pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,414 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import os
15
- import sys
16
- from PIL import Image
17
- __dir__ = os.path.dirname(os.path.abspath(__file__))
18
- sys.path.append(__dir__)
19
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
20
-
21
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
22
-
23
- import cv2
24
- import numpy as np
25
- import math
26
- import time
27
- import traceback
28
- import paddle
29
-
30
- import pyxlpr.ppocr.tools.infer.utility as utility
31
- from pyxlpr.ppocr.postprocess import build_post_process
32
- from pyxlpr.ppocr.utils.logging import get_logger
33
- from pyxlpr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
34
-
35
- logger = get_logger()
36
-
37
-
38
- class TextRecognizer(object):
39
- def __init__(self, args):
40
- self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
- self.rec_batch_num = args.rec_batch_num
42
- self.rec_algorithm = args.rec_algorithm
43
- postprocess_params = {
44
- 'name': 'CTCLabelDecode',
45
- "character_dict_path": args.rec_char_dict_path,
46
- "use_space_char": args.use_space_char
47
- }
48
- if self.rec_algorithm == "SRN":
49
- postprocess_params = {
50
- 'name': 'SRNLabelDecode',
51
- "character_dict_path": args.rec_char_dict_path,
52
- "use_space_char": args.use_space_char
53
- }
54
- elif self.rec_algorithm == "RARE":
55
- postprocess_params = {
56
- 'name': 'AttnLabelDecode',
57
- "character_dict_path": args.rec_char_dict_path,
58
- "use_space_char": args.use_space_char
59
- }
60
- elif self.rec_algorithm == 'NRTR':
61
- postprocess_params = {
62
- 'name': 'NRTRLabelDecode',
63
- "character_dict_path": args.rec_char_dict_path,
64
- "use_space_char": args.use_space_char
65
- }
66
- elif self.rec_algorithm == "SAR":
67
- postprocess_params = {
68
- 'name': 'SARLabelDecode',
69
- "character_dict_path": args.rec_char_dict_path,
70
- "use_space_char": args.use_space_char
71
- }
72
- self.postprocess_op = build_post_process(postprocess_params)
73
- self.predictor, self.input_tensor, self.output_tensors, self.config = \
74
- utility.create_predictor(args, 'rec', logger)
75
- self.benchmark = args.benchmark
76
- self.use_onnx = args.use_onnx
77
- if args.benchmark:
78
- import auto_log
79
- pid = os.getpid()
80
- gpu_id = utility.get_infer_gpuid()
81
- self.autolog = auto_log.AutoLogger(
82
- model_name="rec",
83
- model_precision=args.precision,
84
- batch_size=args.rec_batch_num,
85
- data_shape="dynamic",
86
- save_path=None, #args.save_log_path,
87
- inference_config=self.config,
88
- pids=pid,
89
- process_name=None,
90
- gpu_ids=gpu_id if args.use_gpu else None,
91
- time_keys=[
92
- 'preprocess_time', 'inference_time', 'postprocess_time'
93
- ],
94
- warmup=0,
95
- logger=logger)
96
-
97
- def resize_norm_img(self, img, max_wh_ratio):
98
- imgC, imgH, imgW = self.rec_image_shape
99
- if self.rec_algorithm == 'NRTR':
100
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
101
- # return padding_im
102
- image_pil = Image.fromarray(np.uint8(img))
103
- img = image_pil.resize([100, 32], Image.ANTIALIAS)
104
- img = np.array(img)
105
- norm_img = np.expand_dims(img, -1)
106
- norm_img = norm_img.transpose((2, 0, 1))
107
- return norm_img.astype(np.float32) / 128. - 1.
