nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (580) hide show
  1. nexaai/__init__.py +99 -0
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +4 -0
  4. nexaai/asr.py +68 -0
  5. nexaai/asr_impl/__init__.py +0 -0
  6. nexaai/asr_impl/mlx_asr_impl.py +93 -0
  7. nexaai/asr_impl/pybind_asr_impl.py +127 -0
  8. nexaai/base.py +39 -0
  9. nexaai/binds/__init__.py +7 -0
  10. nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
  11. nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
  12. nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
  13. nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
  14. nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
  15. nexaai/binds/cpu_gpu/libggml.dylib +0 -0
  16. nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
  17. nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
  18. nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
  19. nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
  20. nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
  21. nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
  22. nexaai/binds/libnexa_bridge.dylib +0 -0
  23. nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
  24. nexaai/binds/metal/libnexa_plugin.dylib +0 -0
  25. nexaai/binds/metal/py-lib/ml.py +888 -0
  26. nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
  27. nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
  28. nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
  29. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  30. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  31. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  32. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  33. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  34. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  35. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
  36. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
  37. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
  38. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  39. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  40. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  41. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
  42. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
  43. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
  44. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
  45. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  46. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  47. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  48. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  49. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  50. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  51. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
  52. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
  53. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
  54. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
  55. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
  56. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
  57. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
  58. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
  59. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
  60. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
  61. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
  62. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
  63. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
  64. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  65. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
  66. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
  67. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
  68. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
  69. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
  70. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
  71. nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
  72. nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
  73. nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  74. nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
  75. nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
  76. nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
  77. nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
  78. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  79. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  80. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
  81. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
  82. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  83. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  84. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  85. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  86. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  87. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  88. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  89. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
  90. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
  91. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
  92. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
  93. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  94. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
  95. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
  96. nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
  97. nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
  98. nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
  99. nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
  100. nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
  101. nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
  102. nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
  103. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
  104. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
  105. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
  106. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
  107. nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
  108. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
  109. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
  110. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
  111. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
  112. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
  113. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
  114. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
  115. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  116. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
  117. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  118. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  119. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  120. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  121. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  122. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  123. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
  124. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
  125. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
  126. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  127. nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
  128. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  129. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  130. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  131. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
  132. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  133. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
  134. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
  135. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
  136. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
  137. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  138. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  139. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
  140. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  141. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
  142. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
  143. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
  144. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
  145. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  146. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
  147. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  148. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
  149. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  150. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  151. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  152. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  153. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  154. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  155. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  156. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  157. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  158. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  159. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  160. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  161. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  162. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  163. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  164. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
