pyxllib 0.3.96__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (358) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -529
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -311
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -461
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -240
  11. pyxllib/algo/stat.py +494 -458
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. {pyxlpr → pyxllib/autogui}/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -0
  16. pyxllib/autogui/all.py +9 -0
  17. pyxllib/{ext/autogui → autogui}/autogui.py +852 -823
  18. pyxllib/autogui/uiautolib.py +362 -0
  19. pyxllib/{ext/autogui → autogui}/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -0
  21. pyxllib/autogui/wechat_msg.py +421 -0
  22. pyxllib/autogui/wxautolib.py +84 -0
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -0
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -129
  34. pyxllib/data/jsonlib.py +89 -0
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -643
  37. pyxllib/data/sqlite.py +568 -341
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -492
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -0
  43. pyxllib/ext/kq5034lib.py +12 -1606
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -0
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -826
  50. pyxllib/ext/utools.py +351 -338
  51. pyxllib/ext/webhook.py +124 -101
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -0
  54. pyxllib/ext/wpsapi.py +124 -0
  55. pyxllib/ext/xlwork.py +9 -0
  56. pyxllib/ext/yuquelib.py +1105 -173
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -0
  61. pyxllib/file/movielib.py +148 -139
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -293
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -186
  71. pyxllib/file/specialist/filelib.py +2829 -2618
  72. pyxllib/file/xlsxlib.py +3131 -2976
  73. pyxllib/file/xlsyncfile.py +341 -0
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -0
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -0
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -0
  80. pyxllib/prog/newbie.py +451 -444
  81. pyxllib/prog/pupil.py +1197 -1128
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -217
  84. pyxllib/prog/specialist/bc.py +203 -200
  85. pyxllib/prog/specialist/browser.py +497 -488
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +199 -131
  88. pyxllib/prog/specialist/tictoc.py +240 -241
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -101
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -0
  98. pyxllib/text/charclasslib.py +121 -109
  99. pyxllib/text/jiebalib.py +267 -264
  100. pyxllib/text/jinjalib.py +32 -0
  101. pyxllib/text/jsa_ai_prompt.md +271 -0
  102. pyxllib/text/jscode.py +922 -767
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -288
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1095
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +11 -0
  116. pyxllib/text/templates/highlight_code.html +17 -0
  117. pyxllib/text/templates/latex_editor.html +103 -0
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -685
  120. pyxllib/xl.py +42 -38
  121. pyxllib/xlcv.py +17 -17
  122. pyxllib-0.3.200.dist-info/METADATA +48 -0
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +1 -2
  125. {pyxllib-0.3.96.dist-info → pyxllib-0.3.200.dist-info/licenses}/LICENSE +190 -190
  126. pyxllib/ext/autogui/__init__.py +0 -8
  127. pyxllib-0.3.96.dist-info/METADATA +0 -51
  128. pyxllib-0.3.96.dist-info/RECORD +0 -333
  129. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  130. pyxlpr/ai/__init__.py +0 -5
  131. pyxlpr/ai/clientlib.py +0 -1281
  132. pyxlpr/ai/specialist.py +0 -286
  133. pyxlpr/ai/torch_app.py +0 -172
  134. pyxlpr/ai/xlpaddle.py +0 -655
  135. pyxlpr/ai/xltorch.py +0 -705
  136. pyxlpr/data/__init__.py +0 -11
  137. pyxlpr/data/coco.py +0 -1325
  138. pyxlpr/data/datacls.py +0 -365
  139. pyxlpr/data/datasets.py +0 -200
  140. pyxlpr/data/gptlib.py +0 -1291
  141. pyxlpr/data/icdar/__init__.py +0 -96
  142. pyxlpr/data/icdar/deteval.py +0 -377
  143. pyxlpr/data/icdar/icdar2013.py +0 -341
  144. pyxlpr/data/icdar/iou.py +0 -340
  145. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  146. pyxlpr/data/imtextline.py +0 -473
  147. pyxlpr/data/labelme.py +0 -866
  148. pyxlpr/data/removeline.py +0 -179
  149. pyxlpr/data/specialist.py +0 -57
  150. pyxlpr/eval/__init__.py +0 -85
  151. pyxlpr/paddleocr.py +0 -776
  152. pyxlpr/ppocr/__init__.py +0 -15
  153. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  154. pyxlpr/ppocr/data/__init__.py +0 -135
  155. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  156. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  157. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  158. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  159. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  160. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  161. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  162. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  163. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  164. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  165. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  166. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  167. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  168. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  169. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  170. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  171. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  172. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  173. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  174. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  175. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  176. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  177. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  178. pyxlpr/ppocr/losses/__init__.py +0 -61
  179. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  180. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  181. pyxlpr/ppocr/losses/center_loss.py +0 -88
  182. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  183. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  184. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  185. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  186. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  187. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  188. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  189. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  190. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  191. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  192. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  193. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  194. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  195. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  196. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  197. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  198. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  199. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  200. pyxlpr/ppocr/metrics/__init__.py +0 -44