108
-
109
- assert imgC == img.shape[2]
110
- # imgW = int((32 * max_wh_ratio))
111
- if self.use_onnx:
112
- w = self.input_tensor.shape[3:][0]
113
- if w is not None and w > 0:
114
- imgW = w
115
- h, w = img.shape[:2]
116
- ratio = w / float(h)
117
- if math.ceil(imgH * ratio) > imgW:
118
- resized_w = imgW
119
- else:
120
- resized_w = int(math.ceil(imgH * ratio))
121
- resized_image = cv2.resize(img, (resized_w, imgH))
122
- resized_image = resized_image.astype('float32')
123
- resized_image = resized_image.transpose((2, 0, 1)) / 255
124
- resized_image -= 0.5
125
- resized_image /= 0.5
126
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
127
- padding_im[:, :, 0:resized_w] = resized_image
128
- return padding_im
129
-
130
- def resize_norm_img_srn(self, img, image_shape):
131
- imgC, imgH, imgW = image_shape
132
-
133
- img_black = np.zeros((imgH, imgW))
134
- im_hei = img.shape[0]
135
- im_wid = img.shape[1]
136
-
137
- if im_wid <= im_hei * 1:
138
- img_new = cv2.resize(img, (imgH * 1, imgH))
139
- elif im_wid <= im_hei * 2:
140
- img_new = cv2.resize(img, (imgH * 2, imgH))
141
- elif im_wid <= im_hei * 3:
142
- img_new = cv2.resize(img, (imgH * 3, imgH))
143
- else:
144
- img_new = cv2.resize(img, (imgW, imgH))
145
-
146
- img_np = np.asarray(img_new)
147
- img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
148
- img_black[:, 0:img_np.shape[1]] = img_np
149
- img_black = img_black[:, :, np.newaxis]
150
-
151
- row, col, c = img_black.shape
152
- c = 1
153
-
154
- return np.reshape(img_black, (c, row, col)).astype(np.float32)
155
-
156
- def srn_other_inputs(self, image_shape, num_heads, max_text_length):
157
-
158
- imgC, imgH, imgW = image_shape
159
- feature_dim = int((imgH / 8) * (imgW / 8))
160
-
161
- encoder_word_pos = np.array(range(0, feature_dim)).reshape(
162
- (feature_dim, 1)).astype('int64')
163
- gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
164
- (max_text_length, 1)).astype('int64')
165
-
166
- gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
167
- gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
168
- [-1, 1, max_text_length, max_text_length])
169
- gsrm_slf_attn_bias1 = np.tile(
170
- gsrm_slf_attn_bias1,
171
- [1, num_heads, 1, 1]).astype('float32') * [-1e9]
172
-
173
- gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
174
- [-1, 1, max_text_length, max_text_length])
175
- gsrm_slf_attn_bias2 = np.tile(
176
- gsrm_slf_attn_bias2,
177
- [1, num_heads, 1, 1]).astype('float32') * [-1e9]
178
-
179
- encoder_word_pos = encoder_word_pos[np.newaxis, :]
180
- gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
181
-
182
- return [
183
- encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
184
- gsrm_slf_attn_bias2
185
- ]
186
-
187
- def process_image_srn(self, img, image_shape, num_heads, max_text_length):
188
- norm_img = self.resize_norm_img_srn(img, image_shape)
189
- norm_img = norm_img[np.newaxis, :]
190
-
191
- [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
192
- self.srn_other_inputs(image_shape, num_heads, max_text_length)
193
-
194
- gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
195
- gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
196
- encoder_word_pos = encoder_word_pos.astype(np.int64)
197
- gsrm_word_pos = gsrm_word_pos.astype(np.int64)
198
-
199
- return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
200
- gsrm_slf_attn_bias2)
201
-
202
- def resize_norm_img_sar(self, img, image_shape,
203
- width_downsample_ratio=0.25):
204
- imgC, imgH, imgW_min, imgW_max = image_shape
205
- h = img.shape[0]
206
- w = img.shape[1]
207
- valid_ratio = 1.0
208
- # make sure new_width is an integral multiple of width_divisor.
