nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nexaai/__init__.py +99 -0
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +4 -0
- nexaai/asr.py +68 -0
- nexaai/asr_impl/__init__.py +0 -0
- nexaai/asr_impl/mlx_asr_impl.py +93 -0
- nexaai/asr_impl/pybind_asr_impl.py +127 -0
- nexaai/base.py +39 -0
- nexaai/binds/__init__.py +7 -0
- nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
- nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
- nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
- nexaai/binds/cpu_gpu/libggml.dylib +0 -0
- nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
- nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/metal/libnexa_plugin.dylib +0 -0
- nexaai/binds/metal/py-lib/ml.py +888 -0
- nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
- nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
- nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
- nexaai/binds/metal/py-lib/profiling.py +239 -0
- nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
- nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
- nexaai/binds/nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexaml/libggml.dylib +0 -0
- nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
- nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
- nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
- nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
- nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexaml/libnexaproc.dylib +0 -0
- nexaai/binds/nexaml/libomp.dylib +0 -0
- nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
- nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
- nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
- nexaai/common.py +106 -0
- nexaai/cv.py +95 -0
- nexaai/cv_impl/__init__.py +0 -0
- nexaai/cv_impl/mlx_cv_impl.py +91 -0
- nexaai/cv_impl/pybind_cv_impl.py +124 -0
- nexaai/diarize.py +80 -0
- nexaai/diarize_impl/__init__.py +1 -0
- nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
- nexaai/embedder.py +73 -0
- nexaai/embedder_impl/__init__.py +0 -0
- nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
- nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
- nexaai/image_gen.py +141 -0
- nexaai/image_gen_impl/__init__.py +0 -0
- nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
- nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
- nexaai/llm.py +98 -0
- nexaai/llm_impl/__init__.py +0 -0
- nexaai/llm_impl/mlx_llm_impl.py +271 -0
- nexaai/llm_impl/pybind_llm_impl.py +238 -0
- nexaai/log.py +92 -0
- nexaai/mlx_backend/asr/__init__.py +12 -0
- nexaai/mlx_backend/asr/interface.py +122 -0
- nexaai/mlx_backend/common/__init__.py +0 -0
- nexaai/mlx_backend/common/utils.py +25 -0
- nexaai/mlx_backend/cv/__init__.py +0 -0
- nexaai/mlx_backend/cv/generate.py +195 -0
- nexaai/mlx_backend/cv/interface.py +162 -0
- nexaai/mlx_backend/cv/main.py +81 -0
- nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/mlx_backend/embedding/__init__.py +0 -0
- nexaai/mlx_backend/embedding/generate.py +333 -0
- nexaai/mlx_backend/embedding/interface.py +617 -0
- nexaai/mlx_backend/embedding/main.py +173 -0
- nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
- nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/mlx_backend/image_gen/__init__.py +1 -0
- nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
- nexaai/mlx_backend/image_gen/interface.py +82 -0
- nexaai/mlx_backend/image_gen/main.py +281 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/mlx_backend/llm/__init__.py +0 -0
- nexaai/mlx_backend/llm/generate.py +149 -0
- nexaai/mlx_backend/llm/interface.py +764 -0
- nexaai/mlx_backend/llm/main.py +68 -0
- nexaai/mlx_backend/ml.py +888 -0
- nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/mlx_backend/mlx_audio/server.py +525 -0
- nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
- nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
- nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
- nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
- nexaai/mlx_backend/mlx_audio/utils.py +237 -0
- nexaai/mlx_backend/mlx_audio/version.py +1 -0
- nexaai/mlx_backend/profiling.py +239 -0
- nexaai/mlx_backend/rerank/__init__.py +0 -0
- nexaai/mlx_backend/rerank/generate.py +174 -0
