nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nexaai/__init__.py +99 -0
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +4 -0
- nexaai/asr.py +68 -0
- nexaai/asr_impl/__init__.py +0 -0
- nexaai/asr_impl/mlx_asr_impl.py +93 -0
- nexaai/asr_impl/pybind_asr_impl.py +127 -0
- nexaai/base.py +39 -0
- nexaai/binds/__init__.py +7 -0
- nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
- nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
- nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
- nexaai/binds/cpu_gpu/libggml.dylib +0 -0
- nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
- nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/metal/libnexa_plugin.dylib +0 -0
- nexaai/binds/metal/py-lib/ml.py +888 -0
- nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
- nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
- nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
- nexaai/binds/metal/py-lib/profiling.py +239 -0
- nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
- nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
- nexaai/binds/nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexaml/libggml.dylib +0 -0
- nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
- nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
- nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
- nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
- nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexaml/libnexaproc.dylib +0 -0
- nexaai/binds/nexaml/libomp.dylib +0 -0
- nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
- nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
- nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
- nexaai/common.py +106 -0
- nexaai/cv.py +95 -0
- nexaai/cv_impl/__init__.py +0 -0
- nexaai/cv_impl/mlx_cv_impl.py +91 -0
- nexaai/cv_impl/pybind_cv_impl.py +124 -0
- nexaai/diarize.py +80 -0
- nexaai/diarize_impl/__init__.py +1 -0
- nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
- nexaai/embedder.py +73 -0
- nexaai/embedder_impl/__init__.py +0 -0
- nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
- nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
- nexaai/image_gen.py +141 -0
- nexaai/image_gen_impl/__init__.py +0 -0
- nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
- nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
- nexaai/llm.py +98 -0
- nexaai/llm_impl/__init__.py +0 -0
- nexaai/llm_impl/mlx_llm_impl.py +271 -0
- nexaai/llm_impl/pybind_llm_impl.py +238 -0
- nexaai/log.py +92 -0
- nexaai/mlx_backend/asr/__init__.py +12 -0
- nexaai/mlx_backend/asr/interface.py +122 -0
- nexaai/mlx_backend/common/__init__.py +0 -0
- nexaai/mlx_backend/common/utils.py +25 -0
- nexaai/mlx_backend/cv/__init__.py +0 -0
- nexaai/mlx_backend/cv/generate.py +195 -0
- nexaai/mlx_backend/cv/interface.py +162 -0
- nexaai/mlx_backend/cv/main.py +81 -0
- nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/mlx_backend/embedding/__init__.py +0 -0
- nexaai/mlx_backend/embedding/generate.py +333 -0
- nexaai/mlx_backend/embedding/interface.py +617 -0
- nexaai/mlx_backend/embedding/main.py +173 -0
- nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
- nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/mlx_backend/image_gen/__init__.py +1 -0
- nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
- nexaai/mlx_backend/image_gen/interface.py +82 -0
- nexaai/mlx_backend/image_gen/main.py +281 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/mlx_backend/llm/__init__.py +0 -0
- nexaai/mlx_backend/llm/generate.py +149 -0
- nexaai/mlx_backend/llm/interface.py +764 -0
- nexaai/mlx_backend/llm/main.py +68 -0
- nexaai/mlx_backend/ml.py +888 -0
- nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/mlx_backend/mlx_audio/server.py +525 -0
- nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
- nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
- nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
- nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
- nexaai/mlx_backend/mlx_audio/utils.py +237 -0
- nexaai/mlx_backend/mlx_audio/version.py +1 -0
- nexaai/mlx_backend/profiling.py +239 -0
- nexaai/mlx_backend/rerank/__init__.py +0 -0
- nexaai/mlx_backend/rerank/generate.py +174 -0
- nexaai/mlx_backend/rerank/interface.py +287 -0
- nexaai/mlx_backend/rerank/main.py +127 -0
- nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
- nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/mlx_backend/sd/__init__.py +1 -0
- nexaai/mlx_backend/sd/interface.py +362 -0
- nexaai/mlx_backend/sd/main.py +286 -0
- nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
- nexaai/mlx_backend/sd/modeling/clip.py +116 -0
- nexaai/mlx_backend/sd/modeling/config.py +65 -0
- nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
- nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
- nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
- nexaai/mlx_backend/sd/modeling/unet.py +460 -0
- nexaai/mlx_backend/sd/modeling/vae.py +274 -0
- nexaai/mlx_backend/tts/__init__.py +12 -0
- nexaai/mlx_backend/tts/interface.py +276 -0
- nexaai/mlx_backend/vlm/__init__.py +3 -0
- nexaai/mlx_backend/vlm/generate.py +572 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
- nexaai/mlx_backend/vlm/interface.py +559 -0
- nexaai/mlx_backend/vlm/main.py +365 -0
- nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
- nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
- nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
- nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
- nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
- nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
- nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
- nexaai/rerank.py +57 -0
- nexaai/rerank_impl/__init__.py +0 -0
- nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
- nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
- nexaai/runtime.py +68 -0
- nexaai/runtime_error.py +24 -0
- nexaai/tts.py +75 -0
- nexaai/tts_impl/__init__.py +0 -0
- nexaai/tts_impl/mlx_tts_impl.py +94 -0
- nexaai/tts_impl/pybind_tts_impl.py +43 -0
- nexaai/utils/decode.py +18 -0
