nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nexaai/__init__.py +99 -0
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +4 -0
- nexaai/asr.py +68 -0
- nexaai/asr_impl/__init__.py +0 -0
- nexaai/asr_impl/mlx_asr_impl.py +93 -0
- nexaai/asr_impl/pybind_asr_impl.py +127 -0
- nexaai/base.py +39 -0
- nexaai/binds/__init__.py +7 -0
- nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
- nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
- nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
- nexaai/binds/cpu_gpu/libggml.dylib +0 -0
- nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
- nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/metal/libnexa_plugin.dylib +0 -0
- nexaai/binds/metal/py-lib/ml.py +888 -0
- nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
- nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
- nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
- nexaai/binds/metal/py-lib/profiling.py +239 -0
- nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
- nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
- nexaai/binds/nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexaml/libggml.dylib +0 -0
- nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
- nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
- nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
- nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
- nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexaml/libnexaproc.dylib +0 -0
- nexaai/binds/nexaml/libomp.dylib +0 -0
- nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
- nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
- nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
- nexaai/common.py +106 -0
- nexaai/cv.py +95 -0
- nexaai/cv_impl/__init__.py +0 -0
- nexaai/cv_impl/mlx_cv_impl.py +91 -0
- nexaai/cv_impl/pybind_cv_impl.py +124 -0
- nexaai/diarize.py +80 -0
- nexaai/diarize_impl/__init__.py +1 -0
- nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
- nexaai/embedder.py +73 -0
- nexaai/embedder_impl/__init__.py +0 -0
- nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
- nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
- nexaai/image_gen.py +141 -0
- nexaai/image_gen_impl/__init__.py +0 -0
- nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
- nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
- nexaai/llm.py +98 -0
- nexaai/llm_impl/__init__.py +0 -0
- nexaai/llm_impl/mlx_llm_impl.py +271 -0
- nexaai/llm_impl/pybind_llm_impl.py +238 -0
- nexaai/log.py +92 -0
- nexaai/mlx_backend/asr/__init__.py +12 -0
- nexaai/mlx_backend/asr/interface.py +122 -0
- nexaai/mlx_backend/common/__init__.py +0 -0
- nexaai/mlx_backend/common/utils.py +25 -0
- nexaai/mlx_backend/cv/__init__.py +0 -0
- nexaai/mlx_backend/cv/generate.py +195 -0
- nexaai/mlx_backend/cv/interface.py +162 -0
- nexaai/mlx_backend/cv/main.py +81 -0
- nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/mlx_backend/embedding/__init__.py +0 -0
- nexaai/mlx_backend/embedding/generate.py +333 -0
- nexaai/mlx_backend/embedding/interface.py +617 -0
- nexaai/mlx_backend/embedding/main.py +173 -0
- nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
- nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/mlx_backend/image_gen/__init__.py +1 -0
- nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
- nexaai/mlx_backend/image_gen/interface.py +82 -0
- nexaai/mlx_backend/image_gen/main.py +281 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/mlx_backend/llm/__init__.py +0 -0
- nexaai/mlx_backend/llm/generate.py +149 -0
- nexaai/mlx_backend/llm/interface.py +764 -0
- nexaai/mlx_backend/llm/main.py +68 -0
- nexaai/mlx_backend/ml.py +888 -0
- nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/mlx_backend/mlx_audio/server.py +525 -0
- nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
- nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
- nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
- nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
- nexaai/mlx_backend/mlx_audio/utils.py +237 -0
- nexaai/mlx_backend/mlx_audio/version.py +1 -0
- nexaai/mlx_backend/profiling.py +239 -0
- nexaai/mlx_backend/rerank/__init__.py +0 -0
- nexaai/mlx_backend/rerank/generate.py +174 -0
- nexaai/mlx_backend/rerank/interface.py +287 -0
- nexaai/mlx_backend/rerank/main.py +127 -0
- nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
- nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/mlx_backend/sd/__init__.py +1 -0
- nexaai/mlx_backend/sd/interface.py +362 -0
- nexaai/mlx_backend/sd/main.py +286 -0
- nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
- nexaai/mlx_backend/sd/modeling/clip.py +116 -0
- nexaai/mlx_backend/sd/modeling/config.py +65 -0
- nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
- nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
- nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
- nexaai/mlx_backend/sd/modeling/unet.py +460 -0
- nexaai/mlx_backend/sd/modeling/vae.py +274 -0
- nexaai/mlx_backend/tts/__init__.py +12 -0
- nexaai/mlx_backend/tts/interface.py +276 -0
- nexaai/mlx_backend/vlm/__init__.py +3 -0
- nexaai/mlx_backend/vlm/generate.py +572 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