  201. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  202. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  203. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  204. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  205. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  206. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  207. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  208. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  209. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  210. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  211. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  212. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  213. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  214. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  215. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  216. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  217. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  218. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  219. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  220. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  221. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  222. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  223. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  224. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  225. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  226. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  227. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  228. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  229. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  230. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  231. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  232. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  233. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  234. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  235. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  236. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  237. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  238. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  239. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  240. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  241. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  242. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  243. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  244. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  245. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  246. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  247. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  248. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  249. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  250. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  251. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  252. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  253. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  254. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  255. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  256. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  257. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  258. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  259. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  260. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  261. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  262. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  263. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  264. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  265. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  266. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  267. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  268. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  269. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  270. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  271. pyxlpr/ppocr/tools/__init__.py +0 -14
  272. pyxlpr/ppocr/tools/eval.py +0 -83
  273. pyxlpr/ppocr/tools/export_center.py +0 -77
  274. pyxlpr/ppocr/tools/export_model.py +0 -129
  275. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  276. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  277. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  278. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  279. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  280. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  281. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  282. pyxlpr/ppocr/tools/infer_det.py +0 -134
  283. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  284. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  285. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  286. pyxlpr/ppocr/tools/infer_table.py +0 -107
  287. pyxlpr/ppocr/tools/program.py +0 -596
  288. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  289. pyxlpr/ppocr/tools/train.py +0 -163
  290. pyxlpr/ppocr/tools/xlprog.py +0 -748
  291. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  292. pyxlpr/ppocr/utils/__init__.py +0 -24
  293. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  294. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  295. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  296. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  297. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  298. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  299. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  300. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  301. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  302. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  303. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  304. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  305. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  306. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  307. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  308. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  309. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  310. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  311. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  312. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  313. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  314. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  315. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  316. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  317. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  318. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  319. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  320. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  321. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  322. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  323. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  324. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  325. pyxlpr/ppocr/utils/dict90.txt +0 -90
  326. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  327. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  328. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  329. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  330. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  331. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  332. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  333. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  334. pyxlpr/ppocr/utils/gen_label.py +0 -81
  335. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  336. pyxlpr/ppocr/utils/iou.py +0 -54
  337. pyxlpr/ppocr/utils/logging.py +0 -69
  338. pyxlpr/ppocr/utils/network.py +0 -84
  339. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  340. pyxlpr/ppocr/utils/profiler.py +0 -110
  341. pyxlpr/ppocr/utils/save_load.py +0 -150
  342. pyxlpr/ppocr/utils/stats.py +0 -72
  343. pyxlpr/ppocr/utils/utility.py +0 -80
  344. pyxlpr/ppstructure/__init__.py +0 -13
  345. pyxlpr/ppstructure/predict_system.py +0 -187
  346. pyxlpr/ppstructure/table/__init__.py +0 -13
  347. pyxlpr/ppstructure/table/eval_table.py +0 -72
  348. pyxlpr/ppstructure/table/matcher.py +0 -192
  349. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  350. pyxlpr/ppstructure/table/predict_table.py +0 -221
  351. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  352. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  353. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  354. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  355. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  356. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  357. pyxlpr/ppstructure/utility.py +0 -71
  358. pyxlpr/xlai.py +0 -10
@@ -1,307 +0,0 @@
1
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- #Licensed under the Apache License, Version 2.0 (the "License");
4
- #you may not use this file except in compliance with the License.