- nexaai/utils/manifest_utils.py +531 -0
- nexaai/utils/model_manager.py +1745 -0
- nexaai/utils/model_types.py +49 -0
- nexaai/utils/progress_tracker.py +389 -0
- nexaai/utils/quantization_utils.py +245 -0
- nexaai/vlm.py +130 -0
- nexaai/vlm_impl/__init__.py +0 -0
- nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
- nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
- nexaai-1.0.29.dist-info/METADATA +35 -0
- nexaai-1.0.29.dist-info/RECORD +580 -0
- nexaai-1.0.29.dist-info/WHEEL +5 -0
- nexaai-1.0.29.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,870 @@
|
|
|
1
|
+
from typing import Any, List, Optional, Tuple
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
from einops.array_api import repeat
|
|
6
|
+
|
|
7
|
+
from .config import DiaConfig
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
|
|
11
|
+
return tuple(ax if ax >= 0 else ndim + ax for ax in axes)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def _str_to_dtype(dtype_str: str):
|
|
15
|
+
# Allow None for default behavior
|
|
16
|
+
if dtype_str is None or dtype_str.lower() == "none":
|
|
17
|
+
return None
|
|
18
|
+
if dtype_str == "float32":
|
|
19
|
+
return mx.float32
|
|
20
|
+
elif dtype_str == "float16":
|
|
21
|
+
return mx.float16
|
|
22
|
+
elif dtype_str == "bfloat16":
|
|
23
|
+
return mx.bfloat16
|
|
24
|
+
else:
|
|
25
|
+
raise ValueError(f"Unsupported dtype string: {dtype_str}")
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class DenseGeneral(nn.Module):
|
|
29
|
+
def __init__(
|
|
30
|
+
self,
|
|
31
|
+
in_shapes: Tuple[int, ...],
|
|
32
|
+
out_features: Tuple[int, ...],
|
|
33
|
+
axis: Tuple[int, ...] = (-1,),
|
|
34
|
+
dtype: Optional[mx.Dtype] = None,
|
|
35
|
+
weight_dtype: Optional[mx.Dtype] = None,
|
|
36
|
+
):
|
|
37
|
+
super().__init__()
|
|
38
|
+
self.in_shapes = in_shapes
|
|
39
|
+
self.out_features = out_features
|
|
40
|
+
self.axis = axis
|
|
41
|
+
self.dtype = dtype
|
|
42
|
+
self.kernel_shape = self.in_shapes + self.out_features
|
|
43
|
+
|
|
44
|
+
weight_type = weight_dtype if weight_dtype is not None else dtype
|
|
45
|
+
self.weight = mx.zeros(self.kernel_shape, dtype=weight_type)
|
|
46
|
+
|
|
47
|
+
def __call__(self, inputs: mx.array) -> mx.array:
|
|
48
|
+
norm_axis = _normalize_axes(self.axis, inputs.ndim)
|
|
49
|
+
kernel_contract_axes = tuple(range(len(norm_axis)))
|
|
50
|
+
|
|
51
|
+
output = mx.tensordot(
|
|
52
|
+
inputs,
|
|
53
|
+
self.weight,
|
|
54
|
+
axes=(norm_axis, kernel_contract_axes),
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
if self.dtype is not None and output.dtype != self.dtype:
|
|
58
|
+
output = output.astype(self.dtype)
|
|
59
|
+
|
|
60
|
+
return output
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def get_activation_fn(activation_string: str) -> nn.Module:
|
|
64
|
+
if activation_string == "gelu":
|
|
65
|
+
return nn.GELU()
|
|
66
|
+
elif activation_string == "relu":
|
|
67
|
+
return nn.ReLU()
|
|
68
|
+
elif activation_string == "silu" or activation_string == "swish":
|
|
69
|
+
return nn.SiLU()
|
|
70
|
+
elif activation_string == "linear":
|
|
71
|
+
return nn.Identity()
|
|
72
|
+
else:
|
|
73
|
+
raise ValueError(f"Unsupported activation function: {activation_string}")
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
class MlpBlock(nn.Module):
|
|
77
|
+
def __init__(
|
|
78
|
+
self,
|
|
79
|
+
config: DiaConfig,
|
|
80
|
+
embed_dim: int,
|
|
81
|
+
intermediate_dim: int,
|
|
82
|
+
dropout_rate: float,
|
|
83
|
+
activations: List[str] = ["silu", "linear"],
|
|
84
|
+
use_pre_norm: bool = False,
|
|
85
|
+
):
|
|
86
|
+
super().__init__()
|
|
87
|
+
self.use_pre_norm = use_pre_norm
|
|
88
|
+
num_activations = len(activations)
|
|
89
|
+
|
|
90
|
+
compute_dtype = _str_to_dtype(config.training.dtype)
|
|
91
|
+
weight_dtype = _str_to_dtype(config.model.weight_dtype)
|
|
92
|
+
self.dtype = compute_dtype
|
|
93
|
+
|
|
94
|
+
if use_pre_norm:
|
|
95
|
+
self.pre_norm = nn.RMSNorm(
|
|
96
|
+
embed_dim,
|
|
97
|
+
eps=config.model.normalization_layer_epsilon,
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
self.wi_fused = DenseGeneral(
|
|
101
|
+
in_shapes=(embed_dim,),
|
|
102
|
+
out_features=(
|
|
103
|
+
num_activations,
|
|
104
|
+
intermediate_dim,
|
|
105
|
+
),
|
|
106
|
+
axis=(-1,),
|
|
107
|
+
dtype=compute_dtype,
|
|
108
|
+
weight_dtype=weight_dtype,
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
self.activation_fn_0 = get_activation_fn(activations[0]) # silu
|
|
112
|
+
self.activation_fn_1 = get_activation_fn(activations[1]) # linear
|
|
113
|
+
|
|
114
|
+
self.dropout = nn.Dropout(dropout_rate)
|
|
115
|
+
|
|
116
|
+
self.wo = DenseGeneral(
|
|
117
|
+
in_shapes=(intermediate_dim,),
|
|
118
|
+
out_features=(embed_dim,),
|
|
119
|
+
axis=(-1,),
|
|
120
|
+
dtype=compute_dtype,
|
|
121
|
+
weight_dtype=weight_dtype,
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
def __call__(self, x: mx.array, deterministic: bool = False) -> mx.array:
|
|
125
|
+
if self.use_pre_norm and hasattr(self, "pre_norm"):
|
|
126
|
+
x = self.pre_norm(x)
|
|
127
|
+
|
|
128
|
+
fused_x = self.wi_fused(x)
|
|
129
|
+
|
|
130
|
+
gate_input = fused_x[..., 0, :]
|
|
131
|
+
up_input = fused_x[..., 1, :]
|
|
132
|
+
|
|
133
|
+
gate = self.activation_fn_0(gate_input)
|
|
134
|
+
up = self.activation_fn_1(up_input)
|
|
135
|
+
hidden = mx.multiply(gate, up)
|
|
136
|
+
|
|
137
|
+
if self.dtype is not None and self.dtype != hidden.dtype:
|
|
138
|
+
hidden = hidden.astype(self.dtype)
|
|
139
|
+
|
|
140
|
+
if not deterministic:
|
|
141
|
+
hidden = self.dropout(hidden)
|
|
142
|
+
|
|
143
|
+
output = self.wo(hidden)
|
|
144
|
+
return output
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
class RotaryEmbedding(nn.Module):
|
|
148
|
+
def __init__(
|
|
149
|
+
self,
|
|
150
|
+
embedding_dims: int,
|
|
151
|
+
min_timescale: int = 1,
|
|
152
|
+
max_timescale: int = 10000,
|
|
153
|
+
dtype: mx.Dtype = mx.float32,
|
|
154
|
+
):
|
|
155
|
+
super().__init__()
|
|
156
|
+
if embedding_dims % 2 != 0:
|
|
157
|
+
raise ValueError("Embedding dim must be even for RoPE.")