- nexaai/mlx_backend/rerank/interface.py +287 -0
- nexaai/mlx_backend/rerank/main.py +127 -0
- nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
- nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/mlx_backend/sd/__init__.py +1 -0
- nexaai/mlx_backend/sd/interface.py +362 -0
- nexaai/mlx_backend/sd/main.py +286 -0
- nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
- nexaai/mlx_backend/sd/modeling/clip.py +116 -0
- nexaai/mlx_backend/sd/modeling/config.py +65 -0
- nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
- nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
- nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
- nexaai/mlx_backend/sd/modeling/unet.py +460 -0
- nexaai/mlx_backend/sd/modeling/vae.py +274 -0
- nexaai/mlx_backend/tts/__init__.py +12 -0
- nexaai/mlx_backend/tts/interface.py +276 -0
- nexaai/mlx_backend/vlm/__init__.py +3 -0
- nexaai/mlx_backend/vlm/generate.py +572 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
- nexaai/mlx_backend/vlm/interface.py +559 -0
- nexaai/mlx_backend/vlm/main.py +365 -0
- nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
- nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
- nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
- nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
- nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
- nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
- nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
- nexaai/rerank.py +57 -0
- nexaai/rerank_impl/__init__.py +0 -0
- nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
- nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
- nexaai/runtime.py +68 -0
- nexaai/runtime_error.py +24 -0
- nexaai/tts.py +75 -0
- nexaai/tts_impl/__init__.py +0 -0
- nexaai/tts_impl/mlx_tts_impl.py +94 -0
- nexaai/tts_impl/pybind_tts_impl.py +43 -0
- nexaai/utils/decode.py +18 -0
- nexaai/utils/manifest_utils.py +531 -0
- nexaai/utils/model_manager.py +1745 -0
- nexaai/utils/model_types.py +49 -0
- nexaai/utils/progress_tracker.py +389 -0
- nexaai/utils/quantization_utils.py +245 -0
- nexaai/vlm.py +130 -0
- nexaai/vlm_impl/__init__.py +0 -0
- nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
- nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
- nexaai-1.0.29.dist-info/METADATA +35 -0
- nexaai-1.0.29.dist-info/RECORD +580 -0
- nexaai-1.0.29.dist-info/WHEEL +5 -0
- nexaai-1.0.29.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,337 @@
|
|
|
1
|
+
import glob
|
|
2
|
+
import importlib
|
|
3
|
+
import json
|
|
4
|
+
import logging
|
|
5
|
+
import shutil
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
from typing import List, Optional, Tuple, Union
|
|
8
|
+
|
|
9
|
+
import mlx.core as mx
|
|
10
|
+
import mlx.nn as nn
|
|
11
|
+
from mlx.utils import tree_flatten
|
|
12
|
+
from mlx_lm.convert import mixed_quant_predicate_builder
|
|
13
|
+
from mlx_lm.utils import dequantize_model, quantize_model, save_config, save_model
|
|
14
|
+
|
|
15
|
+
MODEL_REMAPPING = {"outetts": "outetts", "spark": "spark", "sam": "sesame"}
|
|
16
|
+
MAX_FILE_SIZE_GB = 5
|
|
17
|
+
MODEL_CONVERSION_DTYPES = ["float16", "bfloat16", "float32"]
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def get_model_path(path: str, revision: Optional[str] = None) -> Path:
|
|
21
|
+
"""
|
|
22
|
+
Ensures the model is available locally. Only works with local paths.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
path_or_hf_repo (str): The local path to the model.
|
|
26
|
+
revision (str, optional): Ignored for local paths, kept for compatibility.
|
|
27
|
+
|
|
28
|
+
Returns:
|
|
29
|
+
Path: The path to the model.
|
|
30
|
+
|
|
31
|
+
Raises:
|
|
32
|
+
FileNotFoundError: If the local path does not exist.
|
|
33
|
+
"""
|
|
34
|
+
model_path = Path(path)
|
|
35
|
+
|
|
36
|
+
if not model_path.exists():
|
|
37
|
+
raise FileNotFoundError(f"Model path '{path}' does not exist locally. Please ensure the model is available at the specified path.")
|
|
38
|
+
|
|
39
|
+
return model_path
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
# Get a list of all available model types from the models directory
|
|
43
|
+
def get_available_models():
|
|
44
|
+
"""
|
|
45
|
+
Get a list of all available TTS model types by scanning the models directory.