5
- #You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- #Unless required by applicable law or agreed to in writing, software
10
- #distributed under the License is distributed on an "AS IS" BASIS,
11
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- #See the License for the specific language governing permissions and
13
- #limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- from paddle import nn, ParamAttr
20
- from paddle.nn import functional as F
21
- import paddle.fluid as fluid
22
- import paddle
23
- import numpy as np
24
-
25
- __all__ = ["ResNetFPN"]
26
-
27
-
28
- class ResNetFPN(nn.Layer):
29
- def __init__(self, in_channels=1, layers=50, **kwargs):
30
- super(ResNetFPN, self).__init__()
31
- supported_layers = {
32
- 18: {
33
- 'depth': [2, 2, 2, 2],
34
- 'block_class': BasicBlock
35
- },
36
- 34: {
37
- 'depth': [3, 4, 6, 3],
38
- 'block_class': BasicBlock
39
- },
40
- 50: {
41
- 'depth': [3, 4, 6, 3],
42
- 'block_class': BottleneckBlock
43
- },
44
- 101: {
45
- 'depth': [3, 4, 23, 3],
46
- 'block_class': BottleneckBlock
47
- },
48
- 152: {
49
- 'depth': [3, 8, 36, 3],
50
- 'block_class': BottleneckBlock
51
- }
52
- }
53
- stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)]
54
- num_filters = [64, 128, 256, 512]
55
- self.depth = supported_layers[layers]['depth']
56
- self.F = []
57
- self.conv = ConvBNLayer(
58
- in_channels=in_channels,
59
- out_channels=64,
60
- kernel_size=7,
61
- stride=2,
62
- act="relu",
63
- name="conv1")
64
- self.block_list = []
65
- in_ch = 64
66
- if layers >= 50:
67
- for block in range(len(self.depth)):
68
- for i in range(self.depth[block]):
69
- if layers in [101, 152] and block == 2:
70
- if i == 0:
71
- conv_name = "res" + str(block + 2) + "a"
72
- else:
73
- conv_name = "res" + str(block + 2) + "b" + str(i)
74
- else:
75
- conv_name = "res" + str(block + 2) + chr(97 + i)
76
- block_list = self.add_sublayer(
77
- "bottleneckBlock_{}_{}".format(block, i),
78
- BottleneckBlock(
79
- in_channels=in_ch,
80
- out_channels=num_filters[block],
81
- stride=stride_list[block] if i == 0 else 1,
82
- name=conv_name))
83
- in_ch = num_filters[block] * 4
84
- self.block_list.append(block_list)
85
- self.F.append(block_list)
86
- else:
87
- for block in range(len(self.depth)):
88
- for i in range(self.depth[block]):
89
- conv_name = "res" + str(block + 2) + chr(97 + i)
90
- if i == 0 and block != 0:
91
- stride = (2, 1)
92
- else:
93
- stride = (1, 1)
94
- basic_block = self.add_sublayer(
95
- conv_name,
96
- BasicBlock(
97
- in_channels=in_ch,
98
- out_channels=num_filters[block],
99
- stride=stride_list[block] if i == 0 else 1,
100
- is_first=block == i == 0,
101
- name=conv_name))
102
- in_ch = basic_block.out_channels
103
- self.block_list.append(basic_block)
104
- out_ch_list = [in_ch // 4, in_ch // 2, in_ch]
105
- self.base_block = []
106
- self.conv_trans = []
107
- self.bn_block = []
108
- for i in [-2, -3]:
109
- in_channels = out_ch_list[i + 1] + out_ch_list[i]
110
-
111
- self.base_block.append(
112
- self.add_sublayer(
113
- "F_{}_base_block_0".format(i),
114
- nn.Conv2D(
115
- in_channels=in_channels,
116
- out_channels=out_ch_list[i],
117
- kernel_size=1,
118
- weight_attr=ParamAttr(trainable=True),
119
- bias_attr=ParamAttr(trainable=True))))
120
- self.base_block.append(
121
- self.add_sublayer(
122
- "F_{}_base_block_1".format(i),
123
- nn.Conv2D(
124
- in_channels=out_ch_list[i],
125
- out_channels=out_ch_list[i],
126
- kernel_size=3,
127
- padding=1,
128
- weight_attr=ParamAttr(trainable=True),
129
- bias_attr=ParamAttr(trainable=True))))
