pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,437 +0,0 @@
1
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- #Licensed under the Apache License, Version 2.0 (the "License");
4
- #you may not use this file except in compliance with the License.
5
- #You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- #Unless required by applicable law or agreed to in writing, software
10
- #distributed under the License is distributed on an "AS IS" BASIS,
11
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- #See the License for the specific language governing permissions and
13
- #limitations under the License.
14
- """
15
- This code is refered from:
16
- https://github.com/songdejia/EAST/blob/master/data_utils.py
17
- """
18
- import math
19
- import cv2
20
- import numpy as np
21
- import json
22
- import sys
23
- import os
24
-
25
- __all__ = ['EASTProcessTrain']
26
-
27
-
28
- class EASTProcessTrain(object):
29
- def __init__(self,
30
- image_shape=[512, 512],
31
- background_ratio=0.125,
32
- min_crop_side_ratio=0.1,
33
- min_text_size=10,
34
- **kwargs):
35
- self.input_size = image_shape[1]
36
- self.random_scale = np.array([0.5, 1, 2.0, 3.0])
37
- self.background_ratio = background_ratio
38
- self.min_crop_side_ratio = min_crop_side_ratio
39
- self.min_text_size = min_text_size
40
-
41
- def preprocess(self, im):
42
- input_size = self.input_size
43
- im_shape = im.shape
44
- im_size_min = np.min(im_shape[0:2])
45
- im_size_max = np.max(im_shape[0:2])
46
- im_scale = float(input_size) / float(im_size_max)
47
- im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale)
48
- img_mean = [0.485, 0.456, 0.406]
49
- img_std = [0.229, 0.224, 0.225]
50
- # im = im[:, :, ::-1].astype(np.float32)
51
- im = im / 255
52
- im -= img_mean
53
- im /= img_std
54
- new_h, new_w, _ = im.shape
55
- im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32)
56
- im_padded[:new_h, :new_w, :] = im
57
- im_padded = im_padded.transpose((2, 0, 1))
58
- im_padded = im_padded[np.newaxis, :]
59
- return im_padded, im_scale
60
-
61
- def rotate_im_poly(self, im, text_polys):
62
- """
63
- rotate image with 90 / 180 / 270 degre
64
- """
65
- im_w, im_h = im.shape[1], im.shape[0]
66
- dst_im = im.copy()
67
- dst_polys = []
68
- rand_degree_ratio = np.random.rand()
69
- rand_degree_cnt = 1
70
- if 0.333 < rand_degree_ratio < 0.666:
71
- rand_degree_cnt = 2
72
- elif rand_degree_ratio > 0.666:
73
- rand_degree_cnt = 3
74
- for i in range(rand_degree_cnt):
75
- dst_im = np.rot90(dst_im)
76
- rot_degree = -90 * rand_degree_cnt
77
- rot_angle = rot_degree * math.pi / 180.0
78
- n_poly = text_polys.shape[0]
79
- cx, cy = 0.5 * im_w, 0.5 * im_h
80
- ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
81
- for i in range(n_poly):
82
- wordBB = text_polys[i]
83
- poly = []
84
- for j in range(4):
85
- sx, sy = wordBB[j][0], wordBB[j][1]
86
- dx = math.cos(rot_angle) * (sx - cx)\
87
- - math.sin(rot_angle) * (sy - cy) + ncx
88
- dy = math.sin(rot_angle) * (sx - cx)\
89
- + math.cos(rot_angle) * (sy - cy) + ncy
90
- poly.append([dx, dy])
91
- dst_polys.append(poly)
92
- dst_polys = np.array(dst_polys, dtype=np.float32)
93
- return dst_im, dst_polys
94
-
95
- def polygon_area(self, poly):
96
- """
97
- compute area of a polygon
98
- :param poly:
99
- :return:
100
- """
101
- edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
102
- (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
103
- (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
104
- (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
105
- return np.sum(edge) / 2.