|
|
158
|
+
self.embedding_dims = embedding_dims
|
|
159
|
+
self.min_timescale = min_timescale
|
|
160
|
+
self.max_timescale = max_timescale
|
|
161
|
+
self.dtype = dtype
|
|
162
|
+
half_embedding_dim = embedding_dims // 2
|
|
163
|
+
fraction = (2.0 * mx.arange(half_embedding_dim)) / embedding_dims
|
|
164
|
+
|
|
165
|
+
self._timescale = (
|
|
166
|
+
self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
def __call__(self, inputs: mx.array, position: mx.array):
|
|
170
|
+
"""Applies RoPE."""
|
|
171
|
+
position = mx.expand_dims(mx.expand_dims(position, -1), -1)
|
|
172
|
+
|
|
173
|
+
sinusoid_inp = position / self._timescale
|
|
174
|
+
|
|
175
|
+
sin = mx.sin(sinusoid_inp).astype(inputs.dtype)
|
|
176
|
+
cos = mx.cos(sinusoid_inp).astype(inputs.dtype)
|
|
177
|
+
|
|
178
|
+
first_half = inputs[..., : self.embedding_dims // 2]
|
|
179
|
+
second_half = inputs[..., self.embedding_dims // 2 :]
|
|
180
|
+
|
|
181
|
+
first_part = first_half * cos - second_half * sin
|
|
182
|
+
second_part = second_half * cos + first_half * sin
|
|
183
|
+
|
|
184
|
+
return mx.concatenate([first_part, second_part], axis=-1)
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
class KVCache:
|
|
188
|
+
def __init__(self, num_heads, max_len, head_dim, k=None, v=None):
|
|
189
|
+
self.k = mx.zeros((2, num_heads, max_len, head_dim)) if k is None else k
|
|
190
|
+
self.v = mx.zeros((2, num_heads, max_len, head_dim)) if v is None else v
|
|
191
|
+
self.current_idx = 0
|
|
192
|
+
self.max_len = max_len
|
|
193
|
+
|
|
194
|
+
def update_and_fetch(self, k, v):
|
|
195
|
+
assert self.current_idx < self.max_len
|
|
196
|
+
self.k[:, :, self.current_idx : self.current_idx + 1, :] = k
|
|
197
|
+
self.v[:, :, self.current_idx : self.current_idx + 1, :] = v
|
|
198
|
+
self.current_idx += 1
|
|
199
|
+
return self.k[:, :, : self.current_idx, :], self.v[:, :, : self.current_idx, :]
|
|
200
|
+
|
|
201
|
+
def prefill_kv(self, k, v):
|
|
202
|
+
prefill_len = k.shape[2]
|
|
203
|
+
assert prefill_len <= self.max_len
|
|
204
|
+
self.k[:, :, :prefill_len, :] = k
|
|
205
|
+
self.v[:, :, :prefill_len, :] = v
|
|
206
|
+
self.current_idx = prefill_len
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
class Attention(nn.Module):
|
|
210
|
+
def __init__(
|
|
211
|
+
self,
|
|
212
|
+
config: DiaConfig,
|
|
213
|
+
q_embed_dim: int,
|
|
214
|
+
kv_embed_dim: int,
|
|
215
|
+
num_query_heads: int,
|
|
216
|
+
num_kv_heads: int,
|
|
217
|
+
head_dim: int,
|
|
218
|
+
dropout_rate: float,
|
|
219
|
+
is_cross_attn: bool = False,
|
|
220
|
+
out_embed_dim: Optional[int] = None,
|
|
221
|
+
):
|
|
222
|
+
super().__init__()
|
|
223
|
+
self.num_query_heads = num_query_heads
|
|
224
|
+
self.num_kv_heads = num_kv_heads
|
|
225
|
+
self.head_dim = head_dim
|
|
226
|
+
self.is_cross_attn = is_cross_attn
|
|
227
|
+
self.dropout_rate = dropout_rate
|
|
228
|
+
|
|
229
|
+
compute_dtype = _str_to_dtype(config.training.dtype)
|
|
230
|
+
weight_dtype = _str_to_dtype(config.model.weight_dtype)
|
|
231
|
+
|
|
232
|
+
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
|
|
233
|
+
self.projected_query_dim = num_query_heads * head_dim
|
|
234
|
+
|
|
235
|
+
if num_query_heads % num_kv_heads != 0:
|
|
236
|
+
raise ValueError(
|
|
237
|
+
f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})"
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
self.num_gqa_groups = num_query_heads // num_kv_heads
|
|
241
|
+
|
|
242
|
+
# --- Projection Layers using DenseGeneral ---
|
|
243
|
+
self.q_proj = DenseGeneral(
|
|
244
|
+
in_shapes=(q_embed_dim,),
|
|
245
|
+
out_features=(num_query_heads, head_dim),
|
|
246
|
+
axis=(-1,),
|
|
247
|
+
dtype=compute_dtype,
|
|
248
|
+
weight_dtype=weight_dtype,
|
|
249
|
+
)
|
|
250
|
+
self.k_proj = DenseGeneral(
|
|
251
|
+
in_shapes=(kv_embed_dim,),
|
|
252
|
+
out_features=(num_kv_heads, head_dim),
|
|
253
|
+
axis=(-1,),
|
|
254
|
+
dtype=compute_dtype,
|
|
255
|
+
weight_dtype=weight_dtype,
|
|
256
|
+
)
|
|
257
|
+
self.v_proj = DenseGeneral(
|
|
258
|
+
in_shapes=(kv_embed_dim,),
|
|
259
|
+
out_features=(num_kv_heads, head_dim),
|
|
260
|
+
axis=(-1,),
|
|
261
|
+
dtype=compute_dtype,
|
|
262
|
+
weight_dtype=weight_dtype,
|
|
263
|
+
)
|
|
264
|
+
self.o_proj = DenseGeneral(
|
|
265
|
+
in_shapes=(num_query_heads, head_dim),
|
|
266
|
+
out_features=(self.output_dim,),
|
|
267
|
+
axis=(-2, -1),
|
|
268
|
+
dtype=compute_dtype,
|
|
269
|
+
weight_dtype=weight_dtype,
|
|
270
|
+
)
|
|
271
|
+
|
|
272
|
+
# --- Rotary Embedding ---
|
|
273
|
+
self.rotary_emb = RotaryEmbedding(
|
|
274
|
+
embedding_dims=self.head_dim,
|
|
275
|
+
min_timescale=config.model.rope_min_timescale,
|
|
276
|
+
max_timescale=config.model.rope_max_timescale,
|
|
277
|
+
dtype=compute_dtype,
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
def __call__(
|
|
281
|
+
self,
|
|
282
|
+
Xq: mx.array, # (B, T, D) T = 1 in AR generation
|
|
283
|
+
Xkv: mx.array, # (B, S, E) S = 1 in AR generation
|
|
284
|
+
q_positions: mx.array, # (B, T)
|
|
285
|
+
kv_positions: Optional[mx.array] = None, # (B, S)
|
|
286
|
+
deterministic: bool = True,
|
|
287
|
+
attn_mask: Optional[
|
|
288
|
+
mx.array
|
|
289
|
+
] = None, # None in Decoder Self Attention, Valid mask in Others
|
|
290
|
+
cache: Optional[KVCache] = None, # None in Encoder, KVCache in Decoder
|
|
291
|
+
prefill: bool = False, # True only when prefilling KV Cache
|
|
292
|
+
) -> Tuple[mx.array, Optional[Tuple[mx.array, mx.array]]]:
|
|
293
|
+
"""
|
|
294
|
+
Performs attention calculation with optional KV caching.
