutil.disk_io_counters()
219
- sec = 5 # 统计几秒内的读写状态
220
- time.sleep(sec)
221
- msg2 = psutil.disk_io_counters()
222
- print(f'4 读写:', end='')
223
- for name in ['read_bytes', 'write_bytes']:
224
- value = getattr(msg2, name) - getattr(msg1, name)
225
- if name.endswith('_count'):
226
- print(f'{name}={value / sec:.0f} /s', end=' ')
227
- else:
228
- print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
229
- print()
230
-
231
- # 5
232
- msg1 = psutil.net_io_counters()
233
- sec = 5 # 统计几秒内的读写状态
234
- time.sleep(sec)
235
- msg2 = psutil.net_io_counters()
236
- print(f'5 网络:', end='')
237
- for name in ['bytes_sent', 'bytes_recv']:
238
- value = getattr(msg2, name) - getattr(msg1, name)
239
- print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
240
- print()
241
-
242
-
243
- if __name__ == '__main__':
244
- import fire
245
-
246
- fire.Fire()
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # @Author : 陈坤泽
4
+ # @Email : 877362867@qq.com
5
+ # @Date : 2020/03/16 09:19
6
+
7
+
8
+ """一些python通用功能的性能测试
9
+ 虽然其实大部分场合其实都是相通的
10
+ 有时候test测试代码,其实也是演示如何使用的demo
11
+
12
+ demo:示例代码,注重演示
13
+ debug:调试代码,注重分析自己代码功能是否有bug
14
+ test:测试代码,注重分析功能稳定性
15
+ perf:性能测试,注重分析代码的运行效率
16
+ """
17
+
18
+ from pyxllib.xl import *
19
+
20
+ ____stdlib = """
21
+ 标准库相关
22
+ """
23
+
24
+
25
+ def test_re():
26
+ """ 正则re模块相关功能测试
27
+ """
28
+ # 190103周四
29
+ # py的正则[ ]语法,可以用连字符-匹配一个区间内的字符,
30
+ # 例如数字0-9(你是不是蠢,不会用\d么),还有a-z、A-Z(\w),甚至①-⑩,但是一-十,注意'四'匹配不到
31
+ dprint(re.sub(r'[一-十]', '', '一二三四五六七八九十'))
32
+ # [05]demolib.py/98: re.sub(r'[一-十]', '', '一二三四五六七八九十')<str>='四'
33
+
34
+ # 200319周四14:11,匹配顺序与内容有关,先出现的先匹配,而与正则里or语法参数顺序无关
35
+ print(re.findall(r'(<(a|b)>.*?</\2>)', '<a><b></b></a>'))
36
+ print(re.findall(r'(<(b|a)>.*?</\2>)', '<a><b></b></a>'))
37
+ # 结果都是: [('<a><b></b></a>', 'a')]
38
+ # TODO 200323周一17:22,其实是模式不够复杂,在特殊场景下,可选条件的前后顺序是有影响的
39
+
40
+
41
+ def perf_concurrent():
42
+ import time
43
+ import concurrent.futures
44
+
45
+ def func():
46
+ s = 0
47
+ for i in range(1000):
48
+ for j in range(1000):
49
+ s += j ** 5
50
+ return s
51
+
52
+ start = time.time()
53
+ for i in range(5):
54
+ func()
55
+ print(f'单线程 During Time: {time.time() - start:.3f} s')
56
+
57
+ start = time.time()
58
+ executor = concurrent.futures.ThreadPoolExecutor(4)
59
+ for i in range(5):
60
+ executor.submit(func)
61
+ executor.shutdown()
62
+ print(f'多线程 During Time: {time.time() - start:.3f} s')
63
+
64
+
65
+ ____pyxllib = """
66
+ pyxllib库相关
67
+ """
68
+
69
+
70
+ def demo_timer():
71
+ """ 该函数也可以用来测电脑性能