  165. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  166. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
  167. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  168. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
  169. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
  170. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
  171. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
  172. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
  173. nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
  174. nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
  175. nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
  176. nexaai/binds/metal/py-lib/profiling.py +239 -0
  177. nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
  178. nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
  179. nexaai/binds/nexaml/libggml-base.dylib +0 -0
  180. nexaai/binds/nexaml/libggml-cpu.so +0 -0
  181. nexaai/binds/nexaml/libggml-metal.so +0 -0
  182. nexaai/binds/nexaml/libggml.dylib +0 -0
  183. nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
  184. nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
  185. nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
  186. nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
  187. nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
  188. nexaai/binds/nexaml/libnexaproc.dylib +0 -0
  189. nexaai/binds/nexaml/libomp.dylib +0 -0
  190. nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
  191. nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
  192. nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
  193. nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
  194. nexaai/common.py +106 -0
  195. nexaai/cv.py +95 -0
  196. nexaai/cv_impl/__init__.py +0 -0
  197. nexaai/cv_impl/mlx_cv_impl.py +91 -0
  198. nexaai/cv_impl/pybind_cv_impl.py +124 -0
  199. nexaai/diarize.py +80 -0
  200. nexaai/diarize_impl/__init__.py +1 -0
  201. nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
  202. nexaai/embedder.py +73 -0
  203. nexaai/embedder_impl/__init__.py +0 -0
  204. nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
  205. nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
  206. nexaai/image_gen.py +141 -0
  207. nexaai/image_gen_impl/__init__.py +0 -0
  208. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
  209. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
  210. nexaai/llm.py +98 -0
  211. nexaai/llm_impl/__init__.py +0 -0
  212. nexaai/llm_impl/mlx_llm_impl.py +271 -0
  213. nexaai/llm_impl/pybind_llm_impl.py +238 -0
  214. nexaai/log.py +92 -0
  215. nexaai/mlx_backend/asr/__init__.py +12 -0
  216. nexaai/mlx_backend/asr/interface.py +122 -0
  217. nexaai/mlx_backend/common/__init__.py +0 -0
  218. nexaai/mlx_backend/common/utils.py +25 -0
  219. nexaai/mlx_backend/cv/__init__.py +0 -0
  220. nexaai/mlx_backend/cv/generate.py +195 -0
  221. nexaai/mlx_backend/cv/interface.py +162 -0
  222. nexaai/mlx_backend/cv/main.py +81 -0
  223. nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
  224. nexaai/mlx_backend/embedding/__init__.py +0 -0
  225. nexaai/mlx_backend/embedding/generate.py +333 -0
  226. nexaai/mlx_backend/embedding/interface.py +617 -0
  227. nexaai/mlx_backend/embedding/main.py +173 -0
  228. nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
  229. nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
  230. nexaai/mlx_backend/image_gen/__init__.py +1 -0
  231. nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
  232. nexaai/mlx_backend/image_gen/interface.py +82 -0
  233. nexaai/mlx_backend/image_gen/main.py +281 -0
  234. nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
  235. nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
  236. nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
  237. nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
  238. nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
  239. nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
  240. nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
  241. nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
  242. nexaai/mlx_backend/llm/__init__.py +0 -0
  243. nexaai/mlx_backend/llm/generate.py +149 -0
  244. nexaai/mlx_backend/llm/interface.py +764 -0
  245. nexaai/mlx_backend/llm/main.py +68 -0
  246. nexaai/mlx_backend/ml.py +888 -0
  247. nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
  248. nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
  249. nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
  250. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  251. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  252. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  253. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  254. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  255. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  256. nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
  257. nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
  258. nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
  259. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  260. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  261. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  262. nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
  263. nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
  264. nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
  265. nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
  266. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  267. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  268. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  269. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  270. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  271. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  272. nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
  273. nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
  274. nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
  275. nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
  276. nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
  277. nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
  278. nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
  279. nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
  280. nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
  281. nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
  282. nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
  283. nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
  284. nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
  285. nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  286. nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
  287. nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
  288. nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
  289. nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
  290. nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
  291. nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
  292. nexaai/mlx_backend/mlx_audio/server.py +525 -0
  293. nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
  294. nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  295. nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
  296. nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
  297. nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
  298. nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
  299. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  300. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  301. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
  302. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
  303. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  304. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  305. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  306. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  307. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  308. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  309. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  310. nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
  311. nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
  312. nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
  313. nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
  314. nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  315. nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
  316. nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
  317. nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