106
-
107
- def check_and_validate_polys(self, polys, tags, img_height, img_width):
108
- """
109
- check so that the text poly is in the same direction,
110
- and also filter some invalid polygons
111
- :param polys:
112
- :param tags:
113
- :return:
114
- """
115
- h, w = img_height, img_width
116
- if polys.shape[0] == 0:
117
- return polys
118
- polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
119
- polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
120
-
121
- validated_polys = []
122
- validated_tags = []
123
- for poly, tag in zip(polys, tags):
124
- p_area = self.polygon_area(poly)
125
- #invalid poly
126
- if abs(p_area) < 1:
127
- continue
128
- if p_area > 0:
129
- #'poly in wrong direction'
130
- if not tag:
131
- tag = True #reversed cases should be ignore
132
- poly = poly[(0, 3, 2, 1), :]
133
- validated_polys.append(poly)
134
- validated_tags.append(tag)
135
- return np.array(validated_polys), np.array(validated_tags)
136
-
137
- def draw_img_polys(self, img, polys):
138
- if len(img.shape) == 4:
139
- img = np.squeeze(img, axis=0)
140
- if img.shape[0] == 3:
141
- img = img.transpose((1, 2, 0))
142
- img[:, :, 2] += 123.68
143
- img[:, :, 1] += 116.78
144
- img[:, :, 0] += 103.94
145
- cv2.imwrite("tmp.jpg", img)
146
- img = cv2.imread("tmp.jpg")
147
- for box in polys:
148
- box = box.astype(np.int32).reshape((-1, 1, 2))
149
- cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
150
- import random
151
- ino = random.randint(0, 100)
152
- cv2.imwrite("tmp_%d.jpg" % ino, img)
153
- return
154
-
155
- def shrink_poly(self, poly, r):
156
- """
157
- fit a poly inside the origin poly, maybe bugs here...
158
- used for generate the score map
159
- :param poly: the text poly
160
- :param r: r in the paper
161
- :return: the shrinked poly
162
- """
163
- # shrink ratio
164
- R = 0.3
165
- # find the longer pair
166
- dist0 = np.linalg.norm(poly[0] - poly[1])
167
- dist1 = np.linalg.norm(poly[2] - poly[3])
168
- dist2 = np.linalg.norm(poly[0] - poly[3])
169
- dist3 = np.linalg.norm(poly[1] - poly[2])
170
- if dist0 + dist1 > dist2 + dist3:
171
- # first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
172
- ## p0, p1
173
- theta = np.arctan2((poly[1][1] - poly[0][1]),
174
- (poly[1][0] - poly[0][0]))
175
- poly[0][0] += R * r[0] * np.cos(theta)
176
- poly[0][1] += R * r[0] * np.sin(theta)
177
- poly[1][0] -= R * r[1] * np.cos(theta)
178
- poly[1][1] -= R * r[1] * np.sin(theta)
179
- ## p2, p3
180
- theta = np.arctan2((poly[2][1] - poly[3][1]),
181
- (poly[2][0] - poly[3][0]))
182
- poly[3][0] += R * r[3] * np.cos(theta)
183
- poly[3][1] += R * r[3] * np.sin(theta)
184
- poly[2][0] -= R * r[2] * np.cos(theta)
185
- poly[2][1] -= R * r[2] * np.sin(theta)
186
- ## p0, p3
187
- theta = np.arctan2((poly[3][0] - poly[0][0]),
188
- (poly[3][1] - poly[0][1]))
189
- poly[0][0] += R * r[0] * np.sin(theta)
190
- poly[0][1] += R * r[0] * np.cos(theta)
191
- poly[3][0] -= R * r[3] * np.sin(theta)
192
- poly[3][1] -= R * r[3] * np.cos(theta)
193
- ## p1, p2
194