- nexaai/mlx_backend/vlm/interface.py +559 -0
- nexaai/mlx_backend/vlm/main.py +365 -0
- nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
- nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
- nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
- nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
- nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
- nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
- nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
- nexaai/rerank.py +57 -0
- nexaai/rerank_impl/__init__.py +0 -0
- nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
- nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
- nexaai/runtime.py +68 -0
- nexaai/runtime_error.py +24 -0
- nexaai/tts.py +75 -0
- nexaai/tts_impl/__init__.py +0 -0
- nexaai/tts_impl/mlx_tts_impl.py +94 -0
- nexaai/tts_impl/pybind_tts_impl.py +43 -0
- nexaai/utils/decode.py +18 -0
- nexaai/utils/manifest_utils.py +531 -0
- nexaai/utils/model_manager.py +1745 -0
- nexaai/utils/model_types.py +49 -0
- nexaai/utils/progress_tracker.py +389 -0
- nexaai/utils/quantization_utils.py +245 -0
- nexaai/vlm.py +130 -0
- nexaai/vlm_impl/__init__.py +0 -0
- nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
- nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
- nexaai-1.0.29.dist-info/METADATA +35 -0
- nexaai-1.0.29.dist-info/RECORD +580 -0
- nexaai-1.0.29.dist-info/WHEEL +5 -0
- nexaai-1.0.29.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,862 @@
|
|
|
1
|
+
# modified
|
|
2
|
+
# Copyright © 2023 Apple Inc.
|
|
3
|
+
|
|
4
|
+
import base64
|
|
5
|
+
import gzip
|
|
6
|
+
import json
|
|
7
|
+
import math
|
|
8
|
+
import sys
|
|
9
|
+
import warnings
|
|
10
|
+
from dataclasses import dataclass
|
|
11
|
+
from pathlib import Path
|
|
12
|
+
from typing import List, Optional, Tuple, Union
|
|
13
|
+
|
|
14
|
+
import mlx.core as mx
|
|
15
|
+
import mlx.nn as nn
|
|
16
|
+
import numpy as np
|
|
17
|
+
import tqdm
|
|
18
|
+
from mlx.utils import tree_unflatten
|
|
19
|
+
|
|
20
|
+
from .audio import (
|
|
21
|
+
FRAMES_PER_SECOND,
|
|
22
|
+
HOP_LENGTH,
|
|
23
|
+
N_FRAMES,
|
|
24
|
+
N_SAMPLES,
|
|
25
|
+
SAMPLE_RATE,
|
|
26
|
+
log_mel_spectrogram,
|
|
27
|
+
pad_or_trim,
|
|
28
|
+
)
|
|
29
|
+
from .decoding import DecodingOptions, DecodingResult
|
|
30
|
+
from .decoding import decode as decode_function
|
|
31
|
+
from .decoding import detect_language as detect_language_function
|
|
32
|
+
from .timing import add_word_timestamps
|
|
33
|
+
from .tokenizer import LANGUAGES, get_tokenizer
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def _format_timestamp(seconds: float):
|
|
37
|
+
assert seconds >= 0, "non-negative timestamp expected"
|
|
38
|
+
milliseconds = round(seconds * 1000.0)
|
|
39
|
+
|
|
40
|
+
hours = milliseconds // 3_600_000
|
|
41
|
+
milliseconds -= hours * 3_600_000
|
|
42
|
+
|
|
43
|
+
minutes = milliseconds // 60_000
|
|
44
|
+
milliseconds -= minutes * 60_000
|
|
45
|
+
|
|
46
|
+
seconds = milliseconds // 1_000
|
|
47
|
+
milliseconds -= seconds * 1_000
|
|
48
|
+
|
|
49
|
+
hours_marker = f"{hours:02d}:" if hours > 0 else ""
|
|
50
|
+
return f"{hours_marker}{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def _get_end(segments: List[dict]) -> Optional[float]:
|
|
54
|
+
return next(
|
|
55
|
+
(w["end"] for s in reversed(segments) for w in reversed(s["words"])),
|
|
56
|
+
segments[-1]["end"] if segments else None,
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
@dataclass
|
|
61
|
+
class STTOutput:
|
|
62
|
+
text: str
|
|
63
|
+
segments: List[dict] = None
|
|
64
|
+
language: str = None
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
@dataclass
|
|
68
|
+
class ModelDimensions:
|
|
69
|
+
n_mels: int
|
|
70
|
+
n_audio_ctx: int
|
|
71
|
+
n_audio_state: int
|
|
72
|
+
n_audio_head: int
|
|
73
|
+
n_audio_layer: int
|
|
74
|
+
n_vocab: int
|
|
75
|
+
n_text_ctx: int
|
|
76
|
+
n_text_state: int
|
|
77
|
+
n_text_head: int
|
|
78
|
+
n_text_layer: int
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def sinusoids(length, channels, max_timescale=10000):
|
|
82
|
+
"""Returns sinusoids for positional embedding"""
|
|
83
|
+
assert channels % 2 == 0
|
|
84
|
+
log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1)
|
|
85
|
+
inv_timescales = mx.exp(-log_timescale_increment * mx.arange(channels // 2))
|
|
86
|
+
scaled_time = mx.arange(length)[:, None] * inv_timescales[None, :]
|
|
87
|
+
return mx.concatenate([mx.sin(scaled_time), mx.cos(scaled_time)], axis=1)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class MultiHeadAttention(nn.Module):
|
|
91
|
+
def __init__(self, n_state: int, n_head: int):
|
|
92
|
+
super().__init__()
|
|
93
|
+
self.n_head = n_head
|
|
94
|
+
self.query = nn.Linear(n_state, n_state)
|
|
95
|
+
self.key = nn.Linear(n_state, n_state, bias=False)
|
|
96
|
+
self.value = nn.Linear(n_state, n_state)
|
|
97
|
+
self.out = nn.Linear(n_state, n_state)
|
|
98
|
+
|
|
99
|
+
def __call__(
|
|
100
|
+
self,
|
|
101
|
+
x,
|
|
102
|
+
xa=None,
|
|
103
|
+
mask=None,
|
|
104
|
+
kv_cache=None,
|
|
105
|
+
):
|
|
106
|
+
q = self.query(x)
|
|
107
|
+
|
|
108
|
+
if xa is None:
|
|
109
|
+
k = self.key(x)
|
|
110
|
+
v = self.value(x)
|
|
111
|
+
if kv_cache is not None:
|
|
112
|
+
k = mx.concatenate([kv_cache[0], k], axis=1)
|
|
113
|
+
v = mx.concatenate([kv_cache[1], v], axis=1)
|
|
114
|
+
elif kv_cache is None:
|
|
115
|
+
k = self.key(xa)
|
|
116
|
+
v = self.value(xa)
|
|
117
|
+
else:
|
|
118
|
+
k, v = kv_cache
|
|
119
|
+
|
|
120
|
+
wv, qk = self.qkv_attention(q, k, v, mask)
|
|
121
|
+
return self.out(wv), (k, v), qk
|
|
122
|
+
|
|
123
|
+
def qkv_attention(self, q, k, v, mask=None):