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
List[str]: A list of available model type names
|
|
49
|
+
"""
|
|
50
|
+
models_dir = Path(__file__).parent / "models"
|
|
51
|
+
available_models = []
|
|
52
|
+
|
|
53
|
+
if models_dir.exists() and models_dir.is_dir():
|
|
54
|
+
for item in models_dir.iterdir():
|
|
55
|
+
if item.is_dir() and not item.name.startswith("__"):
|
|
56
|
+
available_models.append(item.name)
|
|
57
|
+
|
|
58
|
+
return available_models
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def get_model_and_args(model_type: str, model_name: List[str]):
|
|
62
|
+
"""
|
|
63
|
+
Retrieve the model architecture module based on the model type and name.
|
|
64
|
+
|
|
65
|
+
This function attempts to find the appropriate model architecture by:
|
|
66
|
+
1. Checking if the model_type is directly in the MODEL_REMAPPING dictionary
|
|
67
|
+
2. Looking for partial matches in segments of the model_name
|
|
68
|
+
|
|
69
|
+
Args:
|
|
70
|
+
model_type (str): The type of model to load (e.g., "outetts").
|
|
71
|
+
model_name (List[str]): List of model name components that might contain
|
|
72
|
+
remapping information.
|
|
73
|
+
|
|
74
|
+
Returns:
|
|
75
|
+
Tuple[module, str]: A tuple containing:
|
|
76
|
+
- The imported architecture module
|
|
77
|
+
- The resolved model_type string after remapping
|
|
78
|
+
|
|
79
|
+
Raises:
|
|
80
|
+
ValueError: If the model type is not supported (module import fails).
|
|
81
|
+
"""
|
|
82
|
+
# Stage 1: Check if the model type is in the remapping
|
|
83
|
+
model_type = MODEL_REMAPPING.get(model_type, model_type)
|
|
84
|
+
|
|
85
|
+
# Stage 2: Check for partial matches in segments of the model name
|
|
86
|
+
models = get_available_models()
|
|
87
|
+
if model_name is not None:
|
|
88
|
+
for part in model_name:
|
|
89
|
+
# First check if the part matches an available model directory name
|
|
90
|
+
if part in models:
|
|
91
|
+
model_type = part
|
|
92
|
+
|
|
93
|
+
# Then check if the part is in our custom remapping dictionary
|
|
94
|
+
if part in MODEL_REMAPPING:
|
|
95
|
+
model_type = MODEL_REMAPPING[part]
|
|
96
|
+
break
|
|
97
|
+
|
|
98
|
+
try:
|
|
99
|
+
arch = importlib.import_module(f"mlx_audio.tts.models.{model_type}")
|
|
100
|
+
except ImportError:
|
|
101
|
+
msg = f"Model type {model_type} not supported."
|
|
102
|
+
logging.error(msg)
|
|
103
|
+
raise ValueError(msg)
|
|
104
|
+
|
|
105
|
+
return arch, model_type
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def load_config(model_path: Union[str, Path], **kwargs) -> dict:
|
|
109
|
+
"""Load model configuration from a local path.
|
|
110
|
+
|
|
111
|
+
Args:
|
|
112
|
+
model_path: Local path to load config from
|
|
113
|
+
**kwargs: Additional keyword arguments (ignored for local loading)
|
|
114
|
+
|
|
115
|
+
Returns:
|
|
116
|
+
dict: Model configuration
|
|
117
|
+
|
|
118
|
+
Raises:
|
|
119
|
+
FileNotFoundError: If config.json is not found at the path
|
|
120
|
+
"""
|
|
121
|
+
if isinstance(model_path, str):
|
|
122
|
+
model_path = get_model_path(model_path)
|
|
123
|
+
|
|
124
|
+
try:
|
|
125
|
+
with open(model_path / "config.json", encoding="utf-8") as f:
|
|
126
|
+
return json.load(f)
|
|
127
|
+
except FileNotFoundError as exc:
|
|
128
|
+
raise FileNotFoundError(f"Config not found at {model_path}") from exc
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
def load_model(
|
|
132
|
+
model_path: Path, lazy: bool = False, strict: bool = True, **kwargs
|
|
133
|
+
) -> nn.Module:
|
|
134
|
+
"""
|
|
135
|
+
Load and initialize the model from a given path.
|
|
136
|
+
|
|
137
|
+
Args:
|
|
138
|
+
model_path (Path): The path to load the model from.
|
|
139
|
+
lazy (bool): If False eval the model parameters to make sure they are
|
|
140
|
+
loaded in memory before returning, otherwise they will be loaded
|
|
141
|
+
when needed. Default: ``False``
|
|
142
|
+
|
|
143
|
+
Returns:
|
|
144
|
+
nn.Module: The loaded and initialized model.
|
|
145
|
+
|
|
146
|
+
Raises:
|
|
147
|
+
FileNotFoundError: If the weight files (.safetensors) are not found.
|
|
148
|
+
ValueError: If the model class or args class are not found or cannot be instantiated.