- theta = np.arctan2((poly[2][0] - poly[1][0]),
195
- (poly[2][1] - poly[1][1]))
196
- poly[1][0] += R * r[1] * np.sin(theta)
197
- poly[1][1] += R * r[1] * np.cos(theta)
198
- poly[2][0] -= R * r[2] * np.sin(theta)
199
- poly[2][1] -= R * r[2] * np.cos(theta)
200
- else:
201
- ## p0, p3
202
- # print poly
203
- theta = np.arctan2((poly[3][0] - poly[0][0]),
204
- (poly[3][1] - poly[0][1]))
205
- poly[0][0] += R * r[0] * np.sin(theta)
206
- poly[0][1] += R * r[0] * np.cos(theta)
207
- poly[3][0] -= R * r[3] * np.sin(theta)
208
- poly[3][1] -= R * r[3] * np.cos(theta)
209
- ## p1, p2
210
- theta = np.arctan2((poly[2][0] - poly[1][0]),
211
- (poly[2][1] - poly[1][1]))
212
- poly[1][0] += R * r[1] * np.sin(theta)
213
- poly[1][1] += R * r[1] * np.cos(theta)
214
- poly[2][0] -= R * r[2] * np.sin(theta)
215
- poly[2][1] -= R * r[2] * np.cos(theta)
216
- ## p0, p1
217
- theta = np.arctan2((poly[1][1] - poly[0][1]),
218
- (poly[1][0] - poly[0][0]))
219
- poly[0][0] += R * r[0] * np.cos(theta)
220
- poly[0][1] += R * r[0] * np.sin(theta)
221
- poly[1][0] -= R * r[1] * np.cos(theta)
222
- poly[1][1] -= R * r[1] * np.sin(theta)
223
- ## p2, p3
224
- theta = np.arctan2((poly[2][1] - poly[3][1]),
225
- (poly[2][0] - poly[3][0]))
226
- poly[3][0] += R * r[3] * np.cos(theta)
227
- poly[3][1] += R * r[3] * np.sin(theta)
228
- poly[2][0] -= R * r[2] * np.cos(theta)
229
- poly[2][1] -= R * r[2] * np.sin(theta)
230
- return poly
231
-
232
- def generate_quad(self, im_size, polys, tags):
233
- """
234
- Generate quadrangle.
235
- """
236
- h, w = im_size
237
- poly_mask = np.zeros((h, w), dtype=np.uint8)
238
- score_map = np.zeros((h, w), dtype=np.uint8)
239
- # (x1, y1, ..., x4, y4, short_edge_norm)
240
- geo_map = np.zeros((h, w, 9), dtype=np.float32)
241
- # mask used during traning, to ignore some hard areas
242
- training_mask = np.ones((h, w), dtype=np.uint8)
243
- for poly_idx, poly_tag in enumerate(zip(polys, tags)):
244
- poly = poly_tag[0]
245
- tag = poly_tag[1]
246
-
247
- r = [None, None, None, None]
248
- for i in range(4):
249
- dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4])
250
- dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4])
251
- r[i] = min(dist1, dist2)
252
- # score map
253
- shrinked_poly = self.shrink_poly(
254
- poly.copy(), r).astype(np.int32)[np.newaxis, :, :]
255
- cv2.fillPoly(score_map, shrinked_poly, 1)
256
- cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)
257
- # if the poly is too small, then ignore it during training
258
- poly_h = min(
259
- np.linalg.norm(poly[0] - poly[3]),
260
- np.linalg.norm(poly[1] - poly[2]))
261
- poly_w = min(
262
- np.linalg.norm(poly[0] - poly[1]),
263
- np.linalg.norm(poly[2] - poly[3]))
264
- if min(poly_h, poly_w) < self.min_text_size:
265
- cv2.fillPoly(training_mask,
266
- poly.astype(np.int32)[np.newaxis, :, :], 0)
267
-
268
- if tag:
269
- cv2.fillPoly(training_mask,
270
- poly.astype(np.int32)[np.newaxis, :, :], 0)
271
-
272
- xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))
273
- # geo map.