|
|
124
|
+
n_batch, n_ctx, n_state = q.shape
|
|
125
|
+
scale = (n_state // self.n_head) ** -0.25
|
|
126
|
+
q = q.reshape(*q.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3) * scale
|
|
127
|
+
k = k.reshape(*k.shape[:2], self.n_head, -1).transpose(0, 2, 3, 1) * scale
|
|
128
|
+
v = v.reshape(*v.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3)
|
|
129
|
+
|
|
130
|
+
qk = q @ k
|
|
131
|
+
if mask is not None:
|
|
132
|
+
qk = qk + mask[:n_ctx, :n_ctx]
|
|
133
|
+
|
|
134
|
+
w = mx.softmax(qk, axis=-1, precise=True)
|
|
135
|
+
out = (w @ v).transpose(0, 2, 1, 3)
|
|
136
|
+
out = out.reshape(n_batch, n_ctx, n_state)
|
|
137
|
+
return out, qk
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
class ResidualAttentionBlock(nn.Module):
|
|
141
|
+
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
|
142
|
+
super().__init__()
|
|
143
|
+
|
|
144
|
+
self.attn = MultiHeadAttention(n_state, n_head)
|
|
145
|
+
self.attn_ln = nn.LayerNorm(n_state)
|
|
146
|
+
|
|
147
|
+
self.cross_attn = (
|
|
148
|
+
MultiHeadAttention(n_state, n_head) if cross_attention else None
|
|
149
|
+
)
|
|
150
|
+
self.cross_attn_ln = nn.LayerNorm(n_state) if cross_attention else None
|
|
151
|
+
|
|
152
|
+
n_mlp = n_state * 4
|
|
153
|
+
self.mlp1 = nn.Linear(n_state, n_mlp)
|
|
154
|
+
self.mlp2 = nn.Linear(n_mlp, n_state)
|
|
155
|
+
self.mlp_ln = nn.LayerNorm(n_state)
|
|
156
|
+
|
|
157
|
+
def __call__(self, x, xa=None, mask=None, kv_cache=None):
|
|
158
|
+
kv, cross_kv = kv_cache if kv_cache else (None, None)
|
|
159
|
+
y, kv, _ = self.attn(self.attn_ln(x), mask=mask, kv_cache=kv)
|
|
160
|
+
x += y
|
|
161
|
+
cross_qk = None
|
|
162
|
+
if self.cross_attn:
|
|
163
|
+
y, cross_kv, cross_qk = self.cross_attn(
|
|
164
|
+
self.cross_attn_ln(x), xa, kv_cache=cross_kv
|
|
165
|
+
)
|
|
166
|
+
x += y
|
|
167
|
+
x = x + self.mlp2(nn.gelu(self.mlp1(self.mlp_ln(x))))
|
|
168
|
+
return x, (kv, cross_kv), cross_qk
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
class AudioEncoder(nn.Module):
|
|
172
|
+
def __init__(
|
|
173
|
+
self,
|
|
174
|
+
n_mels: int,
|
|
175
|
+
n_ctx: int,
|
|
176
|
+
n_state: int,
|
|
177
|
+
n_head: int,
|
|
178
|
+
n_layer: int,
|
|
179
|
+
dtype: mx.Dtype = mx.float16,
|
|
180
|
+
):
|
|
181
|
+
super().__init__()
|
|
182
|
+
self.conv1 = nn.Conv1d(n_mels, n_state, kernel_size=3, padding=1)
|
|
183
|
+
self.conv2 = nn.Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
|
|
184
|
+
self._positional_embedding = sinusoids(n_ctx, n_state).astype(dtype)
|
|
185
|
+
|
|
186
|
+
self.blocks = [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
|
|
187
|
+
self.ln_post = nn.LayerNorm(n_state)
|
|
188
|
+
|
|
189
|
+
def __call__(self, x):
|
|
190
|
+
x = nn.gelu(self.conv1(x))
|
|
191
|
+
x = nn.gelu(self.conv2(x))
|
|
192
|
+
assert x.shape[1:] == self._positional_embedding.shape, "incorrect audio shape"
|
|
193
|
+
x = x + self._positional_embedding
|
|
194
|
+
|
|
195
|
+
for block in self.blocks:
|
|
196
|
+
x, _, _ = block(x)
|
|
197
|
+
|
|
198
|
+
x = self.ln_post(x)
|
|
199
|
+
return x
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
class TextDecoder(nn.Module):
|
|
203
|
+
def __init__(
|
|
204
|
+
self,
|
|
205
|
+
n_vocab: int,
|
|
206
|
+
n_ctx: int,
|
|
207
|
+
n_state: int,
|
|
208
|
+
n_head: int,
|
|
209
|
+
n_layer: int,
|
|
210
|
+
dtype: mx.Dtype = mx.float16,
|
|
211
|
+
):
|
|
212
|
+
super().__init__()
|
|
213
|
+
|
|
214
|
+
self.token_embedding = nn.Embedding(n_vocab, n_state)
|
|
215
|
+
self.positional_embedding = mx.zeros((n_ctx, n_state))
|
|
216
|
+
|
|
217
|
+
self.blocks = [
|
|
218
|
+
ResidualAttentionBlock(n_state, n_head, cross_attention=True)
|
|
219
|
+
for _ in range(n_layer)
|
|
220
|
+
]
|
|
221
|
+
self.ln = nn.LayerNorm(n_state)
|
|
222
|
+
self._mask = nn.MultiHeadAttention.create_additive_causal_mask(n_ctx).astype(
|
|
223
|
+
dtype
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
def __call__(self, x, xa, kv_cache=None):
|
|
227
|
+
"""
|
|
228
|
+
x : mx.array, shape = (batch_size, <= n_ctx)
|
|
229
|
+
the text tokens
|
|
230
|
+
xa : mx.array, shape = (batch_size, n_audio_ctx, n_audio_state)
|
|
231
|
+
the encoded audio features to be attended on
|
|
232
|
+
"""
|
|
233
|
+
offset = kv_cache[0][0][0].shape[1] if kv_cache else 0
|
|
234
|
+
x = (
|
|
235
|
+
self.token_embedding(x)
|
|
236
|
+
+ self.positional_embedding[offset : offset + x.shape[-1]]
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
if kv_cache is None:
|
|
240
|
+
kv_cache = [None] * len(self.blocks)
|
|
241
|
+
cross_qk = [None] * len(self.blocks)
|
|
242
|
+
for e, block in enumerate(self.blocks):
|
|
243
|
+
x, kv_cache[e], cross_qk[e] = block(
|
|
244
|
+
x, xa, mask=self._mask, kv_cache=kv_cache[e]
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
x = self.ln(x)
|
|
248
|
+
return self.token_embedding.as_linear(x), kv_cache, cross_qk
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
class Model(nn.Module):
|
|
252
|
+
def __init__(self, dims: ModelDimensions, dtype: mx.Dtype = mx.float16):
|
|
253
|
+
super().__init__()
|
|
254
|
+
self.dims = dims
|
|
255
|
+
self.dtype = dtype
|
|
256
|
+
self.encoder = AudioEncoder(
|
|
257
|
+
self.dims.n_mels,
|
|
258
|
+
self.dims.n_audio_ctx,
|
|
259
|
+
self.dims.n_audio_state,
|
|
260
|
+
self.dims.n_audio_head,
|
|
261
|
+
self.dims.n_audio_layer,
|
|
262
|
+
dtype,
|
|
263
|
+
)
|
|
264
|
+
self.decoder = TextDecoder(
|
|
265
|
+
self.dims.n_vocab,
|
|
266
|
+
self.dims.n_text_ctx,
|
|
267
|
+
self.dims.n_text_state,
|
|
268
|
+
self.dims.n_text_head,
|
|
269
|
+
self.dims.n_text_layer,
|
|
270
|
+
dtype,
|
|
271
|
+
)