|
|
149
|
+
"""
|
|
150
|
+
model_name = None
|
|
151
|
+
if isinstance(model_path, str):
|
|
152
|
+
model_name = model_path.lower().split("/")[-1].split("-")
|
|
153
|
+
model_path = get_model_path(model_path)
|
|
154
|
+
elif isinstance(model_path, Path):
|
|
155
|
+
model_name = model_path.name.lower().split("-")
|
|
156
|
+
else:
|
|
157
|
+
raise ValueError(f"Invalid model path type: {type(model_path)}")
|
|
158
|
+
|
|
159
|
+
config = load_config(model_path, **kwargs)
|
|
160
|
+
config["tokenizer_name"] = model_path
|
|
161
|
+
|
|
162
|
+
# Determine model_type from config or model_name
|
|
163
|
+
model_type = config.get("model_type", None)
|
|
164
|
+
if model_type is None:
|
|
165
|
+
model_type = model_name[0].lower() if model_name is not None else None
|
|
166
|
+
|
|
167
|
+
# TODO: remove this check once we cleaned other models.
|
|
168
|
+
if model_type != "kokoro":
|
|
169
|
+
raise ValueError(f"Model type {model_type} not supported. Only kokoro is supported for now.")
|
|
170
|
+
|
|
171
|
+
quantization = config.get("quantization", None)
|
|
172
|
+
|
|
173
|
+
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
|
174
|
+
if not weight_files:
|
|
175
|
+
# Check in LLM directory if no safetensors found in the main directory
|
|
176
|
+
# For Spark model
|
|
177
|
+
weight_files = glob.glob(str(model_path / "LLM" / "*.safetensors"))
|
|
178
|
+
|
|
179
|
+
if not weight_files:
|
|
180
|
+
logging.error(f"No safetensors found in {model_path}")
|
|
181
|
+
message = f"""
|
|
182
|
+
No safetensors found in {model_path}
|
|
183
|
+
Please ensure that the model directory contains the required .safetensors weight files.
|
|
184
|
+
The model directory should contain:
|
|
185
|
+
- config.json (model configuration)
|
|
186
|
+
- *.safetensors (model weights)
|
|
187
|
+
- Any other required model files
|
|
188
|
+
|
|
189
|
+
If you have a PyTorch model, you may need to convert it to safetensors format first.
|
|
190
|
+
"""
|
|
191
|
+
raise FileNotFoundError(message)
|
|
192
|
+
|
|
193
|
+
weights = {}
|
|
194
|
+
for wf in weight_files:
|
|
195
|
+
weights.update(mx.load(wf))
|
|
196
|
+
|
|
197
|
+
model_class, model_type = get_model_and_args(
|
|
198
|
+
model_type=model_type, model_name=model_name
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
# Get model config from model class if it exists, otherwise use the config
|
|
202
|
+
model_config = (
|
|
203
|
+
model_class.ModelConfig.from_dict(config)
|
|
204
|
+
if hasattr(model_class, "ModelConfig")
|
|
205
|
+
else config
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
if model_config is not None and hasattr(model_config, "model_path"):
|
|
209
|
+
# For Spark model
|
|
210
|
+
model_config.model_path = model_path
|
|
211
|
+
|
|
212
|
+
model = model_class.Model(model_config)
|
|
213
|
+
quantization = config.get("quantization", None)
|
|
214
|
+
if quantization is None:
|
|
215
|
+
weights = model.sanitize(weights)
|
|
216
|
+
|
|
217
|
+
if (quantization := config.get("quantization", None)) is not None:
|
|
218
|
+
|
|
219
|
+
def get_class_predicate(p, m):
|
|
220
|
+
# Handle custom per layer quantizations
|
|
221
|
+
if p in config["quantization"]:
|
|
222
|
+
return config["quantization"][p]
|
|
223
|
+
if not hasattr(m, "to_quantized"):
|
|
224
|
+
return False
|
|
225
|
+
# Skip layers not divisible by 64
|
|
226
|
+
if hasattr(m, "weight") and m.weight.size % 64 != 0:
|
|
227
|
+
return False
|
|
228
|
+
# Handle legacy models which may not have everything quantized
|
|
229
|
+
return f"{p}.scales" in weights
|
|
230
|
+
|
|
231
|
+
nn.quantize(
|
|
232
|
+
model,
|
|
233
|
+
group_size=quantization["group_size"],
|
|
234
|
+
bits=quantization["bits"],
|
|
235
|
+
class_predicate=get_class_predicate,
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
model.load_weights(list(weights.items()), strict=strict)
|
|
239
|
+
|
|
240
|
+
if not lazy:
|
|
241
|
+
mx.eval(model.parameters())
|
|
242
|
+
|
|
243
|
+
model.eval()
|
|
244
|
+
return model
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
def convert(
|
|
248
|
+
hf_path: str,
|
|
249
|
+
mlx_path: str = "mlx_model",
|
|
250
|
+
quantize: bool = False,
|
|
251
|
+
q_group_size: int = 64,
|
|
252
|
+
q_bits: int = 4,
|
|
253
|
+
dtype: str = None,
|
|
254
|
+
revision: Optional[str] = None,
|
|
255
|
+
dequantize: bool = False,
|
|
256
|
+
trust_remote_code: bool = True,
|
|
257
|
+
quant_predicate: Optional[str] = None,
|
|
258
|
+
):
|
|
259
|
+
print("[INFO] Loading")
|
|
260
|
+
model_path = get_model_path(hf_path, revision=revision)
|
|
261
|
+
model = load_model(model_path, lazy=True, trust_remote_code=trust_remote_code)
|
|
262
|
+
config = load_config(model_path, trust_remote_code=trust_remote_code)
|
|
263
|
+
|
|
264
|
+
if isinstance(quant_predicate, str):
|
|
265
|
+
quant_predicate = mixed_quant_predicate_builder(quant_predicate, model)
|
|
266
|
+
|
|
267
|
+
# Get model-specific quantization predicate if available
|
|
268
|
+
model_quant_predicate = getattr(
|
|
269
|
+
model, "model_quant_predicate", lambda p, m, config: True
|
|
270
|
+
)
|
|
271
|
+
|
|
272
|
+
# Define base quantization requirements
|
|
273
|
+
def base_quant_requirements(p, m, config):
|
|
274
|
+
return (
|
|
275
|
+
hasattr(m, "weight")
|
|
276
|
+
and m.weight.shape[-1] % 64 == 0 # Skip layers not divisible by 64
|
|
277
|
+
and hasattr(m, "to_quantized")
|
|
278
|
+
and model_quant_predicate(p, m, config)
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
# Combine with user-provided predicate if available
|
|
282
|
+
if quant_predicate is None:
|
|
283
|
+
quant_predicate = base_quant_requirements
|
|
284
|
+
else:
|
|
285
|
+
original_predicate = quant_predicate
|
|
286
|
+
quant_predicate = lambda p, m, config: (
|
|
287
|
+
base_quant_requirements(p, m, config) and original_predicate(p, m, config)
|
|
288
|
+
)
|
|
289
|
+
|
|
290
|
+
weights = dict(tree_flatten(model.parameters()))
|
|
291
|
+
|
|
292
|
+
if dtype is None:
|
|
293
|
+
dtype = config.get("torch_dtype", None)
|
|
294
|
+
if dtype in MODEL_CONVERSION_DTYPES:
|
|
295
|
+
print("[INFO] Using dtype:", dtype)
|
|
296
|
+
dtype = getattr(mx, dtype)
|
|
297
|
+
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
|
298
|
+
|
|
299
|
+
if quantize and dequantize:
|
|
300
|
+
raise ValueError("Choose either quantize or dequantize, not both.")