274
- y_in_poly = xy_in_poly[:, 0]
275
- x_in_poly = xy_in_poly[:, 1]
276
- poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w)
277
- poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h)
278
- for pno in range(4):
279
- geo_channel_beg = pno * 2
280
- geo_map[y_in_poly, x_in_poly, geo_channel_beg] =\
281
- x_in_poly - poly[pno, 0]
282
- geo_map[y_in_poly, x_in_poly, geo_channel_beg+1] =\
283
- y_in_poly - poly[pno, 1]
284
- geo_map[y_in_poly, x_in_poly, 8] = \
285
- 1.0 / max(min(poly_h, poly_w), 1.0)
286
- return score_map, geo_map, training_mask
287
-
288
- def crop_area(self, im, polys, tags, crop_background=False, max_tries=50):
289
- """
290
- make random crop from the input image
291
- :param im:
292
- :param polys:
293
- :param tags:
294
- :param crop_background:
295
- :param max_tries:
296
- :return:
297
- """
298
- h, w, _ = im.shape
299
- pad_h = h // 10
300
- pad_w = w // 10
301
- h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
302
- w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
303
- for poly in polys:
304
- poly = np.round(poly, decimals=0).astype(np.int32)
305
- minx = np.min(poly[:, 0])
306
- maxx = np.max(poly[:, 0])
307
- w_array[minx + pad_w:maxx + pad_w] = 1
308
- miny = np.min(poly[:, 1])
309
- maxy = np.max(poly[:, 1])
310
- h_array[miny + pad_h:maxy + pad_h] = 1
311
- # ensure the cropped area not across a text
312
- h_axis = np.where(h_array == 0)[0]
313
- w_axis = np.where(w_array == 0)[0]
314
- if len(h_axis) == 0 or len(w_axis) == 0:
315
- return im, polys, tags
316
-
317
- for i in range(max_tries):
318
- xx = np.random.choice(w_axis, size=2)
319
- xmin = np.min(xx) - pad_w
320
- xmax = np.max(xx) - pad_w
321
- xmin = np.clip(xmin, 0, w - 1)
322
- xmax = np.clip(xmax, 0, w - 1)
323
- yy = np.random.choice(h_axis, size=2)
324
- ymin = np.min(yy) - pad_h
325
- ymax = np.max(yy) - pad_h
326
- ymin = np.clip(ymin, 0, h - 1)
327
- ymax = np.clip(ymax, 0, h - 1)
328
- if xmax - xmin < self.min_crop_side_ratio * w or \
329
- ymax - ymin < self.min_crop_side_ratio * h:
330
- # area too small
331
- continue
332
- if polys.shape[0] != 0:
333
- poly_axis_in_area = (polys[:, :, 0] >= xmin)\
334
- & (polys[:, :, 0] <= xmax)\
335
- & (polys[:, :, 1] >= ymin)\
336
- & (polys[:, :, 1] <= ymax)
337
- selected_polys = np.where(
338
- np.sum(poly_axis_in_area, axis=1) == 4)[0]
339
- else:
340
- selected_polys = []
341
-
342
- if len(selected_polys) == 0:
343
- # no text in this area
344
- if crop_background:
345
- im = im[ymin:ymax + 1, xmin:xmax + 1, :]
346
- polys = []
347
- tags = []
348
- return im, polys, tags
349
- else:
350
- continue
351
-
352
- im = im[ymin:ymax + 1, xmin:xmax + 1, :]
353
- polys = polys[selected_polys]
354
- tags = tags[selected_polys]
355
- polys[:, :, 0] -= xmin
356
- polys[:, :, 1] -= ymin
357
- return im, polys, tags
358
- return im, polys, tags
359
-
360
- def crop_background_infor(self, im, text_polys, text_tags):
361
- im, text_polys, text_tags = self.crop_area(
362
- im, text_polys, text_tags, crop_background=True)
363
-
364
- if len(text_polys) > 0:
365
- return None
366
- # pad and resize image
367
- input_size = self.input_size
368
- im, ratio = self.preprocess(im)
369
- score_map = np.zeros((input_size, input_size), dtype=np.float32)
370
- geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32)