|
|
272
|
+
# use the last half among the decoder layers for time alignment by default;
|
|
273
|
+
# to use a specific set of heads, see `set_alignment_heads()` below.
|
|
274
|
+
all_heads = np.zeros(
|
|
275
|
+
(self.dims.n_text_layer, self.dims.n_text_head), dtype=bool
|
|
276
|
+
)
|
|
277
|
+
all_heads[self.dims.n_text_layer // 2 :] = True
|
|
278
|
+
self.alignment_heads = mx.array(np.asarray(all_heads.nonzero()).T)
|
|
279
|
+
|
|
280
|
+
def set_alignment_heads(self, dump: Union[bytes, np.ndarray]):
|
|
281
|
+
if isinstance(dump, np.ndarray):
|
|
282
|
+
self.alignment_heads = mx.array(dump)
|
|
283
|
+
elif isinstance(dump, bytes):
|
|
284
|
+
array = np.frombuffer(
|
|
285
|
+
gzip.decompress(base64.b85decode(dump)), dtype=bool
|
|
286
|
+
).copy()
|
|
287
|
+
mask = array.reshape(self.dims.n_text_layer, self.dims.n_text_head)
|
|
288
|
+
self.alignment_heads = mx.array(np.asarray(mask.nonzero()).T)
|
|
289
|
+
else:
|
|
290
|
+
raise ValueError(
|
|
291
|
+
f"Invalid type for `dump`: {type(dump)}. Expected a np.ndarray or base85-encoded bytes containing"
|
|
292
|
+
" alignment_head information"
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
def embed_audio(self, mel):
|
|
296
|
+
return self.encoder(mel)
|
|
297
|
+
|
|
298
|
+
def logits(self, tokens, audio_features):
|
|
299
|
+
return self.decoder(tokens, audio_features)[0]
|
|
300
|
+
|
|
301
|
+
def forward_with_cross_qk(self, mel, tokens):
|
|
302
|
+
logits, _, cross_qk = self.decoder(tokens, self.encoder(mel))
|
|
303
|
+
return logits, cross_qk
|
|
304
|
+
|
|
305
|
+
def __call__(self, mel, tokens):
|
|
306
|
+
return self.decoder(tokens, self.encoder(mel))[0]
|
|
307
|
+
|
|
308
|
+
@property
|
|
309
|
+
def is_multilingual(self):
|
|
310
|
+
return self.dims.n_vocab >= 51865
|
|
311
|
+
|
|
312
|
+
@property
|
|
313
|
+
def num_languages(self):
|
|
314
|
+
return self.dims.n_vocab - 51765 - int(self.is_multilingual)
|
|
315
|
+
|
|
316
|
+
detect_language = detect_language_function
|
|
317
|
+
decode = decode_function
|
|
318
|
+
|
|
319
|
+
@classmethod
|
|
320
|
+
def from_pretrained(
|
|
321
|
+
cls,
|
|
322
|
+
model_path: str,
|
|
323
|
+
dtype: mx.Dtype = mx.float16,
|
|
324
|
+
) -> "Whisper":
|
|
325
|
+
model_path = Path(model_path)
|
|
326
|
+
if not model_path.exists():
|
|
327
|
+
raise FileNotFoundError(f"Model directory not found: {model_path}")
|
|
328
|
+
|
|
329
|
+
config_path = model_path / "config.json"
|
|
330
|
+
if not config_path.exists():
|
|
331
|
+
raise FileNotFoundError(f"config.json not found in {model_path}")
|
|
332
|
+
|
|
333
|
+
with open(str(config_path), "r") as f:
|
|
334
|
+
config = json.loads(f.read())
|
|
335
|
+
config.pop("model_type", None)
|
|
336
|
+
quantization = config.pop("quantization", None)
|
|
337
|
+
|
|
338
|
+
model_args = ModelDimensions(**config)
|
|
339
|
+
|
|
340
|
+
wf = model_path / "weights.safetensors"
|
|
341
|
+
if not wf.exists():
|
|
342
|
+
wf = model_path / "weights.npz"
|
|
343
|
+
|
|
344
|
+
if not wf.exists():
|
|
345
|
+
raise FileNotFoundError(f"Neither weights.safetensors nor weights.npz found in {model_path}")
|
|
346
|
+
|
|
347
|
+
weights = mx.load(str(wf))
|
|
348
|
+
|
|
349
|
+
model = Model(model_args, dtype)
|
|
350
|
+
|
|
351
|
+
if quantization is not None:
|
|
352
|
+
class_predicate = (
|
|
353
|
+
lambda p, m: isinstance(m, (nn.Linear, nn.Embedding))
|
|
354
|
+
and f"{p}.scales" in weights
|
|
355
|
+
)
|
|
356
|
+
nn.quantize(model, **quantization, class_predicate=class_predicate)
|
|
357
|
+
|
|
358
|
+
weights = tree_unflatten(list(weights.items()))
|
|
359
|
+
model.update(weights)
|
|
360
|
+
mx.eval(model.parameters())
|
|
361
|
+
return model
|
|
362
|
+
|
|
363
|
+
def generate(
|
|
364
|
+
self,
|
|
365
|
+
audio: Union[str, np.ndarray, mx.array],
|
|
366
|
+
*,
|
|
367
|
+
verbose: Optional[bool] = None,
|
|
368
|
+
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
|
369
|
+
compression_ratio_threshold: Optional[float] = 2.4,
|
|
370
|
+
logprob_threshold: Optional[float] = -1.0,
|
|
371
|
+
no_speech_threshold: Optional[float] = 0.6,
|
|
372
|
+
condition_on_previous_text: bool = True,
|
|
373
|
+
initial_prompt: Optional[str] = None,
|
|
374
|
+
word_timestamps: bool = False,
|
|
375
|
+
prepend_punctuations: str = "\"'“¿([{-",
|
|
376
|
+
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
|
377
|
+
clip_timestamps: Union[str, List[float]] = "0",
|
|
378
|
+
hallucination_silence_threshold: Optional[float] = None,
|
|
379
|
+
**decode_options,
|
|
380
|
+
):
|
|
381
|
+
"""
|
|
382
|
+
Transcribe an audio file using Whisper
|
|
383
|
+
|
|
384
|
+
Parameters
|
|
385
|
+
----------
|
|
386
|
+
audio: Union[str, np.ndarray, mx.array]
|
|
387
|
+
The path to the audio file to open, or the audio waveform
|
|
388
|
+
|
|
389
|
+
verbose: bool
|
|
390
|
+
Whether to display the text being decoded to the console. If True, displays all the details,
|
|
391
|
+
If False, displays minimal details. If None, does not display anything
|
|
392
|
+
|
|
393
|
+
temperature: Union[float, Tuple[float, ...]]