|
|
295
|
+
|
|
296
|
+
Args:
|
|
297
|
+
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
|
|
298
|
+
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
|
|
299
|
+
q_positions: Positions for queries (B, T).
|
|
300
|
+
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
|
|
301
|
+
deterministic: If True, disable dropout.
|
|
302
|
+
attn_mask: Attention mask.
|
|
303
|
+
cache: KVCache.
|
|
304
|
+
prefill: If True, use prefill mode.
|
|
305
|
+
|
|
306
|
+
Returns:
|
|
307
|
+
A tuple containing:
|
|
308
|
+
- output: The attention output tensor (B, T, output_dim).
|
|
309
|
+
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)).
|
|
310
|
+
For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
|
|
311
|
+
"""
|
|
312
|
+
if kv_positions is None:
|
|
313
|
+
kv_positions = q_positions
|
|
314
|
+
original_dtype = Xq.dtype
|
|
315
|
+
|
|
316
|
+
Xq_BxTxNxH = self.q_proj(Xq)
|
|
317
|
+
Xq_BxTxNxH = self.rotary_emb(Xq_BxTxNxH, position=q_positions)
|
|
318
|
+
Xq_BxNxTxH = mx.transpose(Xq_BxTxNxH, (0, 2, 1, 3))
|
|
319
|
+
|
|
320
|
+
# Input values into attention calculation
|
|
321
|
+
attn_k = None
|
|
322
|
+
attn_v = None
|
|
323
|
+
|
|
324
|
+
# Decoder Cross Attention
|
|
325
|
+
if self.is_cross_attn:
|
|
326
|
+
# Directly use cache (no need to check index)
|
|
327
|
+
attn_k, attn_v = cache.k, cache.v
|
|
328
|
+
if (
|
|
329
|
+
attn_k.shape[1] != self.num_query_heads
|
|
330
|
+
or attn_v.shape[1] != self.num_query_heads
|
|
331
|
+
):
|
|
332
|
+
raise ValueError(
|
|
333
|
+
f"Cross-attention cache head dimension ({attn_k.shape[1]}) "
|
|
334
|
+
f"does not match num_query_heads ({self.num_query_heads}). "
|
|
335
|
+
"Cache should be pre-repeated for GQA."
|
|
336
|
+
)
|
|
337
|
+
# Self Attention
|
|
338
|
+
else:
|
|
339
|
+
Xk_BxSxKxH = self.k_proj(Xkv) # (B, S, K, H)
|
|
340
|
+
Xv_BxSxKxH = self.v_proj(Xkv) # (B, S, K, H)
|
|
341
|
+
Xk_BxSxKxH = self.rotary_emb(
|
|
342
|
+
Xk_BxSxKxH, position=kv_positions
|
|
343
|
+
) # (B, S, K, H)
|
|
344
|
+
|
|
345
|
+
Xk_BxKxSxH = mx.transpose(Xk_BxSxKxH, (0, 2, 1, 3)) # (B, K, S, H)
|
|
346
|
+
Xv_BxKxSxH = mx.transpose(Xv_BxSxKxH, (0, 2, 1, 3)) # (B, K, S, H)
|
|
347
|
+
# S=1 for Decode Step
|
|
348
|
+
|
|
349
|
+
if self.num_gqa_groups > 1:
|
|
350
|
+
Xk_BxNxSxH = repeat(
|
|
351
|
+
Xk_BxKxSxH, "b k s h -> b (k g) s h", g=self.num_gqa_groups
|
|
352
|
+
)
|
|
353
|
+
Xv_BxNxSxH = repeat(
|
|
354
|
+
Xv_BxKxSxH, "b k s h -> b (k g) s h", g=self.num_gqa_groups
|
|
355
|
+
)
|
|
356
|
+
else:
|
|
357
|
+
Xk_BxNxSxH = Xk_BxKxSxH
|
|
358
|
+
Xv_BxNxSxH = Xv_BxKxSxH
|
|
359
|
+
|
|
360
|
+
# Encoder Self Attention
|
|
361
|
+
if cache is None:
|
|
362
|
+
attn_k = Xk_BxNxSxH
|
|
363
|
+
attn_v = Xv_BxNxSxH
|
|
364
|
+
# Decoder Self Attention
|
|
365
|
+
else:
|
|
366
|
+
# In prefill mode, we fill in cache until prefill length
|
|
367
|
+
if prefill:
|
|
368
|
+
attn_k, attn_v = Xk_BxNxSxH, Xv_BxNxSxH
|
|
369
|
+
cache.prefill_kv(attn_k, attn_v)
|
|
370
|
+
# In decode step, we add current K/V to cache step by step
|
|
371
|
+
else:
|
|
372
|
+
attn_k, attn_v = cache.update_and_fetch(Xk_BxNxSxH, Xv_BxNxSxH)
|
|
373
|
+
|
|
374
|
+
# Attention Calculation
|
|
375
|
+
attn_scores = mx.matmul(Xq_BxNxTxH, attn_k.swapaxes(2, 3))
|
|
376
|
+
|
|
377
|
+
# Apply Scaling
|
|
378
|
+
scale_factor = 1.0
|
|
379
|
+
attn_scores = attn_scores * scale_factor
|
|
380
|
+
|
|
381
|
+
# Apply Attention Mask
|
|
382
|
+
if attn_mask is not None:
|
|
383
|
+
# Add large negative value where mask is False/0
|
|
384
|
+
attn_scores = mx.where(
|
|
385
|
+
attn_mask, attn_scores, -1e9
|
|
386
|
+
) # Using -1e9 for numerical stability
|
|
387
|
+
|
|
388
|
+
attn_weights = mx.softmax(attn_scores, axis=-1)
|
|
389
|
+
attn_output = mx.matmul(attn_weights, attn_v)
|
|
390
|
+
|
|
391
|
+
attn_output = mx.transpose(attn_output, (0, 2, 1, 3)) # (B, T, N, H)
|
|
392
|
+
output = self.o_proj(attn_output)
|
|
393
|
+
|
|
394
|
+
if output.dtype != original_dtype:
|
|
395
|
+
output = output.astype(original_dtype)
|
|
396
|
+
|
|
397
|
+
return output
|
|
398
|
+
|
|
399
|
+
|
|
400
|
+
class EncoderLayer(nn.Module):
|
|
401
|
+
def __init__(self, config: DiaConfig):
|
|
402
|
+
super().__init__()
|
|
403
|
+
self.config = config
|
|
404
|
+
model_config = config.model
|
|
405
|
+
enc_config = config.model.encoder
|
|
406
|
+
embed_dim = enc_config.n_embd
|
|
407
|
+
|
|
408
|
+
self.pre_sa_norm = nn.RMSNorm(
|
|
409
|
+
embed_dim,
|
|
410
|
+
eps=model_config.normalization_layer_epsilon,
|