130
- self.base_block.append(
131
- self.add_sublayer(
132
- "F_{}_base_block_2".format(i),
133
- nn.BatchNorm(
134
- num_channels=out_ch_list[i],
135
- act="relu",
136
- param_attr=ParamAttr(trainable=True),
137
- bias_attr=ParamAttr(trainable=True))))
138
- self.base_block.append(
139
- self.add_sublayer(
140
- "F_{}_base_block_3".format(i),
141
- nn.Conv2D(
142
- in_channels=out_ch_list[i],
143
- out_channels=512,
144
- kernel_size=1,
145
- bias_attr=ParamAttr(trainable=True),
146
- weight_attr=ParamAttr(trainable=True))))
147
- self.out_channels = 512
148
-
149
- def __call__(self, x):
150
- x = self.conv(x)
151
- fpn_list = []
152
- F = []
153
- for i in range(len(self.depth)):
154
- fpn_list.append(np.sum(self.depth[:i + 1]))
155
-
156
- for i, block in enumerate(self.block_list):
157
- x = block(x)
158
- for number in fpn_list:
159
- if i + 1 == number:
160
- F.append(x)
161
- base = F[-1]
162
-
163
- j = 0
164
- for i, block in enumerate(self.base_block):
165
- if i % 3 == 0 and i < 6:
166
- j = j + 1
167
- b, c, w, h = F[-j - 1].shape
168
- if [w, h] == list(base.shape[2:]):
169
- base = base
170
- else:
171
- base = self.conv_trans[j - 1](base)
172
- base = self.bn_block[j - 1](base)
173
- base = paddle.concat([base, F[-j - 1]], axis=1)
174
- base = block(base)
175
- return base
176
-
177
-
178
- class ConvBNLayer(nn.Layer):
179
- def __init__(self,
180
- in_channels,
181
- out_channels,
182
- kernel_size,
183
- stride=1,
184
- groups=1,
185
- act=None,
186
- name=None):
187
- super(ConvBNLayer, self).__init__()
188
- self.conv = nn.Conv2D(
189
- in_channels=in_channels,
190
- out_channels=out_channels,
191
- kernel_size=2 if stride == (1, 1) else kernel_size,
192
- dilation=2 if stride == (1, 1) else 1,
193
- stride=stride,
194
- padding=(kernel_size - 1) // 2,
195
- groups=groups,
196
- weight_attr=ParamAttr(name=name + '.conv2d.output.1.w_0'),
197
- bias_attr=False, )
198
-
199
- if name == "conv1":
200
- bn_name = "bn_" + name
201
- else:
202
- bn_name = "bn" + name[3:]
203
- self.bn = nn.BatchNorm(
204
- num_channels=out_channels,
205
- act=act,
206
- param_attr=ParamAttr(name=name + '.output.1.w_0'),
207
- bias_attr=ParamAttr(name=name + '.output.1.b_0'),
208
- moving_mean_name=bn_name + "_mean",
209
- moving_variance_name=bn_name + "_variance")
210
-
211
- def __call__(self, x):
212
- x = self.conv(x)
213
- x = self.bn(x)
214
- return x
215
-
216
-
217
- class ShortCut(nn.Layer):
218
- def __init__(self, in_channels, out_channels, stride, name, is_first=False):
219
- super(ShortCut, self).__init__()
220
- self.use_conv = True
221
-
222
- if in_channels != out_channels or stride != 1 or is_first == True:
223
- if stride == (1, 1):
224
- self.conv = ConvBNLayer(
225
- in_channels, out_channels, 1, 1, name=name)
226
- else: # stride==(2,2)
227
- self.conv = ConvBNLayer(
228
- in_channels, out_channels, 1, stride, name=name)
229
- else:
230
- self.use_conv = False
231
-
232
- def forward(self, x):
233
- if self.use_conv:
234
- x = self.conv(x)
235
- return x
236
-
237
-
238
- class BottleneckBlock(nn.Layer):
239
- def __init__(self, in_channels, out_channels, stride, name):
240
- super(BottleneckBlock, self).__init__()
241
- self.conv0 = ConvBNLayer(
242
- in_channels=in_channels,
243
- out_channels=out_channels,
244
- kernel_size=1,
245
- act='relu',
246
- name=name + "_branch2a")
247
- self.conv1 = ConvBNLayer(
248
- in_channels=out_channels,
249
- out_channels=out_channels,
250
- kernel_size=3,
251
- stride=stride,
252
- act='relu',
253
- name=name + "_branch2b")
254
-
255
- self.conv2 = ConvBNLayer(