|
|
394
|
+
Temperature for sampling. It can be a tuple of temperatures, which will be successively used
|
|
395
|
+
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
|
|
396
|
+
|
|
397
|
+
compression_ratio_threshold: float
|
|
398
|
+
If the gzip compression ratio is above this value, treat as failed
|
|
399
|
+
|
|
400
|
+
logprob_threshold: float
|
|
401
|
+
If the average log probability over sampled tokens is below this value, treat as failed
|
|
402
|
+
|
|
403
|
+
no_speech_threshold: float
|
|
404
|
+
If the no_speech probability is higher than this value AND the average log probability
|
|
405
|
+
over sampled tokens is below `logprob_threshold`, consider the segment as silent
|
|
406
|
+
|
|
407
|
+
condition_on_previous_text: bool
|
|
408
|
+
if True, the previous output of the model is provided as a prompt for the next window;
|
|
409
|
+
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
|
410
|
+
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
|
411
|
+
|
|
412
|
+
word_timestamps: bool
|
|
413
|
+
Extract word-level timestamps using the cross-attention pattern and dynamic time warping,
|
|
414
|
+
and include the timestamps for each word in each segment.
|
|
415
|
+
|
|
416
|
+
prepend_punctuations: str
|
|
417
|
+
If word_timestamps is True, merge these punctuation symbols with the next word
|
|
418
|
+
|
|
419
|
+
append_punctuations: str
|
|
420
|
+
If word_timestamps is True, merge these punctuation symbols with the previous word
|
|
421
|
+
|
|
422
|
+
initial_prompt: Optional[str]
|
|
423
|
+
Optional text to provide as a prompt for the first window. This can be used to provide, or
|
|
424
|
+
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
|
|
425
|
+
to make it more likely to predict those word correctly.
|
|
426
|
+
|
|
427
|
+
decode_options: dict
|
|
428
|
+
Keyword arguments to construct `DecodingOptions` instances
|
|
429
|
+
|
|
430
|
+
clip_timestamps: Union[str, List[float]]
|
|
431
|
+
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process.
|
|
432
|
+
The last end timestamp defaults to the end of the file.
|
|
433
|
+
|
|
434
|
+
hallucination_silence_threshold: Optional[float]
|
|
435
|
+
When word_timestamps is True, skip silent periods longer than this threshold (in seconds)
|
|
436
|
+
when a possible hallucination is detected
|
|
437
|
+
|
|
438
|
+
Returns
|
|
439
|
+
-------
|
|
440
|
+
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
|
441
|
+
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
|
442
|
+
"""
|
|
443
|
+
|
|
444
|
+
# Pad 30-seconds of silence to the input audio, for slicing
|
|
445
|
+
mel = log_mel_spectrogram(audio, n_mels=self.dims.n_mels, padding=N_SAMPLES)
|
|
446
|
+
content_frames = mel.shape[-2] - N_FRAMES
|
|
447
|
+
content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)
|
|
448
|
+
|
|
449
|
+
if verbose:
|
|
450
|
+
system_encoding = sys.getdefaultencoding()
|
|
451
|
+
if system_encoding != "utf-8":
|
|
452
|
+
make_safe = lambda x: x.encode(
|
|
453
|
+
system_encoding, errors="replace"
|
|
454
|
+
).decode(system_encoding)
|
|
455
|
+
else:
|
|
456
|
+
make_safe = lambda x: x
|
|
457
|
+
|
|
458
|
+
if decode_options.get("language", None) is None:
|
|
459
|
+
if not self.is_multilingual:
|
|
460
|
+
decode_options["language"] = "en"
|
|
461
|
+
else:
|
|
462
|
+
if verbose:
|
|
463
|
+
print(
|
|
464
|
+
"Detecting language using up to the first 30 seconds. "
|
|
465
|
+
"Use the `language` decoding option to specify the language"
|
|
466
|
+
)
|
|
467
|
+
mel_segment = pad_or_trim(mel, N_FRAMES, axis=-2).astype(self.dtype)
|
|
468
|
+
_, probs = self.detect_language(mel_segment)
|
|
469
|
+
decode_options["language"] = max(probs, key=probs.get)
|
|
470
|
+
if verbose is not None:
|
|
471
|
+
print(
|
|
472
|
+
f"Detected language: {LANGUAGES[decode_options['language']].title()}"
|
|
473
|
+
)
|
|
474
|
+
|
|
475
|
+
language: str = decode_options["language"]
|
|
476
|
+
task: str = decode_options.get("task", "transcribe")
|
|
477
|
+
tokenizer = get_tokenizer(
|
|
478
|
+
self.is_multilingual,
|
|
479
|
+
num_languages=self.num_languages,
|
|
480
|
+
language=language,
|
|
481
|
+
task=task,
|
|
482
|
+
)
|
|
483
|
+
|
|
484
|
+
if isinstance(clip_timestamps, str):
|
|
485
|
+
clip_timestamps = [
|
|
486
|
+
float(ts)
|
|
487
|
+
for ts in (clip_timestamps.split(",") if clip_timestamps else [])
|
|
488
|
+
]
|
|
489
|
+
seek_points: List[int] = [
|
|
490
|
+
round(ts * FRAMES_PER_SECOND) for ts in clip_timestamps
|
|
491
|
+
]
|
|
492
|
+
if len(seek_points) == 0:
|
|
493
|
+
seek_points.append(0)
|
|
494
|
+
if len(seek_points) % 2 == 1:
|
|
495
|
+
seek_points.append(content_frames)
|
|
496
|
+
else:
|
|
497
|
+
seek_points[-1] = min(content_frames, seek_points[-1])
|
|
498
|
+
seek_clips: List[Tuple[int, int]] = list(
|
|
499
|
+
zip(seek_points[::2], seek_points[1::2])
|
|
500
|
+
)
|
|
501
|
+
|
|
502
|
+
punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"
|
|
503
|
+
|
|
504
|
+
if word_timestamps and task == "translate":
|
|
505
|
+
warnings.warn("Word-level timestamps on translations may not be reliable.")