|
|
301
|
+
|
|
302
|
+
if quantize:
|
|
303
|
+
print("[INFO] Quantizing")
|
|
304
|
+
model.load_weights(list(weights.items()))
|
|
305
|
+
weights, config = quantize_model(
|
|
306
|
+
model, config, q_group_size, q_bits, quant_predicate=quant_predicate
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
if dequantize:
|
|
310
|
+
print("[INFO] Dequantizing")
|
|
311
|
+
model = dequantize_model(model)
|
|
312
|
+
weights = dict(tree_flatten(model.parameters()))
|
|
313
|
+
|
|
314
|
+
if isinstance(mlx_path, str):
|
|
315
|
+
mlx_path = Path(mlx_path)
|
|
316
|
+
|
|
317
|
+
# Ensure the destination directory for MLX model exists before copying files
|
|
318
|
+
mlx_path.mkdir(parents=True, exist_ok=True)
|
|
319
|
+
|
|
320
|
+
# Copy Python and JSON files from the model path to the MLX path
|
|
321
|
+
for pattern in ["*.py", "*.json", "*.wav", "*.pt", "*.safetensors", "*.yaml"]:
|
|
322
|
+
files = glob.glob(str(model_path / pattern))
|
|
323
|
+
for file in files:
|
|
324
|
+
shutil.copy(file, mlx_path)
|
|
325
|
+
|
|
326
|
+
# Check files in subdirectories up to two levels deep
|
|
327
|
+
subdir_files = glob.glob(str(model_path / "**" / pattern), recursive=True)
|
|
328
|
+
for file in subdir_files:
|
|
329
|
+
rel_path = Path(file).relative_to(model_path)
|
|
330
|
+
# Create subdirectories if they don't exist
|
|
331
|
+
dest_dir = mlx_path / rel_path.parent
|
|
332
|
+
dest_dir.mkdir(parents=True, exist_ok=True)
|
|
333
|
+
shutil.copy(file, dest_dir)
|
|
334
|
+
|
|
335
|
+
save_model(mlx_path, model, donate_model=True)
|
|
336
|
+
|
|
337
|
+
save_config(config, config_path=mlx_path / "config.json")
|
|
@@ -0,0 +1,237 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from functools import lru_cache
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
import mlx.core as mx
|
|
6
|
+
|
|
7
|
+
# Common window functions
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@lru_cache(maxsize=None)
|
|
11
|
+
def hanning(size):
|
|
12
|
+
return mx.array(
|
|
13
|
+
[0.5 * (1 - math.cos(2 * math.pi * n / (size - 1))) for n in range(size)]
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@lru_cache(maxsize=None)
|
|
18
|
+
def hamming(size):
|
|
19
|
+
return mx.array(
|
|
20
|
+
[0.54 - 0.46 * math.cos(2 * math.pi * n / (size - 1)) for n in range(size)]
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@lru_cache(maxsize=None)
|
|
25
|
+
def blackman(size):
|
|
26
|
+
return mx.array(
|
|
27
|
+
[
|
|
28
|
+
0.42
|
|
29
|
+
- 0.5 * math.cos(2 * math.pi * n / (size - 1))
|
|
30
|
+
+ 0.08 * math.cos(4 * math.pi * n / (size - 1))
|
|
31
|
+
for n in range(size)
|
|
32
|
+
]
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@lru_cache(maxsize=None)
|
|
37
|
+
def bartlett(size):
|
|
38
|
+
return mx.array([1 - 2 * abs(n - (size - 1) / 2) / (size - 1) for n in range(size)])
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
STR_TO_WINDOW_FN = {
|
|
42
|
+
"hann": hanning,
|
|
43
|
+
"hanning": hanning,
|
|
44
|
+
"hamming": hamming,
|
|
45
|
+
"blackman": blackman,
|
|
46
|
+
"bartlett": bartlett,
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
# STFT and ISTFT
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def stft(
|
|
53
|
+
x,
|
|
54
|
+
n_fft=800,
|
|
55
|
+
hop_length=None,
|
|
56
|
+
win_length=None,
|
|
57
|
+
window: mx.array | str = "hann",
|
|
58
|
+
center=True,
|
|
59
|
+
pad_mode="reflect",
|
|
60
|
+
):
|
|
61
|
+
if hop_length is None:
|
|
62
|
+
hop_length = n_fft // 4
|
|
63
|
+
if win_length is None:
|
|
64
|
+
win_length = n_fft
|
|
65
|
+
|
|
66
|
+
if isinstance(window, str):
|
|
67
|
+
window_fn = STR_TO_WINDOW_FN.get(window.lower())
|
|
68
|
+
if window_fn is None:
|
|
69
|
+
raise ValueError(f"Unknown window function: {window}")
|
|
70
|
+
w = window_fn(win_length)
|
|
71
|
+
else:
|
|
72
|
+
w = window
|
|
73
|
+
|
|
74
|
+
if w.shape[0] < n_fft:
|
|
75
|
+
pad_size = n_fft - w.shape[0]
|
|
76
|
+
w = mx.concatenate([w, mx.zeros((pad_size,))], axis=0)
|
|
77
|
+
|
|
78
|
+
def _pad(x, padding, pad_mode="reflect"):
|
|
79
|
+
if pad_mode == "constant":
|
|
80
|
+
return mx.pad(x, [(padding, padding)])
|
|
81
|
+
elif pad_mode == "reflect":
|
|
82
|
+
prefix = x[1 : padding + 1][::-1]
|
|
83
|
+
suffix = x[-(padding + 1) : -1][::-1]
|
|
84
|
+
return mx.concatenate([prefix, x, suffix])
|
|
85
|
+
else:
|
|
86
|
+
raise ValueError(f"Invalid pad_mode {pad_mode}")
|
|
87
|
+
|
|
88
|
+
if center:
|
|
89
|
+
x = _pad(x, n_fft // 2, pad_mode)
|
|
90
|
+
|
|
91
|
+
num_frames = 1 + (x.shape[0] - n_fft) // hop_length
|
|
92
|
+
if num_frames <= 0:
|
|
93
|
+
raise ValueError(
|
|
94
|
+
f"Input is too short (length={x.shape[0]}) for n_fft={n_fft} with "
|
|
95
|
+
f"hop_length={hop_length} and center={center}."