|
411
|
+
)
|
|
412
|
+
|
|
413
|
+
self.self_attention = Attention(
|
|
414
|
+
config=config,
|
|
415
|
+
q_embed_dim=embed_dim,
|
|
416
|
+
kv_embed_dim=embed_dim,
|
|
417
|
+
num_query_heads=enc_config.n_head,
|
|
418
|
+
num_kv_heads=enc_config.n_head,
|
|
419
|
+
head_dim=enc_config.head_dim,
|
|
420
|
+
dropout_rate=model_config.dropout,
|
|
421
|
+
is_cross_attn=False,
|
|
422
|
+
out_embed_dim=embed_dim,
|
|
423
|
+
)
|
|
424
|
+
|
|
425
|
+
self.post_sa_norm = nn.RMSNorm(
|
|
426
|
+
embed_dim,
|
|
427
|
+
eps=model_config.normalization_layer_epsilon,
|
|
428
|
+
)
|
|
429
|
+
|
|
430
|
+
self.mlp = MlpBlock(
|
|
431
|
+
config=config,
|
|
432
|
+
embed_dim=embed_dim,
|
|
433
|
+
intermediate_dim=enc_config.n_hidden,
|
|
434
|
+
activations=enc_config.mlp_activations,
|
|
435
|
+
dropout_rate=model_config.dropout,
|
|
436
|
+
use_pre_norm=enc_config.use_pre_norm,
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
self.dropout = nn.Dropout(model_config.dropout)
|
|
440
|
+
|
|
441
|
+
def __call__(
|
|
442
|
+
self,
|
|
443
|
+
x: mx.array,
|
|
444
|
+
src_positions: Optional[mx.array] = None,
|
|
445
|
+
deterministic: bool = True,
|
|
446
|
+
attn_mask: Optional[mx.array] = None,
|
|
447
|
+
) -> mx.array:
|
|
448
|
+
residual = x
|
|
449
|
+
x_norm = self.pre_sa_norm(x)
|
|
450
|
+
|
|
451
|
+
sa_out = self.self_attention(
|
|
452
|
+
Xq=x_norm,
|
|
453
|
+
Xkv=x_norm,
|
|
454
|
+
q_positions=src_positions,
|
|
455
|
+
kv_positions=src_positions,
|
|
456
|
+
deterministic=deterministic,
|
|
457
|
+
attn_mask=attn_mask,
|
|
458
|
+
)
|
|
459
|
+
x = residual + sa_out
|
|
460
|
+
|
|
461
|
+
residual = x
|
|
462
|
+
x_norm = self.post_sa_norm(x)
|
|
463
|
+
mlp_out = self.mlp(x_norm, deterministic=deterministic)
|
|
464
|
+
x = residual + mlp_out
|
|
465
|
+
|
|
466
|
+
if not deterministic:
|
|
467
|
+
x = self.dropout(x)
|
|
468
|
+
|
|
469
|
+
return x
|
|
470
|
+
|
|
471
|
+
|
|
472
|
+
class Encoder(nn.Module):
|
|
473
|
+
def __init__(self, config: DiaConfig):
|
|
474
|
+
super().__init__()
|
|
475
|
+
self.config = config
|
|
476
|
+
model_config = config.model
|
|
477
|
+
enc_config = config.model.encoder
|
|
478
|
+
|
|
479
|
+
self.embedding = nn.Embedding(
|
|
480
|
+
model_config.src_vocab_size,
|
|
481
|
+
enc_config.n_embd,
|
|
482
|
+
)
|
|
483
|
+
self.dropout = nn.Dropout(model_config.dropout)
|
|
484
|
+
self.layers = [EncoderLayer(config=config) for _ in range(enc_config.n_layer)]
|
|
485
|
+
self.norm = nn.RMSNorm(
|
|
486
|
+
enc_config.n_embd,
|
|
487
|
+
eps=model_config.normalization_layer_epsilon,
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
def __call__(
|
|
491
|
+
self,
|
|
492
|
+
x_ids: mx.array,
|
|
493
|
+
src_positions: Optional[mx.array] = None,
|
|
494
|
+
deterministic: bool = True,
|
|
495
|
+
attn_mask: Optional[mx.array] = None,
|
|
496
|
+
) -> mx.array:
|
|
497
|
+
x = self.embedding(x_ids)
|
|
498
|
+
|
|
499
|
+
if not deterministic:
|
|
500
|
+
x = self.dropout(x)
|
|
501
|
+
|
|
502
|
+
for layer_index, layer in enumerate(self.layers):
|
|
503
|
+
x = layer(
|
|
504
|
+
x,
|
|
505
|
+
src_positions=src_positions,
|
|
506
|
+
deterministic=deterministic,
|
|
507
|
+
attn_mask=attn_mask,
|
|
508
|
+
)
|
|
509
|
+
|
|
510
|
+
x = self.norm(x)
|
|
511
|
+
|
|
512
|
+
if not deterministic:
|
|
513
|
+
x = self.dropout(x)
|
|
514
|
+
|
|
515
|
+
return x
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
class DecoderLayer(nn.Module):
|
|
519
|
+
def __init__(self, config: DiaConfig):
|
|
520
|
+
super().__init__()
|
|
521
|
+
self.config = config
|
|
522
|
+
model_config = config.model
|
|
523
|
+
dec_config = config.model.decoder
|
|
524
|
+
enc_config = config.model.encoder
|
|
525
|
+
dec_embed_dim = dec_config.n_embd
|
|
526
|
+
enc_embed_dim = enc_config.n_embd
|
|
527
|
+
|
|
528
|
+
# Norms
|
|
529
|
+
self.pre_sa_norm = nn.RMSNorm(
|
|
530
|
+
dec_embed_dim,
|
|
531
|
+
eps=model_config.normalization_layer_epsilon,
|
|
532
|
+
)
|
|
533
|
+
self.pre_ca_norm = nn.RMSNorm(
|
|
534
|
+
dec_embed_dim,
|
|
535
|
+
eps=model_config.normalization_layer_epsilon,
|
|
536
|
+
)
|
|
537
|
+
self.pre_mlp_norm = nn.RMSNorm(
|
|
538
|
+
dec_embed_dim,
|
|
539
|
+
eps=model_config.normalization_layer_epsilon,
|
|
540
|
+
)
|
|
541
|
+
|
|
542
|
+
# Self-Attention (GQA) with Causal Masking
|
|
543
|
+
self.self_attention = Attention(
|
|
544
|
+
config=config,
|
|
545
|
+
q_embed_dim=dec_embed_dim,
|
|
546
|
+
kv_embed_dim=dec_embed_dim,
|
|
547
|
+
num_query_heads=dec_config.gqa_query_heads,