|
|
506
|
+
|
|
507
|
+
def decode_with_fallback(segment: mx.array) -> DecodingResult:
|
|
508
|
+
temperatures = (
|
|
509
|
+
[temperature] if isinstance(temperature, (int, float)) else temperature
|
|
510
|
+
)
|
|
511
|
+
decode_result = None
|
|
512
|
+
|
|
513
|
+
for t in temperatures:
|
|
514
|
+
kwargs = {**decode_options}
|
|
515
|
+
if t > 0:
|
|
516
|
+
# disable beam_size and patience when t > 0
|
|
517
|
+
kwargs.pop("beam_size", None)
|
|
518
|
+
kwargs.pop("patience", None)
|
|
519
|
+
else:
|
|
520
|
+
# disable best_of when t == 0
|
|
521
|
+
kwargs.pop("best_of", None)
|
|
522
|
+
|
|
523
|
+
options = DecodingOptions(**kwargs, temperature=t)
|
|
524
|
+
decode_result = self.decode(segment, options)
|
|
525
|
+
|
|
526
|
+
needs_fallback = False
|
|
527
|
+
if (
|
|
528
|
+
compression_ratio_threshold is not None
|
|
529
|
+
and decode_result.compression_ratio > compression_ratio_threshold
|
|
530
|
+
):
|
|
531
|
+
needs_fallback = True # too repetitive
|
|
532
|
+
if (
|
|
533
|
+
logprob_threshold is not None
|
|
534
|
+
and decode_result.avg_logprob < logprob_threshold
|
|
535
|
+
):
|
|
536
|
+
needs_fallback = True # average log probability is too low
|
|
537
|
+
if (
|
|
538
|
+
no_speech_threshold is not None
|
|
539
|
+
and decode_result.no_speech_prob > no_speech_threshold
|
|
540
|
+
):
|
|
541
|
+
needs_fallback = False # silence
|
|
542
|
+
if not needs_fallback:
|
|
543
|
+
break
|
|
544
|
+
|
|
545
|
+
return decode_result
|
|
546
|
+
|
|
547
|
+
clip_idx = 0
|
|
548
|
+
seek = seek_clips[clip_idx][0]
|
|
549
|
+
input_stride = (
|
|
550
|
+
N_FRAMES // self.dims.n_audio_ctx
|
|
551
|
+
) # mel frames per output token: 2
|
|
552
|
+
time_precision = (
|
|
553
|
+
input_stride * HOP_LENGTH / SAMPLE_RATE
|
|
554
|
+
) # time per output token: 0.02 (seconds)
|
|
555
|
+
all_tokens = []
|
|
556
|
+
all_segments = []
|
|
557
|
+
prompt_reset_since = 0
|
|
558
|
+
|
|
559
|
+
if initial_prompt is not None:
|
|
560
|
+
initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
|
|
561
|
+
all_tokens.extend(initial_prompt_tokens)
|
|
562
|
+
else:
|
|
563
|
+
initial_prompt_tokens = []
|
|
564
|
+
|
|
565
|
+
def new_segment(
|
|
566
|
+
*, start: float, end: float, tokens: mx.array, result: DecodingResult
|
|
567
|
+
):
|
|
568
|
+
tokens = tokens.tolist()
|
|
569
|
+
text_tokens = [token for token in tokens if token < tokenizer.eot]
|
|
570
|
+
return {
|
|
571
|
+
"seek": seek,
|
|
572
|
+
"start": start,
|
|
573
|
+
"end": end,
|
|
574
|
+
"text": tokenizer.decode(text_tokens),
|
|
575
|
+
"tokens": tokens,
|
|
576
|
+
"temperature": result.temperature,
|
|
577
|
+
"avg_logprob": result.avg_logprob,
|
|
578
|
+
"compression_ratio": result.compression_ratio,
|
|
579
|
+
"no_speech_prob": result.no_speech_prob,
|
|
580
|
+
}
|
|
581
|
+
|
|
582
|
+
# show the progress bar when verbose is False (if True, transcribed text will be printed)
|
|
583
|
+
with tqdm.tqdm(
|
|
584
|
+
total=content_frames, unit="frames", disable=verbose is not False
|
|
585
|
+
) as pbar:
|
|
586
|
+
last_speech_timestamp = 0.0
|
|
587
|
+
for seek_clip_start, seek_clip_end in seek_clips:
|
|
588
|
+
while seek < seek_clip_end:
|
|
589
|
+
time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
|
|
590
|
+
window_end_time = float(
|
|
591
|
+
(seek + N_FRAMES) * HOP_LENGTH / SAMPLE_RATE
|
|
592
|
+
)
|
|
593
|
+
segment_size = min(
|
|
594
|
+
N_FRAMES, content_frames - seek, seek_clip_end - seek
|
|
595
|
+
)
|
|
596
|
+
mel_segment = mel[seek : seek + segment_size]
|
|
597
|
+
segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
|
|
598
|
+
mel_segment = pad_or_trim(mel_segment, N_FRAMES, axis=-2).astype(
|
|
599
|
+
self.dtype
|
|
600
|
+
)
|
|
601
|
+
|
|
602
|
+
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
|
603
|
+