209
- width_divisor = int(1 / width_downsample_ratio)
210
- # resize
211
- ratio = w / float(h)
212
- resize_w = math.ceil(imgH * ratio)
213
- if resize_w % width_divisor != 0:
214
- resize_w = round(resize_w / width_divisor) * width_divisor
215
- if imgW_min is not None:
216
- resize_w = max(imgW_min, resize_w)
217
- if imgW_max is not None:
218
- valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
219
- resize_w = min(imgW_max, resize_w)
220
- resized_image = cv2.resize(img, (resize_w, imgH))
221
- resized_image = resized_image.astype('float32')
222
- # norm
223
- if image_shape[0] == 1:
224
- resized_image = resized_image / 255
225
- resized_image = resized_image[np.newaxis, :]
226
- else:
227
- resized_image = resized_image.transpose((2, 0, 1)) / 255
228
- resized_image -= 0.5
229
- resized_image /= 0.5
230
- resize_shape = resized_image.shape
231
- padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
232
- padding_im[:, :, 0:resize_w] = resized_image
233
- pad_shape = padding_im.shape
234
-
235
- return padding_im, resize_shape, pad_shape, valid_ratio
236
-
237
- def __call__(self, img_list):
238
- img_num = len(img_list)
239
- # Calculate the aspect ratio of all text bars
240
- width_list = []
241
- for img in img_list:
242
- width_list.append(img.shape[1] / float(img.shape[0]))
243
- # Sorting can speed up the recognition process
244
- indices = np.argsort(np.array(width_list))
245
- rec_res = [['', 0.0]] * img_num
246
- batch_num = self.rec_batch_num
247
- st = time.time()
248
- if self.benchmark:
249
- self.autolog.times.start()
250
- for beg_img_no in range(0, img_num, batch_num):
251
- end_img_no = min(img_num, beg_img_no + batch_num)
252
- norm_img_batch = []
253
- max_wh_ratio = 0
254
- for ino in range(beg_img_no, end_img_no):
255
- h, w = img_list[indices[ino]].shape[0:2]
256
- wh_ratio = w * 1.0 / h
257
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
258
- for ino in range(beg_img_no, end_img_no):
259
- if self.rec_algorithm != "SRN" and self.rec_algorithm != "SAR":
260
- norm_img = self.resize_norm_img(img_list[indices[ino]],
261
- max_wh_ratio)
262
- norm_img = norm_img[np.newaxis, :]
263
- norm_img_batch.append(norm_img)
264
- elif self.rec_algorithm == "SAR":
265
- norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
266
- img_list[indices[ino]], self.rec_image_shape)
267
- norm_img = norm_img[np.newaxis, :]
268
- valid_ratio = np.expand_dims(valid_ratio, axis=0)
269
- valid_ratios = []
270
- valid_ratios.append(valid_ratio)
271
- norm_img_batch.append(norm_img)
272
- else:
273
- norm_img = self.process_image_srn(
274
- img_list[indices[ino]], self.rec_image_shape, 8, 25)
275
- encoder_word_pos_list = []
276
- gsrm_word_pos_list = []
277
- gsrm_slf_attn_bias1_list = []
278
- gsrm_slf_attn_bias2_list = []
279
- encoder_word_pos_list.append(norm_img[1])
280
- gsrm_word_pos_list.append(norm_img[2])
281
- gsrm_slf_attn_bias1_list.append(norm_img[3])
282
- gsrm_slf_attn_bias2_list.append(norm_img[4])
283
- norm_img_batch.append(norm_img[0])
284
- norm_img_batch = np.concatenate(norm_img_batch)
285
- norm_img_batch = norm_img_batch.copy()
286
- if self.benchmark:
287
- self.autolog.times.stamp()
288
-
289
- if self.rec_algorithm == "SRN":
290
- encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
291
- gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
292
- gsrm_slf_attn_bias1_list = np.concatenate(