371
- training_mask = np.ones((input_size, input_size), dtype=np.float32)
372
- return im, score_map, geo_map, training_mask
373
-
374
- def crop_foreground_infor(self, im, text_polys, text_tags):
375
- im, text_polys, text_tags = self.crop_area(
376
- im, text_polys, text_tags, crop_background=False)
377
-
378
- if text_polys.shape[0] == 0:
379
- return None
380
- #continue for all ignore case
381
- if np.sum((text_tags * 1.0)) >= text_tags.size:
382
- return None
383
- # pad and resize image
384
- input_size = self.input_size
385
- im, ratio = self.preprocess(im)
386
- text_polys[:, :, 0] *= ratio
387
- text_polys[:, :, 1] *= ratio
388
- _, _, new_h, new_w = im.shape
389
- # print(im.shape)
390
- # self.draw_img_polys(im, text_polys)
391
- score_map, geo_map, training_mask = self.generate_quad(
392
- (new_h, new_w), text_polys, text_tags)
393
- return im, score_map, geo_map, training_mask
394
-
395
- def __call__(self, data):
396
- im = data['image']
397
- text_polys = data['polys']
398
- text_tags = data['ignore_tags']
399
- if im is None:
400
- return None
401
- if text_polys.shape[0] == 0:
402
- return None
403
-
404
- #add rotate cases
405
- if np.random.rand() < 0.5:
406
- im, text_polys = self.rotate_im_poly(im, text_polys)
407
- h, w, _ = im.shape
408
- text_polys, text_tags = self.check_and_validate_polys(text_polys,
409
- text_tags, h, w)
410
- if text_polys.shape[0] == 0:
411
- return None
412
-
413
- # random scale this image
414
- rd_scale = np.random.choice(self.random_scale)
415
- im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
416
- text_polys *= rd_scale
417
- if np.random.rand() < self.background_ratio:
418
- outs = self.crop_background_infor(im, text_polys, text_tags)
419
- else:
420
- outs = self.crop_foreground_infor(im, text_polys, text_tags)
421
-
422
- if outs is None:
423
- return None
424
- im, score_map, geo_map, training_mask = outs
425
- score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)
426
- geo_map = np.swapaxes(geo_map, 1, 2)
427
- geo_map = np.swapaxes(geo_map, 1, 0)
428
- geo_map = geo_map[:, ::4, ::4].astype(np.float32)
429
- training_mask = training_mask[np.newaxis, ::4, ::4]
430
- training_mask = training_mask.astype(np.float32)
431
-
432
- data['image'] = im[0]
433
- data['score_map'] = score_map
434
- data['geo_map'] = geo_map
435
- data['training_mask'] = training_mask
436
- # print(im.shape, score_map.shape, geo_map.shape, training_mask.shape)
437
- return data
@@ -1,244 +0,0 @@
1
- """
2
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """
16
-
17
- from __future__ import absolute_import
18
- from __future__ import division
19
- from __future__ import print_function
20
- from __future__ import unicode_literals
21
-
22
- import sys
23
- import six
24
- import cv2
25
- import numpy as np
26
-
27
-
28
- class GenTableMask(object):
29
- """ gen table mask """
30
-
31
- def __init__(self, shrink_h_max, shrink_w_max, mask_type=0, **kwargs):
32
- self.shrink_h_max = 5
33
- self.shrink_w_max = 5
34
- self.mask_type = mask_type
35
-
36
- def projection(self, erosion, h, w, spilt_threshold=0):
37
- # 水平投影
38
- projection_map = np.ones_like(erosion)
39
- project_val_array = [0 for _ in range(0, h)]
40
-
41
- for j in range(0, h):
42
- for i in range(0, w):
43
- if erosion[j, i] == 255:
44
- project_val_array[j] += 1
45
- # 根据数组,获取切割点
46
- start_idx = 0 # 记录进入字符区的索引
47
- end_idx = 0 # 记录进入空白区域的索引
48
- in_text = False # 是否遍历到了字符区内
49
- box_list = []
50
- for i in range(len(project_val_array)):
51
- if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
52
- in_text = True
53
- start_idx = i
54
- elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
55
- end_idx = i
56
- in_text = False
57
- if end_idx - start_idx <= 2:
58
- continue
59
- box_list.append((start_idx, end_idx + 1))
60
-
61
- if in_text:
62
- box_list.append((start_idx, h - 1))
63
- # 绘制投影直方图
64
- for j in range(0, h):
65
- for i in range(0, project_val_array[j]):
66
- projection_map[j, i] = 0
67
- return box_list, projection_map
68
-
69
- def projection_cx(self, box_img):
70
- box_gray_img = cv2.cvtColor(box_img, cv2.COLOR_BGR2GRAY)
71
- h, w = box_gray_img.shape
72
- # 灰度图片进行二值化处理
73
- ret, thresh1 = cv2.threshold(box_gray_img, 200, 255, cv2.THRESH_BINARY_INV)
74
- # 纵向腐蚀
75
- if h < w:
76
- kernel = np.ones((2, 1), np.uint8)
77
- erode = cv2.erode(thresh1, kernel, iterations=1)
78
- else:
79
- erode = thresh1
80
- # 水平膨胀
81
- kernel = np.ones((1, 5), np.uint8)
82
- erosion = cv2.dilate(erode, kernel, iterations=1)
83
- # 水平投影
84
- projection_map = np.ones_like(erosion)
85
- project_val_array = [0 for _ in range(0, h)]
86
-
87
- for j in range(0, h):
88
- for i in range(0, w):
89
- if erosion[j, i] == 255:
90
- project_val_array[j] += 1
91
- # 根据数组,获取切割点
92
- start_idx = 0 # 记录进入字符区的索引
93
- end_idx = 0 # 记录进入空白区域的索引
94
- in_text = False # 是否遍历到了字符区内
95
- box_list = []
96
- spilt_threshold = 0
97
- for i in range(len(project_val_array)):
98
- if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了
99
- in_text = True
100
- start_idx = i
101
- elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了
102
- end_idx = i
103
- in_text = False
104
- if end_idx - start_idx <= 2:
105
- continue
106
- box_list.append((start_idx, end_idx + 1))
107
-
108
- if in_text:
109
- box_list.append((start_idx, h - 1))
110
- # 绘制投影直方图
111
- for j in range(0, h):
112
- for i in range(0, project_val_array[j]):
113
- projection_map[j, i] = 0
114
- split_bbox_list = []
115
- if len(box_list) > 1:
116
- for i, (h_start, h_end) in enumerate(box_list):
117
- if i == 0:
118
- h_start = 0
119
- if i == len(box_list):
120
- h_end = h
121
- word_img = erosion[h_start:h_end + 1, :]
122
- word_h, word_w = word_img.shape
123
- w_split_list, w_projection_map = self.projection(word_img.T, word_w, word_h)
124
- w_start, w_end = w_split_list[0][0], w_split_list[-1][1]
125
- if h_start > 0:
126
- h_start -= 1
127
- h_end += 1
128
- word_img = box_img[h_start:h_end + 1:, w_start:w_end + 1, :]
129
- split_bbox_list.append([w_start, h_start, w_end, h_end])
130
- else:
131
- split_bbox_list.append([0, 0, w, h])
132
- return split_bbox_list
133
-
134
- def shrink_bbox(self, bbox):
135
- left, top, right, bottom = bbox
136
- sh_h = min(max(int((bottom - top) * 0.1), 1), self.shrink_h_max)
137
- sh_w = min(max(int((right - left) * 0.1), 1), self.shrink_w_max)
138
- left_new = left + sh_w
139
- right_new = right - sh_w
140
- top_new = top + sh_h
141
- bottom_new = bottom - sh_h
142
- if left_new >= right_new:
143
- left_new = left
144
- right_new = right
145
- if top_new >= bottom_new:
146
- top_new = top
147