|
|
548
|
+
num_kv_heads=dec_config.kv_heads,
|
|
549
|
+
head_dim=dec_config.gqa_head_dim,
|
|
550
|
+
dropout_rate=model_config.dropout,
|
|
551
|
+
is_cross_attn=False,
|
|
552
|
+
out_embed_dim=dec_embed_dim,
|
|
553
|
+
)
|
|
554
|
+
|
|
555
|
+
# Cross-Attention (MHA)
|
|
556
|
+
self.cross_attention = Attention(
|
|
557
|
+
config=config,
|
|
558
|
+
q_embed_dim=dec_embed_dim,
|
|
559
|
+
kv_embed_dim=enc_embed_dim, # Note kv_embed_dim
|
|
560
|
+
num_query_heads=dec_config.cross_query_heads,
|
|
561
|
+
num_kv_heads=dec_config.cross_query_heads,
|
|
562
|
+
head_dim=dec_config.cross_head_dim,
|
|
563
|
+
dropout_rate=model_config.dropout,
|
|
564
|
+
is_cross_attn=True,
|
|
565
|
+
out_embed_dim=dec_embed_dim,
|
|
566
|
+
)
|
|
567
|
+
|
|
568
|
+
# MLP
|
|
569
|
+
self.mlp = MlpBlock(
|
|
570
|
+
config=config,
|
|
571
|
+
embed_dim=dec_embed_dim,
|
|
572
|
+
intermediate_dim=dec_config.n_hidden,
|
|
573
|
+
activations=dec_config.mlp_activations,
|
|
574
|
+
dropout_rate=model_config.dropout,
|
|
575
|
+
use_pre_norm=dec_config.use_pre_norm,
|
|
576
|
+
)
|
|
577
|
+
|
|
578
|
+
def __call__(
|
|
579
|
+
self,
|
|
580
|
+
x: mx.array,
|
|
581
|
+
encoder_out: mx.array,
|
|
582
|
+
tgt_positions: mx.array,
|
|
583
|
+
src_positions: Optional[mx.array],
|
|
584
|
+
deterministic: bool,
|
|
585
|
+
self_attn_mask: mx.array,
|
|
586
|
+
cross_attn_mask: mx.array,
|
|
587
|
+
self_attn_cache: KVCache,
|
|
588
|
+
cross_attn_cache: KVCache,
|
|
589
|
+
prefill: bool = False,
|
|
590
|
+
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
|
|
591
|
+
# 1. Self-Attention
|
|
592
|
+
residual = x
|
|
593
|
+
x_norm = self.pre_sa_norm(x)
|
|
594
|
+
|
|
595
|
+
sa_out = self.self_attention(
|
|
596
|
+
Xq=x_norm, # (2, 1, D)
|
|
597
|
+
Xkv=x_norm, # (2, 1, D)
|
|
598
|
+
q_positions=tgt_positions, # (2, 1)
|
|
599
|
+
kv_positions=tgt_positions, # (2, 1)
|
|
600
|
+
deterministic=deterministic,
|
|
601
|
+
attn_mask=self_attn_mask, # (2, 1, 1, S_max)
|
|
602
|
+
cache=self_attn_cache,
|
|
603
|
+
prefill=prefill,
|
|
604
|
+
)
|
|
605
|
+
x = residual + sa_out
|
|
606
|
+
|
|
607
|
+
# 2. Cross-Attention
|
|
608
|
+
residual = x
|
|
609
|
+
x_norm = self.pre_ca_norm(x)
|
|
610
|
+
ca_out = self.cross_attention(
|
|
611
|
+
Xq=x_norm,
|
|
612
|
+
Xkv=encoder_out,
|
|
613
|
+
q_positions=tgt_positions,
|
|
614
|
+
kv_positions=src_positions,
|
|
615
|
+
deterministic=deterministic,
|
|
616
|
+
attn_mask=cross_attn_mask,
|
|
617
|
+
cache=cross_attn_cache,
|
|
618
|
+
)
|
|
619
|
+
x = residual + ca_out
|
|
620
|
+
|
|
621
|
+
# 3. MLP
|
|
622
|
+
residual = x
|
|
623
|
+
x_norm = self.pre_mlp_norm(x)
|
|
624
|
+
mlp_out = self.mlp(x_norm, deterministic=deterministic)
|
|
625
|
+
x = residual + mlp_out
|
|
626
|
+
|
|
627
|
+
return x
|
|
628
|
+
|
|
629
|
+
|
|
630
|
+
class Decoder(nn.Module):
|
|
631
|
+
def __init__(self, config: DiaConfig):
|
|
632
|
+
super().__init__()
|
|
633
|
+
self.config = config
|
|
634
|
+
model_config = config.model
|
|
635
|
+
dec_config = config.model.decoder
|
|
636
|
+
train_config = config.training
|
|
637
|
+
data_config = config.data
|
|
638
|
+
weight_dtype = _str_to_dtype(config.model.weight_dtype)
|
|
639
|
+
self.num_channels = data_config.channels
|
|
640
|
+
self.num_layers = dec_config.n_layer
|
|
641
|
+
|
|
642
|
+
self.embeddings = [
|
|
643
|
+
nn.Embedding(model_config.tgt_vocab_size, dec_config.n_embd)
|
|
644
|
+
for _ in range(self.num_channels)
|
|
645
|
+
]
|
|
646
|
+
self.dropout = nn.Dropout(model_config.dropout)
|
|
647
|
+
self.layers = [DecoderLayer(config=config) for _ in range(self.num_layers)]
|
|
648
|
+
self.norm = nn.RMSNorm(
|
|
649
|
+
dec_config.n_embd,
|
|
650
|
+
eps=model_config.normalization_layer_epsilon,
|
|
651
|
+
)
|
|
652
|
+
|
|
653
|
+
# Final Logits Projection using DenseGeneral
|
|
654
|
+
self.logits_dense = DenseGeneral(
|
|
655
|
+
in_shapes=(dec_config.n_embd,),
|
|
656
|
+
out_features=(self.num_channels, model_config.tgt_vocab_size),
|
|
657
|
+
axis=(-1,),
|
|
658
|
+
dtype=mx.float32,
|
|
659
|
+
weight_dtype=weight_dtype,
|
|
660
|
+
)
|
|
661
|
+
self.logits_in_fp32 = train_config.logits_dot_in_fp32
|
|
662
|
+
|
|
663
|
+
def precompute_cross_attention_kv(
|
|
664
|
+
self,
|
|
665
|
+
max_len: int,
|
|
666
|
+
encoder_out: mx.array, # (B, S, E)
|
|
667
|
+
src_positions: Optional[mx.array], # (B, S)
|
|
668
|
+
) -> List[KVCache]:
|
|
669
|
+
"""
|
|
670
|
+
Computes the Key and Value tensors for cross-attention for each layer from the encoder output.