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
shape = (num_frames, n_fft)
|
|
99
|
+
strides = (hop_length, 1)
|
|
100
|
+
frames = mx.as_strided(x, shape=shape, strides=strides)
|
|
101
|
+
return mx.fft.rfft(frames * w)
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def istft(
|
|
105
|
+
x,
|
|
106
|
+
hop_length=None,
|
|
107
|
+
win_length=None,
|
|
108
|
+
window="hann",
|
|
109
|
+
center=True,
|
|
110
|
+
length=None,
|
|
111
|
+
):
|
|
112
|
+
if win_length is None:
|
|
113
|
+
win_length = (x.shape[1] - 1) * 2
|
|
114
|
+
if hop_length is None:
|
|
115
|
+
hop_length = win_length // 4
|
|
116
|
+
|
|
117
|
+
if isinstance(window, str):
|
|
118
|
+
window_fn = STR_TO_WINDOW_FN.get(window.lower())
|
|
119
|
+
if window_fn is None:
|
|
120
|
+
raise ValueError(f"Unknown window function: {window}")
|
|
121
|
+
w = window_fn(win_length + 1)[:-1]
|
|
122
|
+
else:
|
|
123
|
+
w = window
|
|
124
|
+
|
|
125
|
+
if w.shape[0] < win_length:
|
|
126
|
+
w = mx.concatenate([w, mx.zeros((win_length - w.shape[0],))], axis=0)
|
|
127
|
+
|
|
128
|
+
num_frames = x.shape[1]
|
|
129
|
+
t = (num_frames - 1) * hop_length + win_length
|
|
130
|
+
|
|
131
|
+
reconstructed = mx.zeros(t)
|
|
132
|
+
window_sum = mx.zeros(t)
|
|
133
|
+
|
|
134
|
+
# inverse FFT of each frame
|
|
135
|
+
frames_time = mx.fft.irfft(x, axis=0).transpose(1, 0)
|
|
136
|
+
|
|
137
|
+
# get the position in the time-domain signal to add the frame
|
|
138
|
+
frame_offsets = mx.arange(num_frames) * hop_length
|
|
139
|
+
indices = frame_offsets[:, None] + mx.arange(win_length)
|
|
140
|
+
indices_flat = indices.flatten()
|
|
141
|
+
|
|
142
|
+
updates_reconstructed = (frames_time * w).flatten()
|
|
143
|
+
updates_window = mx.tile(w, (num_frames,)).flatten()
|
|
144
|
+
|
|
145
|
+
# overlap-add the inverse transformed frame, scaled by the window
|
|
146
|
+
reconstructed = reconstructed.at[indices_flat].add(updates_reconstructed)
|
|
147
|
+
window_sum = window_sum.at[indices_flat].add(updates_window)
|
|
148
|
+
|
|
149
|
+
# normalize by the sum of the window values
|
|
150
|
+
reconstructed = mx.where(window_sum != 0, reconstructed / window_sum, reconstructed)
|
|
151
|
+
|
|
152
|
+
if center and length is None:
|
|
153
|
+
reconstructed = reconstructed[win_length // 2 : -win_length // 2]
|
|
154
|
+
|
|
155
|
+
if length is not None:
|
|
156
|
+
reconstructed = reconstructed[:length]
|
|
157
|
+
|
|
158
|
+
return reconstructed
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
# Mel filterbank
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
@lru_cache(maxsize=None)
|
|
165
|
+
def mel_filters(
|
|
166
|
+
sample_rate: int,
|
|
167
|