256
- in_channels=out_channels,
257
- out_channels=out_channels * 4,
258
- kernel_size=1,
259
- act=None,
260
- name=name + "_branch2c")
261
-
262
- self.short = ShortCut(
263
- in_channels=in_channels,
264
- out_channels=out_channels * 4,
265
- stride=stride,
266
- is_first=False,
267
- name=name + "_branch1")
268
- self.out_channels = out_channels * 4
269
-
270
- def forward(self, x):
271
- y = self.conv0(x)
272
- y = self.conv1(y)
273
- y = self.conv2(y)
274
- y = y + self.short(x)
275
- y = F.relu(y)
276
- return y
277
-
278
-
279
- class BasicBlock(nn.Layer):
280
- def __init__(self, in_channels, out_channels, stride, name, is_first):
281
- super(BasicBlock, self).__init__()
282
- self.conv0 = ConvBNLayer(
283
- in_channels=in_channels,
284
- out_channels=out_channels,
285
- kernel_size=3,
286
- act='relu',
287
- stride=stride,
288
- name=name + "_branch2a")
289
- self.conv1 = ConvBNLayer(
290
- in_channels=out_channels,
291
- out_channels=out_channels,
292
- kernel_size=3,
293
- act=None,
294
- name=name + "_branch2b")
295
- self.short = ShortCut(
296
- in_channels=in_channels,
297
- out_channels=out_channels,
298
- stride=stride,
299
- is_first=is_first,
300
- name=name + "_branch1")
301
- self.out_channels = out_channels
302
-
303
- def forward(self, x):
304
- y = self.conv0(x)
305
- y = self.conv1(y)
306
- y = y + self.short(x)
307
- return F.relu(y)
@@ -1,286 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import ParamAttr
21
- import paddle.nn as nn
22
- import paddle.nn.functional as F
23
-
24
- __all__ = ["ResNet"]
25
-
26
-
27
- class ConvBNLayer(nn.Layer):
28
- def __init__(
29
- self,
30
- in_channels,
31
- out_channels,
32
- kernel_size,
33
- stride=1,
34
- groups=1,
35
- is_vd_mode=False,
36
- act=None,
37
- name=None, ):
38
- super(ConvBNLayer, self).__init__()
39
-
40
- self.is_vd_mode = is_vd_mode
41
- self._pool2d_avg = nn.AvgPool2D(
42
- kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
43
- self._conv = nn.Conv2D(
44
- in_channels=in_channels,
45
- out_channels=out_channels,
46
- kernel_size=kernel_size,
47
- stride=1 if is_vd_mode else stride,
48
- padding=(kernel_size - 1) // 2,
49
- groups=groups,
50
- weight_attr=ParamAttr(name=name + "_weights"),
51
- bias_attr=False)
52
- if name == "conv1":
53
- bn_name = "bn_" + name
54
- else:
55
- bn_name = "bn" + name[3:]
56
- self._batch_norm = nn.BatchNorm(
57
- out_channels,
58
- act=act,
59
- param_attr=ParamAttr(name=bn_name + '_scale'),
60
- bias_attr=ParamAttr(bn_name + '_offset'),
61
- moving_mean_name=bn_name + '_mean',
62
- moving_variance_name=bn_name + '_variance')
63
-
64
- def forward(self, inputs):
65
- if self.is_vd_mode:
66
- inputs = self._pool2d_avg(inputs)
67
- y = self._conv(inputs)
68
- y = self._batch_norm(y)
69
- return y
70
-
71
-
72
- class BottleneckBlock(nn.Layer):
73
- def __init__(self,
74
- in_channels,
75
- out_channels,
76
- stride,
77
- shortcut=True,
78
- if_first=False,
79
- name=None):
80
- super(BottleneckBlock, self).__init__()
81
-
82
- self.conv0 = ConvBNLayer(
83
- in_channels=in_channels,
84
- out_channels=out_channels,
85
- kernel_size=1,
86
- act='relu',
87
- name=name + "_branch2a")
88
- self.conv1 = ConvBNLayer(
89
- in_channels=out_channels,
90
- out_channels=out_channels,
91
- kernel_size=3,
92
- stride=stride,
93
- act='relu',
94
- name=name + "_branch2b")
95
- self.conv2 = ConvBNLayer(
96
- in_channels=out_channels,
97
- out_channels=out_channels * 4,
98
- kernel_size=1,
99
- act=None,
100
- name=name + "_branch2c")
101
-
102
- if not shortcut:
103
- self.short = ConvBNLayer(