|
|
671
|
+
"""
|
|
672
|
+
per_layer_kv_cache: List[KVCache] = []
|
|
673
|
+
|
|
674
|
+
for layer in self.layers:
|
|
675
|
+
cross_attn_module = layer.cross_attention
|
|
676
|
+
k_proj = cross_attn_module.k_proj(encoder_out)
|
|
677
|
+
v_proj = cross_attn_module.v_proj(encoder_out)
|
|
678
|
+
|
|
679
|
+
k_proj = cross_attn_module.rotary_emb(k_proj, position=src_positions)
|
|
680
|
+
k = mx.transpose(k_proj, (0, 2, 1, 3)) # equivalent to transpose(1, 2)
|
|
681
|
+
v = mx.transpose(v_proj, (0, 2, 1, 3)) # equivalent to transpose(1, 2)
|
|
682
|
+
|
|
683
|
+
# Create KVCache without device parameter
|
|
684
|
+
per_layer_kv_cache.append(
|
|
685
|
+
KVCache(
|
|
686
|
+
cross_attn_module.num_kv_heads,
|
|
687
|
+
max_len,
|
|
688
|
+
cross_attn_module.head_dim,
|
|
689
|
+
k=k,
|
|
690
|
+
v=v,
|
|
691
|
+
)
|
|
692
|
+
)
|
|
693
|
+
|
|
694
|
+
return per_layer_kv_cache
|
|
695
|
+
|
|
696
|
+
def decode_step(
|
|
697
|
+
self,
|
|
698
|
+
tgt_ids_Bx1xC: mx.array, # [B, 1, C]
|
|
699
|
+
tgt_pos_Bx1: mx.array, # [B, 1]
|
|
700
|
+
encoder_out: mx.array, # [B, S, E]
|
|
701
|
+
self_attn_mask: Any, # None
|
|
702
|
+
cross_attn_mask: mx.array, # [B, 1, 1, S]
|
|
703
|
+
self_attention_cache: List[KVCache],
|
|
704
|
+
cross_attention_cache: List[KVCache],
|
|
705
|
+
) -> mx.array:
|
|
706
|
+
"""
|
|
707
|
+
Performs a single decoding step, managing KV caches layer by layer.
|
|
708
|
+
|
|
709
|
+
Returns:
|
|
710
|
+
A tuple containing:
|
|
711
|
+
- logits_Bx1xCV: The final output logits for the current step (B, 1, C*V), cast to float32.
|
|
712
|
+
- new_cache: The updated KV cache for the next decoding step.
|
|
713
|
+
"""
|
|
714
|
+
assert (
|
|
715
|
+
self_attn_mask is None
|
|
716
|
+
), "Self-attention mask should be None, kept for pattern"
|
|
717
|
+
|
|
718
|
+
x = None
|
|
719
|
+
for i in range(self.num_channels):
|
|
720
|
+
channel_tokens = tgt_ids_Bx1xC[..., i]
|
|
721
|
+
channel_embed = self.embeddings[i](channel_tokens)
|
|
722
|
+
x = channel_embed if x is None else x + channel_embed
|
|
723
|
+
|
|
724
|
+
for i, layer in enumerate(self.layers):
|
|
725
|
+
self_cache = self_attention_cache[i]
|
|
726
|
+
cross_cache = cross_attention_cache[i]
|
|
727
|
+
x = layer(
|
|
728
|
+
x, # (2, 1, D)
|
|
729
|
+
encoder_out, # (2, S, E)
|
|
730
|
+
src_positions=None, # CA KV is already computed
|
|
731
|
+
tgt_positions=tgt_pos_Bx1, # (2, 1)
|
|
732
|
+
deterministic=True,
|
|
733
|
+
self_attn_mask=None,
|
|
734
|
+
cross_attn_mask=cross_attn_mask,
|
|
735
|
+
self_attn_cache=self_cache,
|
|
736
|
+
cross_attn_cache=cross_cache,
|
|
737
|
+
)
|
|
738
|
+
|
|
739
|
+
x = self.norm(x)
|
|
740
|
+
logits_Bx1xCxV = self.logits_dense(x)
|
|
741
|
+
|
|
742
|
+
# Convert to float32 if needed
|
|
743
|
+
if logits_Bx1xCxV.dtype != mx.float32:
|
|
744
|
+
logits_Bx1xCxV = logits_Bx1xCxV.astype(mx.float32)
|
|
745
|
+
|
|
746
|
+
return logits_Bx1xCxV
|
|
747
|
+
|
|
748
|
+
def __call__(
|
|
749
|
+
self,
|
|
750
|
+
tgt_ids_BxTxC: mx.array,
|
|
751
|
+
encoder_out: mx.array,
|
|
752
|
+
tgt_positions: mx.array,
|
|
753
|
+
src_positions: mx.array,
|
|
754
|
+
deterministic: bool,
|
|
755
|
+
self_attn_mask: mx.array,
|
|
756
|
+
cross_attn_mask: mx.array,
|
|
757
|
+
self_attention_cache: List[KVCache],
|
|
758
|
+
cross_attention_cache: List[KVCache],
|
|
759
|
+
) -> mx.array:
|
|
760
|
+
"""
|
|
761
|
+
Forward pass for the Decoder stack, managing KV caches.