293
- gsrm_slf_attn_bias1_list)
294
- gsrm_slf_attn_bias2_list = np.concatenate(
295
- gsrm_slf_attn_bias2_list)
296
-
297
- inputs = [
298
- norm_img_batch,
299
- encoder_word_pos_list,
300
- gsrm_word_pos_list,
301
- gsrm_slf_attn_bias1_list,
302
- gsrm_slf_attn_bias2_list,
303
- ]
304
- if self.use_onnx:
305
- input_dict = {}
306
- input_dict[self.input_tensor.name] = norm_img_batch
307
- outputs = self.predictor.run(self.output_tensors,
308
- input_dict)
309
- preds = {"predict": outputs[2]}
310
- else:
311
- input_names = self.predictor.get_input_names()
312
- for i in range(len(input_names)):
313
- input_tensor = self.predictor.get_input_handle(
314
- input_names[i])
315
- input_tensor.copy_from_cpu(inputs[i])
316
- self.predictor.run()
317
- outputs = []
318
- for output_tensor in self.output_tensors:
319
- output = output_tensor.copy_to_cpu()
320
- outputs.append(output)
321
- if self.benchmark:
322
- self.autolog.times.stamp()
323
- preds = {"predict": outputs[2]}
324
- elif self.rec_algorithm == "SAR":
325
- valid_ratios = np.concatenate(valid_ratios)
326
- inputs = [
327
- norm_img_batch,
328
- valid_ratios,
329
- ]
330
- if self.use_onnx:
331
- input_dict = {}
332
- input_dict[self.input_tensor.name] = norm_img_batch
333
- outputs = self.predictor.run(self.output_tensors,
334
- input_dict)
335
- preds = outputs[0]
336
- else:
337
- input_names = self.predictor.get_input_names()
338
- for i in range(len(input_names)):
339
- input_tensor = self.predictor.get_input_handle(
340
- input_names[i])
341
- input_tensor.copy_from_cpu(inputs[i])
342
- self.predictor.run()
343
- outputs = []
344
- for output_tensor in self.output_tensors:
345
- output = output_tensor.copy_to_cpu()
346
- outputs.append(output)
347
- if self.benchmark:
348
- self.autolog.times.stamp()
349
- preds = outputs[0]
350
- else:
351
- if self.use_onnx:
352
- input_dict = {}
353
- input_dict[self.input_tensor.name] = norm_img_batch
354
- outputs = self.predictor.run(self.output_tensors,
355
- input_dict)
356
- preds = outputs[0]
357
- else:
358
- self.input_tensor.copy_from_cpu(norm_img_batch)
359
- self.predictor.run()
360
- outputs = []
361
- for output_tensor in self.output_tensors:
362
- output = output_tensor.copy_to_cpu()
363
- outputs.append(output)
364
- if self.benchmark:
365
- self.autolog.times.stamp()
366
- if len(outputs) != 1:
367
- preds = outputs
368
- else:
369
- preds = outputs[0]
370
- rec_result = self.postprocess_op(preds)
371
- for rno in range(len(rec_result)):
372
- rec_res[indices[beg_img_no + rno]] = rec_result[rno]
373
- if self.benchmark:
374
- self.autolog.times.end(stamp=True)
375
- return rec_res, time.time() - st
376
-
377
-
378
- def main(args):
379
- image_file_list = get_image_file_list(args.image_dir)
380
- text_recognizer = TextRecognizer(args)
381
- valid_image_file_list = []
382
- img_list = []
383
-
384
- # warmup 2 times
385
- if args.warmup:
386
- img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
387
- for i in range(2):
388
- res = text_recognizer([img] * int(args.rec_batch_num))
389
-
390
- for image_file in image_file_list:
391
- img, flag = check_and_read_gif(image_file)
392
- if not flag:
393
- img = cv2.imread(image_file)
394
- if img is None:
395
- logger.info("error in loading image:{}".format(image_file))
396
- continue
397
- valid_image_file_list.append(image_file)
398
- img_list.append(img)
399
- try:
400
- rec_res, _ = text_recognizer(img_list)
401
-
402
- except Exception as E:
403
- logger.info(traceback.format_exc())
404
- logger.info(E)
405
- exit()
406
- for ino in range(len(img_list)):
407
- logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
408
- rec_res[ino]))
409
- if args.benchmark:
410
- text_recognizer.autolog.report()
411
-
412
-
413
- if __name__ == "__main__":
414
- main(utility.parse_args())
@@ -1,204 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import os
15
- import sys
16
- import subprocess
17
-
18
- __dir__ = os.path.dirname(os.path.abspath(__file__))
19
- sys.path.append(__dir__)
20
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
21
-
22
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
23
-
24
- import cv2
25
- import copy
26
- import numpy as np
27
- import time
28
- import logging
29
- from PIL import Image
30
- import pyxlpr.ppocr.tools.infer.utility as utility
31
- import pyxlpr.ppocr.tools.infer.predict_rec as predict_rec
32
- import pyxlpr.ppocr.tools.infer.predict_det as predict_det
33
- import pyxlpr.ppocr.tools.infer.predict_cls as predict_cls
34
- from pyxlpr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
35
- from pyxlpr.ppocr.utils.logging import get_logger
36
- from pyxlpr.ppocr.tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image
37
- logger = get_logger()
38
-
39
-
40
- class TextSystem(object):
41
- def __init__(self, args):
42
- if not args.show_log:
43
- logger.setLevel(logging.INFO)
44
-
45
- self.text_detector = predict_det.TextDetector(args)
46
- self.text_recognizer = predict_rec.TextRecognizer(args)
47
- self.use_angle_cls = args.use_angle_cls
48
- self.drop_score = args.drop_score
49
- if self.use_angle_cls:
50
- self.text_classifier = predict_cls.TextClassifier(args)
51
-
52
- self.args = args
53
- self.crop_image_res_index = 0
54
-
55
- def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
56
- os.makedirs(output_dir, exist_ok=True)
57
- bbox_num = len(img_crop_list)
58
- for bno in range(bbox_num):
59
- cv2.imwrite(
60
- os.path.join(output_dir,
61
- f"mg_crop_{bno+self.crop_image_res_index}.jpg"),
62
- img_crop_list[bno])
63
- logger.debug(f"{bno}, {rec_res[bno]}")
64
- self.crop_image_res_index += bbox_num
65
-
66
- def __call__(self, img, cls=True):
67
- ori_im = img.copy()
68
- dt_boxes, elapse = self.text_detector(img)
69
-
70
- logger.debug("dt_boxes num : {}, elapse : {}".format(
71
- len(dt_boxes), elapse))
72
- if dt_boxes is None:
73
- return None, None
74
- img_crop_list = []
75
-
76
- dt_boxes = sorted_boxes(dt_boxes)
77
-
78
- for bno in range(len(dt_boxes)):
79
- tmp_box = copy.deepcopy(dt_boxes[bno])
80
- img_crop = get_rotate_crop_image(ori_im, tmp_box)
81
- img_crop_list.append(img_crop)
82
- if self.use_angle_cls and cls:
83
- img_crop_list, angle_list, elapse = self.text_classifier(
84
- img_crop_list)
85
- logger.debug("cls num : {}, elapse : {}".format(
86
- len(img_crop_list), elapse))
87
-
88
- rec_res, elapse = self.text_recognizer(img_crop_list)
89
- logger.debug("rec_res num : {}, elapse : {}".format(
90
- len(rec_res), elapse))
91
- if self.args.save_crop_res:
92
- self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
93
- rec_res)
94
- filter_boxes, filter_rec_res = [], []
95
- for box, rec_reuslt in zip(dt_boxes, rec_res):
96
- text, score = rec_reuslt
97
- if score >= self.drop_score:
98
- filter_boxes.append(box)