  318. nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
  319. nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
  320. nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
  321. nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
  322. nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
  323. nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
  324. nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
  325. nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
  326. nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
  327. nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
  328. nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
  329. nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
  330. nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
  331. nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
  332. nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
  333. nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
  334. nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
  335. nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
  336. nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  337. nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
  338. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  339. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  340. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  341. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  342. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  343. nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  344. nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
  345. nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
  346. nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
  347. nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  348. nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
  349. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  350. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  351. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  352. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
  353. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  354. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
  355. nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
  356. nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
  357. nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
  358. nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  359. nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  360. nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
  361. nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
  362. nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  363. nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
  364. nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
  365. nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
  366. nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
  367. nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  368. nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
  369. nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  370. nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
  371. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  372. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  373. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  374. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  375. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  376. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  377. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  378. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  379. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  380. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  381. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  382. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  383. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  384. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  385. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  386. nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
  387. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  388. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
  389. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  390. nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
  391. nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
  392. nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
  393. nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
  394. nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
  395. nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
  396. nexaai/mlx_backend/mlx_audio/utils.py +237 -0
  397. nexaai/mlx_backend/mlx_audio/version.py +1 -0
  398. nexaai/mlx_backend/profiling.py +239 -0
  399. nexaai/mlx_backend/rerank/__init__.py +0 -0
  400. nexaai/mlx_backend/rerank/generate.py +174 -0
  401. nexaai/mlx_backend/rerank/interface.py +287 -0
  402. nexaai/mlx_backend/rerank/main.py +127 -0
  403. nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
  404. nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
  405. nexaai/mlx_backend/sd/__init__.py +1 -0
  406. nexaai/mlx_backend/sd/interface.py +362 -0
  407. nexaai/mlx_backend/sd/main.py +286 -0
  408. nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
  409. nexaai/mlx_backend/sd/modeling/clip.py +116 -0
  410. nexaai/mlx_backend/sd/modeling/config.py +65 -0
  411. nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
  412. nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
  413. nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
  414. nexaai/mlx_backend/sd/modeling/unet.py +460 -0
  415. nexaai/mlx_backend/sd/modeling/vae.py +274 -0
  416. nexaai/mlx_backend/tts/__init__.py +12 -0
  417. nexaai/mlx_backend/tts/interface.py +276 -0
  418. nexaai/mlx_backend/vlm/__init__.py +3 -0
  419. nexaai/mlx_backend/vlm/generate.py +572 -0
  420. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
  421. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
  422. nexaai/mlx_backend/vlm/interface.py +559 -0
  423. nexaai/mlx_backend/vlm/main.py +365 -0
  424. nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
  425. nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
  426. nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
  427. nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
  428. nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  429. nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  430. nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
  431. nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
  432. nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
  433. nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
  434. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  435. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  436. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  437. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  438. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  439. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  440. nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
  441. nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
  442. nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
  443. nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
  444. nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
  445. nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
  446. nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
  447. nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
  448. nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
  449. nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
  450. nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
  451. nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  452. nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
  453. nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
  454. nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
  455. nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
  456. nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
  457. nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
  458. nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
  459. nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
  460. nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
  461. nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
  462. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  463. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  464. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
  465. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
  466. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
  467. nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
  468. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  469. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  470. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
  471. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