|
|
762
|
+
|
|
763
|
+
Args:
|
|
764
|
+
tgt_ids_BxTxC: Target token IDs (B, T, C).
|
|
765
|
+
encoder_out: Output from the encoder (B, S, E).
|
|
766
|
+
tgt_positions: Positions for target sequence (B, T).
|
|
767
|
+
src_positions: Positions for source sequence (B, S).
|
|
768
|
+
deterministic: Disable dropout if True.
|
|
769
|
+
self_attn_mask: Mask for self-attention.
|
|
770
|
+
cross_attn_mask: Mask for cross-attention.
|
|
771
|
+
self_attention_cache: List containing the self-attention KV cache for each layer.
|
|
772
|
+
cross_attention_cache: List containing the cross-attention KV cache for each layer.
|
|
773
|
+
|
|
774
|
+
Returns:
|
|
775
|
+
logits: The final output logits (B, T, C * V), cast to float32.
|
|
776
|
+
"""
|
|
777
|
+
_, _, num_channels_in = tgt_ids_BxTxC.shape
|
|
778
|
+
assert num_channels_in == self.num_channels, "Input channels mismatch"
|
|
779
|
+
|
|
780
|
+
# Embeddings
|
|
781
|
+
x = None
|
|
782
|
+
for i in range(self.num_channels):
|
|
783
|
+
channel_tokens = tgt_ids_BxTxC[..., i]
|
|
784
|
+
channel_embed = self.embeddings[i](channel_tokens)
|
|
785
|
+
x = channel_embed if x is None else x + channel_embed
|
|
786
|
+
|
|
787
|
+
# Apply dropout if not deterministic
|
|
788
|
+
if not deterministic:
|
|
789
|
+
x = self.dropout(x)
|
|
790
|
+
|
|
791
|
+
# Process through each decoder layer
|
|
792
|
+
for i, layer in enumerate(self.layers):
|
|
793
|
+
x = layer(
|
|
794
|
+
x,
|
|
795
|
+
encoder_out,
|
|
796
|
+
tgt_positions=tgt_positions,
|
|
797
|
+
src_positions=src_positions,
|
|
798
|
+
deterministic=deterministic,
|
|
799
|
+
self_attn_mask=self_attn_mask,
|
|
800
|
+
cross_attn_mask=cross_attn_mask,
|
|
801
|
+
self_attn_cache=self_attention_cache[i],
|
|
802
|
+
cross_attn_cache=cross_attention_cache[i],
|
|
803
|
+
prefill=True,
|
|
804
|
+
)
|
|
805
|
+
|
|
806
|
+
# Final Norm
|
|
807
|
+
x = self.norm(x)
|
|
808
|
+
logits_BxTxCxV = self.logits_dense(x)
|
|
809
|
+
|
|
810
|
+
# Convert to float32 if needed
|
|
811
|
+
if logits_BxTxCxV.dtype != mx.float32:
|
|
812
|
+
logits_BxTxCxV = logits_BxTxCxV.astype(mx.float32)
|
|
813
|
+
|
|
814
|
+
return logits_BxTxCxV
|
|
815
|
+
|
|
816
|
+
|
|
817
|
+
class DiaModel(nn.Module):
|
|
818
|
+
def __init__(self, config: DiaConfig):
|
|
819
|
+
super().__init__()
|
|
820
|
+
self.config = config
|
|
821
|
+
self.encoder = Encoder(config)
|
|
822
|
+
self.decoder = Decoder(config)
|
|
823
|
+
|
|
824
|
+
def __call__(
|
|
825
|
+
self,
|
|
826
|
+
src_BxS: mx.array,
|
|
827
|
+
tgt_BxTxC: mx.array,
|
|
828
|
+
src_positions: Optional[mx.array] = None,
|
|
829
|
+
tgt_positions: Optional[mx.array] = None,
|
|
830
|
+
enc_self_attn_mask: Optional[mx.array] = None,
|
|
831
|
+
dec_self_attn_mask: Optional[mx.array] = None,
|
|
832
|
+
dec_cross_attn_mask: Optional[mx.array] = None,
|
|
833
|
+
enable_dropout: bool = True,
|
|
834
|
+
):
|
|
835
|
+
deterministic = not enable_dropout
|
|
836
|
+
|
|
837
|
+
# --- Encoder Pass ---
|
|
838
|
+
encoder_out = self.encoder(
|
|
839
|
+
x_ids=src_BxS,
|
|
840
|
+
src_positions=src_positions,
|
|
841
|
+
deterministic=deterministic,
|
|
842
|
+
attn_mask=enc_self_attn_mask,
|
|
843
|
+
)
|
|
844
|
+
|
|
845
|
+
# --- Decoder Pass ---
|
|
846
|
+
max_len = self.config.model.max_sequence_length
|
|
847
|
+
|
|
848
|
+
self_attention_cache = []
|
|
849
|
+
|
|
850
|
+
for layer in self.decoder.layers:
|
|
851
|
+
self_attn_module = layer.self_attention
|
|
852
|
+
self_attention_cache.append(
|
|
853
|
+
KVCache(
|
|
854
|
+
self_attn_module.num_query_heads, max_len, self_attn_module.head_dim
|
|
855
|
+
)
|
|
856
|
+
)
|
|
857
|
+
|
|
858
|
+
logits = self.decoder(
|
|
859
|
+
tgt_ids_BxTxC=tgt_BxTxC,
|
|
860
|
+
encoder_out=encoder_out,
|
|
861
|
+
tgt_positions=tgt_positions,
|
|
862
|
+
src_positions=src_positions,
|
|
863
|
+
deterministic=deterministic,
|
|
864
|
+
self_attn_mask=dec_self_attn_mask,
|
|
865
|
+
cross_attn_mask=dec_cross_attn_mask,
|
|
866
|
+
self_attention_cache=self_attention_cache,
|
|
867
|
+
cross_attention_cache=None,
|
|
868
|
+
)
|
|
869
|
+
|
|
870
|
+
return logits
|