+
n_fft: int,
|
|
168
|
+
n_mels: int,
|
|
169
|
+
f_min: float = 0,
|
|
170
|
+
f_max: Optional[float] = None,
|
|
171
|
+
norm: Optional[str] = None,
|
|
172
|
+
mel_scale: str = "htk",
|
|
173
|
+
) -> mx.array:
|
|
174
|
+
def hz_to_mel(freq, mel_scale="htk"):
|
|
175
|
+
if mel_scale == "htk":
|
|
176
|
+
return 2595.0 * math.log10(1.0 + freq / 700.0)
|
|
177
|
+
|
|
178
|
+
# slaney scale
|
|
179
|
+
f_min, f_sp = 0.0, 200.0 / 3
|
|
180
|
+
mels = (freq - f_min) / f_sp
|
|
181
|
+
min_log_hz = 1000.0
|
|
182
|
+
min_log_mel = (min_log_hz - f_min) / f_sp
|
|
183
|
+
logstep = math.log(6.4) / 27.0
|
|
184
|
+
if freq >= min_log_hz:
|
|
185
|
+
mels = min_log_mel + math.log(freq / min_log_hz) / logstep
|
|
186
|
+
return mels
|
|
187
|
+
|
|
188
|
+
def mel_to_hz(mels, mel_scale="htk"):
|
|
189
|
+
if mel_scale == "htk":
|
|
190
|
+
return 700.0 * (10.0 ** (mels / 2595.0) - 1.0)
|
|
191
|
+
|
|
192
|
+
# slaney scale
|
|
193
|
+
f_min, f_sp = 0.0, 200.0 / 3
|
|
194
|
+
freqs = f_min + f_sp * mels
|
|
195
|
+
min_log_hz = 1000.0
|
|
196
|
+
min_log_mel = (min_log_hz - f_min) / f_sp
|
|
197
|
+
logstep = math.log(6.4) / 27.0
|
|
198
|
+
freqs = mx.where(
|
|
199
|
+
mels >= min_log_mel,
|
|
200
|
+
min_log_hz * mx.exp(logstep * (mels - min_log_mel)),
|
|
201
|
+
freqs,
|
|
202
|
+
)
|
|
203
|
+
return freqs
|
|
204
|
+
|
|
205
|
+
f_max = f_max or sample_rate / 2
|
|
206
|
+
|
|
207
|
+
# generate frequency points
|
|
208
|
+
|
|
209
|
+
n_freqs = n_fft // 2 + 1
|
|
210
|
+
all_freqs = mx.linspace(0, sample_rate // 2, n_freqs)
|
|
211
|
+
|
|
212
|
+
# convert frequencies to mel and back to hz
|
|
213
|
+
|
|
214
|
+
m_min = hz_to_mel(f_min, mel_scale)
|
|
215
|
+
m_max = hz_to_mel(f_max, mel_scale)
|
|
216
|
+
m_pts = mx.linspace(m_min, m_max, n_mels + 2)
|
|
217
|
+
f_pts = mel_to_hz(m_pts, mel_scale)
|
|
218
|
+
|
|
219
|
+
# compute slopes for filterbank
|
|
220
|
+
|
|
221
|
+
f_diff = f_pts[1:] - f_pts[:-1]
|
|
222
|
+
slopes = mx.expand_dims(f_pts, 0) - mx.expand_dims(all_freqs, 1)
|
|
223
|
+
|
|
224
|
+
# calculate overlapping triangular filters
|
|
225
|
+
|
|
226
|
+
down_slopes = (-slopes[:, :-2]) / f_diff[:-1]
|
|
227
|
+
up_slopes = slopes[:, 2:] / f_diff[1:]
|
|
228
|
+
filterbank = mx.maximum(
|
|
229
|
+
mx.zeros_like(down_slopes), mx.minimum(down_slopes, up_slopes)
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
if norm == "slaney":
|
|
233
|
+
enorm = 2.0 / (f_pts[2 : n_mels + 2] - f_pts[:n_mels])
|
|
234
|
+
filterbank *= mx.expand_dims(enorm, 0)
|
|
235
|
+
|
|
236
|
+
filterbank = filterbank.moveaxis(0, 1)
|
|
237
|
+
return filterbank
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__ = "0.2.3"
|