  472. nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
  473. nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
  474. nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
  475. nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
  476. nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
  477. nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
  478. nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
  479. nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
  480. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  481. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
  482. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  483. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
  484. nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
  485. nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
  486. nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
  487. nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
  488. nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
  489. nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
  490. nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
  491. nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
  492. nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
  493. nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
  494. nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
  495. nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
  496. nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
  497. nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
  498. nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
  499. nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
  500. nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  501. nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
  502. nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
  503. nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
  504. nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
  505. nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
  506. nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
  507. nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
  508. nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
  509. nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  510. nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  511. nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
  512. nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
  513. nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
  514. nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
  515. nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
  516. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  517. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  518. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  519. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  520. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  521. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  522. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
  523. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
  524. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  525. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  526. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  527. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  528. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  529. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  530. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  531. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  532. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  533. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  534. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
  535. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  536. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  537. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  538. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  539. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  540. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  541. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  542. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  543. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
  544. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  545. nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
  546. nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  547. nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  548. nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
  549. nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
  550. nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
  551. nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
  552. nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
  553. nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
  554. nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
  555. nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
  556. nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
  557. nexaai/rerank.py +57 -0
  558. nexaai/rerank_impl/__init__.py +0 -0
  559. nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
  560. nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
  561. nexaai/runtime.py +68 -0
  562. nexaai/runtime_error.py +24 -0
  563. nexaai/tts.py +75 -0
  564. nexaai/tts_impl/__init__.py +0 -0
  565. nexaai/tts_impl/mlx_tts_impl.py +94 -0
  566. nexaai/tts_impl/pybind_tts_impl.py +43 -0
  567. nexaai/utils/decode.py +18 -0
  568. nexaai/utils/manifest_utils.py +531 -0
  569. nexaai/utils/model_manager.py +1745 -0
  570. nexaai/utils/model_types.py +49 -0
  571. nexaai/utils/progress_tracker.py +389 -0
  572. nexaai/utils/quantization_utils.py +245 -0
  573. nexaai/vlm.py +130 -0
  574. nexaai/vlm_impl/__init__.py +0 -0
  575. nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
  576. nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
  577. nexaai-1.0.29.dist-info/METADATA +35 -0
  578. nexaai-1.0.29.dist-info/RECORD +580 -0
  579. nexaai-1.0.29.dist-info/WHEEL +5 -0
  580. nexaai-1.0.29.dist-info/top_level.txt +1 -0
@@ -0,0 +1,3 @@
1
+ from mlx_audio.tts.models.indextts.indextts import Model, ModelArgs
2
+
3
+ __all__ = ["Model", "ModelArgs"]
@@ -0,0 +1,180 @@
1
+ import math
2
+ from typing import Optional
3
+
4
+ import mlx.core as mx
5
+ import mlx.nn as nn
6
+
7
+
8
+ class MultiHeadAttention(nn.Module):
9
+ def __init__(
10
+ self,
11
+ n_head: int,
12
+ n_feat: int,
13
+ bias=True,
14
+ head_dim: Optional[int] = None,
15
+ ):
16
+ super().__init__()
17
+
18
+ self.n_head = n_head
19
+ self.head_dim = n_feat // n_head if not head_dim else head_dim
20
+ self.scale = self.head_dim**-0.5
21
+
22
+ self.linear_q = nn.Linear(n_feat, self.head_dim * self.n_head, bias=bias)
23
+ self.linear_k = nn.Linear(n_feat, self.head_dim * self.n_head, bias=bias)
24
+ self.linear_v = nn.Linear(n_feat, self.head_dim * self.n_head, bias=bias)
25
+ self.linear_out = nn.Linear(self.head_dim * self.n_head, n_feat, bias=bias)
26
+
27
+ def __call__(
28
+ self,
29
+ q: mx.array,
30
+ k: mx.array,
31
+ v: mx.array,
32
+ pos_emb: mx.array | None = None,
33
+ mask: mx.array | None = None,
34
+ cache=None,
35
+ ) -> mx.array:
36
+ q, k, v = self.linear_q(q), self.linear_k(k), self.linear_v(v)
37
+
38
+ batch, q_seq, _ = q.shape
39
+ _, k_seq, _ = k.shape
40
+
41
+ q = q.reshape(batch, q_seq, self.n_head, self.head_dim).transpose(0, 2, 1, 3)
42
+ k = k.reshape(batch, k_seq, self.n_head, self.head_dim).transpose(0, 2, 1, 3)
43
+ v = v.reshape(batch, k_seq, self.n_head, self.head_dim).transpose(0, 2, 1, 3)
44
+
45
+ if cache:
46
+ k, v = cache.update_and_fetch(k, v)
47
+
48
+ o = mx.fast.scaled_dot_product_attention(q, k, v, scale=self.scale, mask=mask)
49
+ o = o.transpose(0, 2, 1, 3).reshape(batch, q_seq, -1)
50
+
51
+ return self.linear_out(o)
52
+
53
+
54
+ class RelPositionMultiHeadAttention(MultiHeadAttention):
55
+ def __init__(
56
+ self,
57
+ n_head: int,
58
+ n_feat: int,
59
+ bias: bool = True,
60
+ head_dim: Optional[int] = None,
61
+ pos_bias_u: mx.array | None = None,
62
+ pos_bias_v: mx.array | None = None,
63
+ ):
64
+ super().__init__(n_head=n_head, n_feat=n_feat, bias=bias, head_dim=head_dim)
65
+
66
+ self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
67
+
68
+ if pos_bias_u is None:
69
+ self._pos_bias_u_init = mx.zeros((self.n_head, self.head_dim))
70
+ else:
71
+ self._pos_bias_u_init = pos_bias_u
72
+
73
+ if pos_bias_v is None:
74
+ self._pos_bias_v_init = mx.zeros((self.n_head, self.head_dim))
75
+ else:
76
+ self._pos_bias_v_init = pos_bias_v
77
+
78
+ self.pos_bias_u = self._pos_bias_u_init
79
+ self.pos_bias_v = self._pos_bias_v_init
80
+
81
+ def __call__(
82
+ self,
83
+ q: mx.array,
84
+ k: mx.array,
85
+ v: mx.array,
86
+ pos_emb: mx.array | None = None,
87
+ mask: mx.array | None = None,
88
+ cache=None,
89
+ ) -> mx.array:
90
+ if pos_emb is None:
91
+ raise ValueError("pos_emb is necessary!")