99
- filter_rec_res.append(rec_reuslt)
100
- return filter_boxes, filter_rec_res
101
-
102
-
103
- def sorted_boxes(dt_boxes):
104
- """
105
- Sort text boxes in order from top to bottom, left to right
106
- args:
107
- dt_boxes(array):detected text boxes with shape [4, 2]
108
- return:
109
- sorted boxes(array) with shape [4, 2]
110
- """
111
- num_boxes = dt_boxes.shape[0]
112
- sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
113
- _boxes = list(sorted_boxes)
114
-
115
- for i in range(num_boxes - 1):
116
- if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
117
- (_boxes[i + 1][0][0] < _boxes[i][0][0]):
118
- tmp = _boxes[i]
119
- _boxes[i] = _boxes[i + 1]
120
- _boxes[i + 1] = tmp
121
- return _boxes
122
-
123
-
124
- def main(args):
125
- image_file_list = get_image_file_list(args.image_dir)
126
- image_file_list = image_file_list[args.process_id::args.total_process_num]
127
- text_sys = TextSystem(args)
128
- is_visualize = True
129
- font_path = args.vis_font_path
130
- drop_score = args.drop_score
131
-
132
- # warm up 10 times
133
- if args.warmup:
134
- img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
135
- for i in range(10):
136
- res = text_sys(img)
137
-
138
- total_time = 0
139
- cpu_mem, gpu_mem, gpu_util = 0, 0, 0
140
- _st = time.time()
141
- count = 0
142
- for idx, image_file in enumerate(image_file_list):
143
-
144
- img, flag = check_and_read_gif(image_file)
145
- if not flag:
146
- img = cv2.imread(image_file)
147
- if img is None:
148
- logger.debug("error in loading image:{}".format(image_file))
149
- continue
150
- starttime = time.time()
151
- dt_boxes, rec_res = text_sys(img)
152
- elapse = time.time() - starttime
153
- total_time += elapse
154
-
155
- logger.debug(
156
- str(idx) + " Predict time of %s: %.3fs" % (image_file, elapse))
157
- for text, score in rec_res:
158
- logger.debug("{}, {:.3f}".format(text, score))
159
-
160
- if is_visualize:
161
- image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
162
- boxes = dt_boxes
163
- txts = [rec_res[i][0] for i in range(len(rec_res))]
164
- scores = [rec_res[i][1] for i in range(len(rec_res))]
165
-
166
- draw_img = draw_ocr_box_txt(
167
- image,
168
- boxes,
169
- txts,
170
- scores,
171
- drop_score=drop_score,
172
- font_path=font_path)
173
- draw_img_save_dir = args.draw_img_save_dir
174
- os.makedirs(draw_img_save_dir, exist_ok=True)
175
- if flag:
176
- image_file = image_file[:-3] + "png"
177
- cv2.imwrite(
178
- os.path.join(draw_img_save_dir, os.path.basename(image_file)),
179
- draw_img[:, :, ::-1])
180
- logger.debug("The visualized image saved in {}".format(
181
- os.path.join(draw_img_save_dir, os.path.basename(image_file))))
182
-
183
- logger.info("The predict total time is {}".format(time.time() - _st))
184
- if args.benchmark:
185
- text_sys.text_detector.autolog.report()
186
- text_sys.text_recognizer.autolog.report()
187
-
188
-
189
- if __name__ == "__main__":
190
- args = utility.parse_args()
191
- if args.use_mp:
192
- p_list = []
193
- total_process_num = args.total_process_num
194
- for process_id in range(total_process_num):
195
- cmd = [sys.executable, "-u"] + sys.argv + [
196
- "--process_id={}".format(process_id),
197
- "--use_mp={}".format(False)
198
- ]
199
- p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
200
- p_list.append(p)
201
- for p in p_list:
202
- p.wait()
203
- else:
204
- main(args)