- bottom_new = bottom
148
- return [left_new, top_new, right_new, bottom_new]
149
-
150
- def __call__(self, data):
151
- img = data['image']
152
- cells = data['cells']
153
- height, width = img.shape[0:2]
154
- if self.mask_type == 1:
155
- mask_img = np.zeros((height, width), dtype=np.float32)
156
- else:
157
- mask_img = np.zeros((height, width, 3), dtype=np.float32)
158
- cell_num = len(cells)
159
- for cno in range(cell_num):
160
- if "bbox" in cells[cno]:
161
- bbox = cells[cno]['bbox']
162
- left, top, right, bottom = bbox
163
- box_img = img[top:bottom, left:right, :].copy()
164
- split_bbox_list = self.projection_cx(box_img)
165
- for sno in range(len(split_bbox_list)):
166
- split_bbox_list[sno][0] += left
167
- split_bbox_list[sno][1] += top
168
- split_bbox_list[sno][2] += left
169
- split_bbox_list[sno][3] += top
170
-
171
- for sno in range(len(split_bbox_list)):
172
- left, top, right, bottom = split_bbox_list[sno]
173
- left, top, right, bottom = self.shrink_bbox([left, top, right, bottom])
174
- if self.mask_type == 1:
175
- mask_img[top:bottom, left:right] = 1.0
176
- data['mask_img'] = mask_img
177
- else:
178
- mask_img[top:bottom, left:right, :] = (255, 255, 255)
179
- data['image'] = mask_img
180
- return data
181
-
182
- class ResizeTableImage(object):
183
- def __init__(self, max_len, **kwargs):
184
- super(ResizeTableImage, self).__init__()
185
- self.max_len = max_len
186
-
187
- def get_img_bbox(self, cells):
188
- bbox_list = []
189
- if len(cells) == 0:
190
- return bbox_list
191
- cell_num = len(cells)
192
- for cno in range(cell_num):
193
- if "bbox" in cells[cno]:
194
- bbox = cells[cno]['bbox']
195
- bbox_list.append(bbox)
196
- return bbox_list
197
-
198
- def resize_img_table(self, img, bbox_list, max_len):
199
- height, width = img.shape[0:2]
200
- ratio = max_len / (max(height, width) * 1.0)
201
- resize_h = int(height * ratio)
202
- resize_w = int(width * ratio)
203
- img_new = cv2.resize(img, (resize_w, resize_h))
204
- bbox_list_new = []
205
- for bno in range(len(bbox_list)):
206
- left, top, right, bottom = bbox_list[bno].copy()
207
- left = int(left * ratio)
208
- top = int(top * ratio)
209
- right = int(right * ratio)
210
- bottom = int(bottom * ratio)
211
- bbox_list_new.append([left, top, right, bottom])
212
- return img_new, bbox_list_new
213
-
214
- def __call__(self, data):
215
- img = data['image']
216
- if 'cells' not in data:
217
- cells = []
218
- else:
219
- cells = data['cells']
220
- bbox_list = self.get_img_bbox(cells)
221
- img_new, bbox_list_new = self.resize_img_table(img, bbox_list, self.max_len)
222
- data['image'] = img_new
223
- cell_num = len(cells)
224
- bno = 0
225
- for cno in range(cell_num):
226
- if "bbox" in data['cells'][cno]:
227
- data['cells'][cno]['bbox'] = bbox_list_new[bno]
228
- bno += 1
229
- data['max_len'] = self.max_len
230
- return data
231
-
232
- class PaddingTableImage(object):
233
- def __init__(self, **kwargs):
234
- super(PaddingTableImage, self).__init__()
235
-
236
- def __call__(self, data):
237
- img = data['image']
238
- max_len = data['max_len']
239
- padding_img = np.zeros((max_len, max_len, 3), dtype=np.float32)
240
- height, width = img.shape[0:2]
241
- padding_img[0:height, 0:width, :] = img.copy()
242
- data['image'] = padding_img
243
- return data
244
-