result: DecodingResult = decode_with_fallback(mel_segment)
|
|
604
|
+
|
|
605
|
+
tokens = np.array(result.tokens)
|
|
606
|
+
|
|
607
|
+
if no_speech_threshold is not None:
|
|
608
|
+
# no voice activity check
|
|
609
|
+
should_skip = result.no_speech_prob > no_speech_threshold
|
|
610
|
+
if (
|
|
611
|
+
logprob_threshold is not None
|
|
612
|
+
and result.avg_logprob > logprob_threshold
|
|
613
|
+
):
|
|
614
|
+
# don't skip if the logprob is high enough, despite the no_speech_prob
|
|
615
|
+
should_skip = False
|
|
616
|
+
|
|
617
|
+
if should_skip:
|
|
618
|
+
seek += segment_size # fast-forward to the next segment boundary
|
|
619
|
+
continue
|
|
620
|
+
|
|
621
|
+
previous_seek = seek
|
|
622
|
+
current_segments = []
|
|
623
|
+
|
|
624
|
+
# anomalous words are very long/short/improbable
|
|
625
|
+
def word_anomaly_score(word: dict) -> float:
|
|
626
|
+
probability = word.get("probability", 0.0)
|
|
627
|
+
duration = word["end"] - word["start"]
|
|
628
|
+
score = 0.0
|
|
629
|
+
if probability < 0.15:
|
|
630
|
+
score += 1.0
|
|
631
|
+
if duration < 0.133:
|
|
632
|
+
score += (0.133 - duration) * 15
|
|
633
|
+
if duration > 2.0:
|
|
634
|
+
score += duration - 2.0
|
|
635
|
+
return score
|
|
636
|
+
|
|
637
|
+
def is_segment_anomaly(segment: Optional[dict]) -> bool:
|
|
638
|
+
if segment is None or not segment["words"]:
|
|
639
|
+
return False
|
|
640
|
+
words = [
|
|
641
|
+
w for w in segment["words"] if w["word"] not in punctuation
|
|
642
|
+
]
|
|
643
|
+
words = words[:8]
|
|
644
|
+
score = sum(word_anomaly_score(w) for w in words)
|
|
645
|
+
return score >= 3 or score + 0.01 >= len(words)
|
|
646
|
+
|
|
647
|
+
def next_words_segment(segments: List[dict]) -> Optional[dict]:
|
|
648
|
+
return next((s for s in segments if s["words"]), None)
|
|
649
|
+
|
|
650
|
+
timestamp_tokens = tokens >= tokenizer.timestamp_begin
|
|
651
|
+
single_timestamp_ending = timestamp_tokens[-2:].tolist() == [
|
|
652
|
+
False,
|
|
653
|
+
True,
|
|
654
|
+
]
|
|
655
|
+
|
|
656
|
+
consecutive = np.where(
|
|
657
|
+
np.logical_and(timestamp_tokens[:-1], timestamp_tokens[1:])
|
|
658
|
+
)[0]
|
|
659
|
+
consecutive += 1
|
|
660
|
+
if len(consecutive) > 0:
|
|
661
|
+
# if the output contains two consecutive timestamp tokens
|
|
662
|
+
slices = consecutive.tolist()
|
|
663
|
+
if single_timestamp_ending:
|
|
664
|
+
slices.append(len(tokens))
|
|
665
|
+
|
|
666
|
+
last_slice = 0
|
|
667
|
+
for current_slice in slices:
|
|
668
|
+
sliced_tokens = tokens[last_slice:current_slice]
|
|
669
|
+
start_timestamp_pos = (
|
|
670
|
+
sliced_tokens[0].item() - tokenizer.timestamp_begin
|
|
671
|
+
)
|
|
672
|
+
end_timestamp_pos = (
|
|
673
|
+
sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
|
674
|
+
)
|
|
675
|
+
current_segments.append(
|
|
676
|
+
new_segment(
|
|
677
|
+
start=time_offset
|
|
678
|
+
+ start_timestamp_pos * time_precision,
|
|
679
|
+
end=time_offset
|
|
680
|
+
+ end_timestamp_pos * time_precision,
|
|
681
|
+
tokens=sliced_tokens,
|
|
682
|
+
result=result,
|
|
683
|
+
)
|
|
684
|
+
)
|
|
685
|
+
last_slice = current_slice
|
|
686
|
+
|
|
687
|
+
if single_timestamp_ending:
|
|
688
|
+
# single timestamp at the end means no speech after the last timestamp.
|
|
689
|
+
seek += segment_size
|
|
690
|
+
else:
|
|
691
|
+
# otherwise, ignore the unfinished segment and seek to the last timestamp
|
|
692
|
+
last_timestamp_pos = (
|
|
693
|
+
tokens[last_slice - 1].item()
|
|
694
|
+
- tokenizer.timestamp_begin
|
|
695
|
+
)
|
|
696
|
+
seek += last_timestamp_pos * input_stride
|
|
697
|
+
else:
|
|
698
|
+
duration = segment_duration
|
|
699
|
+
timestamps = tokens[timestamp_tokens.nonzero()[0]]
|
|
700
|
+
if (
|
|
701
|
+
len(timestamps) > 0
|
|
702
|
+
and timestamps[-1].item() != tokenizer.timestamp_begin
|
|
703
|
+
):