72
+
73
+ 代码中附带的示例结果是我在自己小米笔记本上的测试结果
74
+ Intel(R) Core(TM) i7-10510U CPU@ 1.80GHz 2.30 GHz,15G 64位
75
+ """
76
+ import math
77
+ import numpy
78
+
79
+ print('1、普通用法(循环5*1000万次用时)')
80
+ timer = Timer('循环')
81
+ timer.start()
82
+ for _ in range(5):
83
+ for _ in range(10 ** 7):
84
+ pass
85
+ timer.stop()
86
+ timer.report()
87
+ # 循环 用时: 0.727s
88
+
89
+ print('2、循环多轮计时')
90
+ timer = Timer('自己算均值标准差耗时')
91
+
92
+ # 数据量=200是大概的临界值,往下自己算快,往上用numpy算快
93
+ # 临界量时,每万次计时需要0.45秒。其实整体都很快影响不大,所以Timer最终统一采用numpy来运算。
94
+ data = list(range(10)) * 20
95
+
96
+ for _ in range(5):
97
+ timer.start() # 必须明确指定每次的 开始、结束 时间
98
+ for _ in range(10 ** 4):
99
+ n, sum_ = len(data), sum(data)
100
+ mean1 = sum_ / n
101
+ std1 = math.sqrt((sum([(x - mean1) ** 2 for x in data]) / n))
102
+ timer.stop() # 每轮结束时标记
103
+ timer.report()
104
+ # 自己算均值标准差耗时 总耗时: 2.214s 均值标准差: 0.443±0.008s 总数: 5 最小值: 0.435s 最大值: 0.459s
105
+ dprint(mean1, std1)
106
+ # [05]timer.py/97: mean1<float>=4.5 std1<float>=2.8722813232690143
107
+
108
+ print('3、with上下文用法')
109
+ with Timer('使用numpy算均值标准差耗时') as t:
110
+ for _ in range(5):
111
+ t.start()
112
+ for _ in range(10 ** 4):
113
+ mean2, std2 = numpy.mean(data), numpy.std(data)
114
+ t.stop()
115
+ # 主要就是结束会自动report,其他没什么太大差别
116
+ # 使用numpy算均值标准差耗时 总耗时: 2.282s 均值标准差: 0.456±0.015s 总数: 5 最小值: 0.442s 最大值: 0.483s
117
+ dprint(mean2, std2)
118
+ # [05]timer.py/109: mean2<numpy.float64>=4.5 std2<numpy.float64>=2.8722813232690143
119
+
120
+ print('4、可以配合dformat输出定位信息')
121
+ with Timer(dformat()) as t:
122
+ for _ in range(5):
123
+ t.start()
124
+ for _ in range(10 ** 6):
125
+ pass
126
+ t.stop()
127
+ # [04]timer.py/113: 总耗时: 0.096s 均值标准差: 0.019±0.002s 总数: 5 最小值: 0.018s 最大值: 0.023s
128
+
129
+
130
+ def demo_dprint():
131
+ """这里演示dprint常用功能
132
+ """
133
+ # 1 查看程序是否运行到某个位置
134
+ dprint()
135
+ # [05]dprint.py/169: 意思:这是堆栈的第5层,所运行的位置是 dprint.py文件的第169行
136
+
137
+ # 2 查看变量、表达式的 '<类型>' 和 ':值'
138
+ a, b, s = 1, 2, 'ab'
139
+ dprint(a, b, a ^ b, s * 2)
140
+ # [05]dprint.py/174: a<int>=1 b<int>=2 a ^ b<int>=3 s*2<str>='abab'
141
+
142
+ # 3 异常警告
143
+ b = 0
144
+ if b:
145
+ c = a / b
146
+ else:
147
+ c = 0
148
+ dprint(a, b, c) # b=0不能作为除数,c默认值暂按0处理
149
+ # [05]dprint.py/183: a<int>=1 b<int>=0 c<int>=0 # b=0不能作为除数,c默认值暂按0处理
150
+
151
+ # 4 如果想在其他地方使用dprint的格式内容,可以调底层dformat函数实现
152
+ with TicToc(dformat(fmt='[{depth:02}]{fullfilename}/{lineno}: {argmsg}')):
153
+ for _ in range(10 ** 7):
154
+ pass
155
+ # [04]D:\slns\pyxllib\pyxllib\debug\pupil.py/187: 0.173 秒.