104
- in_channels=in_channels,
105
- out_channels=out_channels * 4,
106
- kernel_size=1,
107
- stride=stride,
108
- is_vd_mode=not if_first and stride[0] != 1,
109
- name=name + "_branch1")
110
-
111
- self.shortcut = shortcut
112
-
113
- def forward(self, inputs):
114
- y = self.conv0(inputs)
115
-
116
- conv1 = self.conv1(y)
117
- conv2 = self.conv2(conv1)
118
-
119
- if self.shortcut:
120
- short = inputs
121
- else:
122
- short = self.short(inputs)
123
- y = paddle.add(x=short, y=conv2)
124
- y = F.relu(y)
125
- return y
126
-
127
-
128
- class BasicBlock(nn.Layer):
129
- def __init__(self,
130
- in_channels,
131
- out_channels,
132
- stride,
133
- shortcut=True,
134
- if_first=False,
135
- name=None):
136
- super(BasicBlock, self).__init__()
137
- self.stride = stride
138
- self.conv0 = ConvBNLayer(
139
- in_channels=in_channels,
140
- out_channels=out_channels,
141
- kernel_size=3,
142
- stride=stride,
143
- act='relu',
144
- name=name + "_branch2a")
145
- self.conv1 = ConvBNLayer(
146
- in_channels=out_channels,
147
- out_channels=out_channels,
148
- kernel_size=3,
149
- act=None,
150
- name=name + "_branch2b")
151
-
152
- if not shortcut:
153
- self.short = ConvBNLayer(
154
- in_channels=in_channels,
155
- out_channels=out_channels,
156
- kernel_size=1,
157
- stride=stride,
158
- is_vd_mode=not if_first and stride[0] != 1,
159
- name=name + "_branch1")
160
-
161
- self.shortcut = shortcut
162
-
163
- def forward(self, inputs):
164
- y = self.conv0(inputs)
165
- conv1 = self.conv1(y)
166
-
167
- if self.shortcut:
168
- short = inputs
169
- else:
170
- short = self.short(inputs)
171
- y = paddle.add(x=short, y=conv1)
172
- y = F.relu(y)
173
- return y
174
-
175
-
176
- class ResNet(nn.Layer):
177
- def __init__(self, in_channels=3, layers=50, **kwargs):
178
- super(ResNet, self).__init__()
179
-
180
- self.layers = layers
181
- supported_layers = [18, 34, 50, 101, 152, 200]
182
- assert layers in supported_layers, \
183
- "supported layers are {} but input layer is {}".format(
184
- supported_layers, layers)
185
-
186
- if layers == 18:
187
- depth = [2, 2, 2, 2]
188
- elif layers == 34 or layers == 50:
189
- depth = [3, 4, 6, 3]
190
- elif layers == 101:
191
- depth = [3, 4, 23, 3]
192
- elif layers == 152:
193
- depth = [3, 8, 36, 3]
194
- elif layers == 200:
195
- depth = [3, 12, 48, 3]
196
- num_channels = [64, 256, 512,
197
- 1024] if layers >= 50 else [64, 64, 128, 256]
198
- num_filters = [64, 128, 256, 512]
199
-
200
- self.conv1_1 = ConvBNLayer(
201
- in_channels=in_channels,
202
- out_channels=32,
203
- kernel_size=3,
204
- stride=1,
205
- act='relu',
206
- name="conv1_1")
207
- self.conv1_2 = ConvBNLayer(
208
- in_channels=32,
209
- out_channels=32,
210
- kernel_size=3,
211
- stride=1,
212
- act='relu',
213
- name="conv1_2")
214
- self.conv1_3 = ConvBNLayer(
215
- in_channels=32,
216
- out_channels=64,
217
- kernel_size=3,
218
- stride=1,
219
- act='relu',
220
- name="conv1_3")
221
- self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
222
-
223
- self.block_list = []
224
- if layers >= 50:
225
- for block in range(len(depth)):
226
- shortcut = False
227
- for i in range(depth[block]):
228
- if layers in [101, 152, 200] and block == 2:
229
- if i == 0:
230
- conv_name = "res" + str(block + 2) + "a"
231
- else:
232
- conv_name = "res" + str(block + 2) + "b" + str(i)
233
- else:
234
- conv_name = "res" + str(block + 2) + chr(97 + i)
235
-
236
- if i == 0 and block != 0:
237
- stride = (2, 1)
238
- else:
239
- stride = (1, 1)
240
- bottleneck_block = self.add_sublayer(
241
- 'bb_%d_%d' % (block, i),