|
|
704
|
+
# no consecutive timestamps but it has a timestamp; use the last one.
|
|
705
|
+
last_timestamp_pos = (
|
|
706
|
+
timestamps[-1].item() - tokenizer.timestamp_begin
|
|
707
|
+
)
|
|
708
|
+
duration = last_timestamp_pos * time_precision
|
|
709
|
+
|
|
710
|
+
current_segments.append(
|
|
711
|
+
new_segment(
|
|
712
|
+
start=time_offset,
|
|
713
|
+
end=time_offset + duration,
|
|
714
|
+
tokens=tokens,
|
|
715
|
+
result=result,
|
|
716
|
+
)
|
|
717
|
+
)
|
|
718
|
+
seek += segment_size
|
|
719
|
+
|
|
720
|
+
if word_timestamps:
|
|
721
|
+
add_word_timestamps(
|
|
722
|
+
segments=current_segments,
|
|
723
|
+
model=self,
|
|
724
|
+
tokenizer=tokenizer,
|
|
725
|
+
mel=mel_segment,
|
|
726
|
+
num_frames=segment_size,
|
|
727
|
+
prepend_punctuations=prepend_punctuations,
|
|
728
|
+
append_punctuations=append_punctuations,
|
|
729
|
+
last_speech_timestamp=last_speech_timestamp,
|
|
730
|
+
)
|
|
731
|
+
|
|
732
|
+
if not single_timestamp_ending:
|
|
733
|
+
last_word_end = _get_end(current_segments)
|
|
734
|
+
if (
|
|
735
|
+
last_word_end is not None
|
|
736
|
+
and last_word_end > time_offset
|
|
737
|
+
):
|
|
738
|
+
seek = round(last_word_end * FRAMES_PER_SECOND)
|
|
739
|
+
|
|
740
|
+
# skip silence before possible hallucinations
|
|
741
|
+
if hallucination_silence_threshold is not None:
|
|
742
|
+
threshold = hallucination_silence_threshold
|
|
743
|
+
if not single_timestamp_ending:
|
|
744
|
+
last_word_end = _get_end(current_segments)
|
|
745
|
+
if (
|
|
746
|
+
last_word_end is not None
|
|
747
|
+
and last_word_end > time_offset
|
|
748
|
+
):
|
|
749
|
+
remaining_duration = window_end_time - last_word_end
|
|
750
|
+
if remaining_duration > threshold:
|
|
751
|
+
seek = round(last_word_end * FRAMES_PER_SECOND)
|
|
752
|
+
else:
|
|
753
|
+
seek = previous_seek + segment_size
|
|
754
|
+
|
|
755
|
+
# if first segment might be a hallucination, skip leading silence
|
|
756
|
+
first_segment = next_words_segment(current_segments)
|
|
757
|
+
if first_segment is not None and is_segment_anomaly(
|
|
758
|
+
first_segment
|
|
759
|
+
):
|
|
760
|
+
gap = first_segment["start"] - time_offset
|
|
761
|
+
if gap > threshold:
|
|
762
|
+
seek = previous_seek + round(
|
|
763
|
+
gap * FRAMES_PER_SECOND
|
|
764
|
+
)
|
|
765
|
+
continue
|
|
766
|
+
|
|
767
|
+
# skip silence before any possible hallucination that is surrounded
|
|
768
|
+
# by silence or more hallucinations
|
|
769
|
+
hal_last_end = last_speech_timestamp
|
|
770
|
+
for si in range(len(current_segments)):
|
|
771
|
+
segment = current_segments[si]
|
|
772
|
+
if not segment["words"]:
|
|
773
|
+
continue
|
|
774
|
+
if is_segment_anomaly(segment):
|
|
775
|
+
next_segment = next_words_segment(
|
|
776
|
+
current_segments[si + 1 :]
|
|
777
|
+
)
|
|
778
|
+
if next_segment is not None:
|
|
779
|
+
hal_next_start = next_segment["words"][0][
|
|
780
|
+
"start"
|
|
781
|
+
]
|
|
782
|
+
else:
|
|
783
|
+
hal_next_start = time_offset + segment_duration
|
|
784
|
+
silence_before = (
|
|
785
|
+
segment["start"] - hal_last_end > threshold
|
|
786
|
+
or segment["start"] < threshold
|
|
787
|
+
or segment["start"] - time_offset < 2.0
|
|
788
|
+
)
|
|
789
|
+
silence_after = (
|
|
790
|
+
hal_next_start - segment["end"] > threshold
|
|
791
|
+
or is_segment_anomaly(next_segment)
|
|
792
|
+
or window_end_time - segment["end"] < 2.0
|
|
793
|
+
)
|
|
794
|
+
if silence_before and silence_after:
|
|
795
|
+
seek = round(
|
|
796
|
+
max(time_offset + 1, segment["start"])
|
|
797
|
+
* FRAMES_PER_SECOND
|
|
798
|
+
)
|
|
799
|
+
if (
|
|
800
|
+
content_duration - segment["end"]
|
|
801
|
+
< threshold
|
|
802
|
+
):
|
|
803
|
+
seek = content_frames
|
|
804
|
+
current_segments[si:] = []
|
|
805
|
+
break
|
|
806
|
+
hal_last_end = segment["end"]
|
|
807
|
+
|
|
808
|
+
last_word_end = _get_end(current_segments)
|
|
809
|
+
if last_word_end is not None:
|
|
810
|
+
last_speech_timestamp = last_word_end
|
|
811
|
+
|
|
812
|
+
if verbose:
|
|
813
|
+
for segment in current_segments:
|
|
814
|
+
start, end, text = (
|
|
815
|
+
segment["start"],
|
|
816
|
+
segment["end"],
|
|
817
|
+
segment["text"],
|
|
818
|
+
)
|
|
819
|
+
line = f"[{_format_timestamp(start)} --> {_format_timestamp(end)}] {text}"
|
|
820
|
+
print(make_safe(line))
|
|
821
|
+
|
|
822
|
+
# if a segment is instantaneous or does not contain text, clear it
|
|
823
|
+
for i, segment in enumerate(current_segments):
|
|
824
|
+
if (
|
|
825
|
+
segment["start"] == segment["end"]
|
|
826
|
+
or segment["text"].strip() == ""
|
|
827
|
+
):
|
|
828
|
+
segment["text"] = ""
|
|
829
|
+
segment["tokens"] = []
|
|
830
|
+
segment["words"] = []
|
|
831
|
+
|
|
832
|
+
all_segments.extend(
|
|
833
|
+
[
|
|
834
|
+
{"id": i, **segment}
|
|
835
|
+
for i, segment in enumerate(
|
|
836
|
+
current_segments, start=len(all_segments)
|
|
837
|
+
)
|
|
838
|
+
]
|
|
839
|
+
)
|
|
840
|
+
all_tokens.extend(
|
|
841
|
+
[
|
|
842
|
+
token
|
|
843
|
+
for segment in current_segments
|
|
844
|
+
for token in segment["tokens"]
|
|
845
|
+
]
|
|
846
|
+
)
|
|
847
|
+
|
|
848
|
+
if not condition_on_previous_text or result.temperature > 0.5:
|
|
849
|
+
# do not feed the prompt tokens if a high temperature was used
|
|
850
|
+
prompt_reset_since = len(all_tokens)
|
|
851
|
+
|
|
852
|
+
# update progress bar
|
|
853
|
+
pbar.update(min(content_frames, seek) - previous_seek)
|
|
854
|
+
|
|
855
|
+
# Clear cache after each segment to avoid memory leaks
|
|
856
|
+
mx.clear_cache()
|
|
857
|
+
|
|
858
|
+
return STTOutput(
|
|
859
|
+
text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]),
|
|
860
|
+
segments=all_segments,
|
|
861
|
+
language=language,
|
|
862
|
+
)
|