156
+
157
+
158
+ def _test_getfile_speed():
159
+ """
160
+ 遍历D盘所有文件(205066个) 用时0.65秒
161
+ 遍历D盘所有tex文件(7796个) 用时0.95秒
162
+ 有筛选遍历D盘所有文件(193161个) 用时1.19秒
163
+ 有筛选遍历D盘所有tex文件(4464个) 用时1.22秒
164
+ + EnsureContent: 3.18秒,用list存储所有文本要 310 MB 开销,转str拼接差不多也是这个值
165
+ + re.sub(r'\$.*?\$', r'', s): 4.48秒
166
+ """
167
+ timer = Timer(start_now=True)
168
+ ls = list(getfiles(r'D:\\'))
169
+ timer.stop_and_report(f'遍历D盘所有文件({len(ls)}个)')
170
+
171
+ timer = Timer(start_now=True)
172
+ ls = list(getfiles(r'D:\\', '.tex'))
173
+ timer.stop_and_report(f'遍历D盘所有tex文件({len(ls)}个)')
174
+
175
+ timer = Timer(start_now=True)
176
+ ls = list(mygetfiles(r'D:\\'))
177
+ timer.stop_and_report(f'有筛选遍历D盘所有文件({len(ls)}个)')
178
+
179
+ timer = Timer(start_now=True)
180
+ ls = list(mygetfiles(r'D:\\', '.tex'))
181
+ timer.stop_and_report(f'有筛选遍历D盘所有tex文件({len(ls)}个)')
182
+
183
+
184
+ ____perf = """
185
+ """
186
+
187
+
188
+ def check_os_status():
189
+ """ 检查系统当前运行状态 """
190
+ import time
191
+ import psutil
192
+
193
+ brief_str = [] # 简化显示
194
+
195
+ # 1
196
+ print(f'1 逻辑cpu数量:{psutil.cpu_count()} \t{psutil.cpu_percent(1) / 100:-3.0%}')
197
+ brief_str.append(f'{psutil.cpu_count()}({psutil.cpu_percent(1) / 100:.0%})')
198
+
199
+ # 2
200
+ m = psutil.virtual_memory()
201
+ print(f'2 内存大小:{m.total / (1024 ** 3):.0f} GB \t{m.percent / 100:-3.0%}')
202
+ brief_str.append(f'{m.total / (1024 ** 3):.0f}GB({m.percent / 100:.0%})')
203
+
204
+ # 3
205
+ disks = psutil.disk_partitions()
206
+ used, total = 0, 0
207
+ for d in disks:
208
+ msg = psutil.disk_usage(d.mountpoint)
209
+ used += msg.used
210
+ total += msg.total
211
+ used /= 1024 ** 4
212
+ total /= 1024 ** 4
213
+ print(f'3 磁盘空间:{total:.2f} TB\t{used / total:-3.0%}')
214
+ brief_str.append(f'{total:.2f}TB({used / total:.0%})')
215
+ print('/'.join(brief_str))
216
+
217
+ # 4
218
+ msg1 = psutil.disk_io_counters()
219
+ sec = 5 # 统计几秒内的读写状态
220
+ time.sleep(sec)
221
+ msg2 = psutil.disk_io_counters()
222
+ print(f'4 读写:', end='')
223
+ for name in ['read_bytes', 'write_bytes']:
224
+ value = getattr(msg2, name) - getattr(msg1, name)
225
+ if name.endswith('_count'):
226
+ print(f'{name}={value / sec:.0f} /s', end=' ')
227
+ else:
228
+ print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
229
+ print()
230
+
231
+ # 5
232
+ msg1 = psutil.net_io_counters()
233
+ sec = 5 # 统计几秒内的读写状态
234
+ time.sleep(sec)
235
+ msg2 = psutil.net_io_counters()
236
+ print(f'5 网络:', end='')
237
+ for name in ['bytes_sent', 'bytes_recv']:
238
+ value = getattr(msg2, name) - getattr(msg1, name)
239
+ print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
240
+ print()
241
+
242
+
243
+ if __name__ == '__main__':
244
+ import fire
245
+
246
+ fire.Fire()