242
- BottleneckBlock(
243
- in_channels=num_channels[block]
244
- if i == 0 else num_filters[block] * 4,
245
- out_channels=num_filters[block],
246
- stride=stride,
247
- shortcut=shortcut,
248
- if_first=block == i == 0,
249
- name=conv_name))
250
- shortcut = True
251
- self.block_list.append(bottleneck_block)
252
- self.out_channels = num_filters[block] * 4
253
- else:
254
- for block in range(len(depth)):
255
- shortcut = False
256
- for i in range(depth[block]):
257
- conv_name = "res" + str(block + 2) + chr(97 + i)
258
- if i == 0 and block != 0:
259
- stride = (2, 1)
260
- else:
261
- stride = (1, 1)
262
-
263
- basic_block = self.add_sublayer(
264
- 'bb_%d_%d' % (block, i),
265
- BasicBlock(
266
- in_channels=num_channels[block]
267
- if i == 0 else num_filters[block],
268
- out_channels=num_filters[block],
269
- stride=stride,
270
- shortcut=shortcut,
271
- if_first=block == i == 0,
272
- name=conv_name))
273
- shortcut = True
274
- self.block_list.append(basic_block)
275
- self.out_channels = num_filters[block]
276
- self.out_pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
277
-
278
- def forward(self, inputs):
279
- y = self.conv1_1(inputs)
280
- y = self.conv1_2(y)
281
- y = self.conv1_3(y)
282
- y = self.pool2d_max(y)
283
- for block in self.block_list:
284
- y = block(y)
285
- y = self.out_pool(y)
286
- return y
@@ -1,54 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- __all__ = ['build_head']
16
-
17
-
18
- def build_head(config):
19
- # det head
20
- from .det_db_head import DBHead
21
- from .det_east_head import EASTHead
22
- from .det_sast_head import SASTHead
23
- from .det_pse_head import PSEHead
24
- from .e2e_pg_head import PGHead
25
-
26
- # rec head
27
- from .rec_ctc_head import CTCHead
28
- from .rec_att_head import AttentionHead
29
- from .rec_srn_head import SRNHead
30
- from .rec_nrtr_head import Transformer
31
- from .rec_sar_head import SARHead
32
- from .rec_aster_head import AsterHead
33
-
34
- # cls head
35
- from .cls_head import ClsHead
36
-
37
- #kie head
38
- from .kie_sdmgr_head import SDMGRHead
39
-
40
- from .table_att_head import TableAttentionHead
41
-
42
- support_dict = [
43
- 'DBHead', 'PSEHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead',
44
- 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer',
45
- 'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead'
46
- ]
47
-
48
- #table head
49
-
50
- module_name = config.pop('name')
51
- assert module_name in support_dict, Exception('head only support {}'.format(
52
- support_dict))
53
- module_class = eval(module_name)(**config)
54
- return module_class
@@ -1,52 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import math
20
- import paddle
21
- from paddle import nn, ParamAttr
22
- import paddle.nn.functional as F
23
-
24
-
25
- class ClsHead(nn.Layer):
26
- """
27
- Class orientation
28
-
29
- Args:
30
-
31
- params(dict): super parameters for build Class network
32
- """
33
-
34
- def __init__(self, in_channels, class_dim, **kwargs):
35
- super(ClsHead, self).__init__()
36
- self.pool = nn.AdaptiveAvgPool2D(1)
37
- stdv = 1.0 / math.sqrt(in_channels * 1.0)
38
- self.fc = nn.Linear(
39
- in_channels,
40
- class_dim,
41
- weight_attr=ParamAttr(
42
- name="fc_0.w_0",
43
- initializer=nn.initializer.Uniform(-stdv, stdv)),
44
- bias_attr=ParamAttr(name="fc_0.b_0"), )
45
-
46
- def forward(self, x, targets=None):
47
- x = self.pool(x)
48
- x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
49
- x = self.fc(x)
50
- if not self.training:
51
- x = F.softmax(x, axis=1)
52
- return x