92
+
93
+ q, k, v = self.linear_q(q), self.linear_k(k), self.linear_v(v)
94
+
95
+ p = self.linear_pos(pos_emb) # p stands for position
96
+
97
+ batch, q_seq, _ = q.shape
98
+ _, k_seq, _ = k.shape
99
+ _, pos_len, _ = p.shape
100
+
101
+ q = q.reshape(batch, q_seq, self.n_head, self.head_dim)
102
+ q_u = (q + self.pos_bias_u).transpose(0, 2, 1, 3)
103
+ q_v = (q + self.pos_bias_v).transpose(0, 2, 1, 3)
104
+
105
+ k = k.reshape(batch, k_seq, self.n_head, self.head_dim).transpose(0, 2, 1, 3)
106
+ v = v.reshape(batch, k_seq, self.n_head, self.head_dim).transpose(0, 2, 1, 3)
107
+ p = p.reshape(batch, pos_len, self.n_head, self.head_dim).transpose(0, 2, 1, 3)
108
+
109
+ if cache is not None:
110
+ k, v = cache.update_and_fetch(k, v)
111
+
112
+ matrix_bd = mx.matmul(q_v, p.swapaxes(-2, -1))
113
+ matrix_bd = matrix_bd * self.scale
114
+
115
+ if mask is not None:
116
+ mask = mx.expand_dims(mask, 0)
117
+ matrix_bd[mask] = -mx.inf
118
+
119
+ o = mx.fast.scaled_dot_product_attention(
120
+ q_u, k, v, scale=self.scale, mask=matrix_bd
121
+ )
122
+ o = o.transpose(0, 2, 1, 3).reshape(batch, q_seq, -1)
123
+
124
+ return self.linear_out(o)
125
+
126
+
127
+ class RelPositionalEncoding(nn.Module):
128
+ def __init__(
129
+ self,
130
+ d_model: int,
131
+ max_len: int = 5000,
132
+ scale_input: bool = True,
133
+ ):
134
+ assert d_model % 2 == 0 and max_len > 0
135
+ super().__init__()
136
+
137
+ self.d_model = d_model
138
+ self.max_len = max_len
139
+ self.scale = math.sqrt(self.d_model) if scale_input else 1.0
140
+ self.calculate_pe()
141
+
142
+ def calculate_pe(self):
143
+ positions = mx.arange(0, self.max_len, 1, dtype=mx.int32)
144
+ positions = mx.expand_dims(positions, axis=1).astype(mx.float32)
145
+
146
+ div_term = mx.exp(
147
+ mx.arange(0, self.d_model, 2, dtype=mx.float32)
148
+ * -(math.log(10000.0) / self.d_model)
149
+ )
150
+ pe = mx.zeros((self.max_len, self.d_model), dtype=mx.float32)
151
+
152
+ pe[:, 0::2] = mx.sin(positions * div_term)
153
+ pe[:, 1::2] = mx.cos(positions * div_term)
154
+
155
+ self._pe = mx.expand_dims(pe, axis=0).astype(mx.float32)
156
+
157
+ mx.eval(self._pe)
158
+
159
+ def __call__(self, x: mx.array, offset: int = 0) -> tuple[mx.array, mx.array]:
160
+ input_len = x.shape[1] + offset
161
+
162
+ if input_len > self.max_len:
163
+ self.max_len = input_len + 1
164
+ self.calculate_pe()
165
+
166
+ x = x * self.scale
167
+
168
+ pos_emb = self._pe[:, offset : offset + x.shape[1]].astype(x.dtype)
169
+
170
+ return x, pos_emb
171
+
172
+
173
+ class LearnedPositionEncoding(nn.Module):
174
+ def __init__(self, seq_len: int, model_dim: int):
175
+ super().__init__()
176
+
177
+ self.emb = nn.Embedding(seq_len, model_dim)
178
+
179
+ def __call__(self, x: mx.array, offset: int = 0):
180
+ return self.emb(mx.arange(offset, offset + x.shape[1]))
@@ -0,0 +1,124 @@
1
+ from dataclasses import dataclass
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+ from mlx.utils import tree_flatten
6
+
7
+ from mlx_audio.codec.models.bigvgan.bigvgan import BigVGAN, BigVGANConfig
8
+ from mlx_audio.codec.models.bigvgan.conv import WNConv1d
9
+ from mlx_audio.tts.models.indextts.ecapa_tdnn.ecapa_tdnn import ECPATDNN, ECPATDNNArgs
10
+
11
+
12
+ @dataclass
13
+ class BigVGANConditioningConfig(BigVGANConfig):
14
+ gpt_dim: int = 1
15
+ speaker_embedding_dim: int = 1
16
+ cond_d_vector_in_each_upsampling_layer: bool = True
17
+
18
+
19
+ class BigVGANConditioning(BigVGAN):
20
+ def __init__(self, config: BigVGANConditioningConfig):
21
+ super().__init__(config)
22
+
23
+ self.conv_pre = WNConv1d(
24
+ config.gpt_dim, config.upsample_initial_channel, 7, 1, 3
25
+ )
26
+
27
+ self.cond_in_each_up_layer = config.cond_d_vector_in_each_upsampling_layer
28
+
29
+ self.speaker_encoder = ECPATDNN(
30
+ ECPATDNNArgs(config.num_mels, lin_neurons=config.speaker_embedding_dim)
31
+ )
32
+ self.cond_layer = nn.Conv1d(
33
+ config.speaker_embedding_dim, config.upsample_initial_channel, 1
34
+ )
35
+
36
+ if config.cond_d_vector_in_each_upsampling_layer:
37
+ self.conds = [
38
+ nn.Conv1d(
39
+ config.speaker_embedding_dim,
40
+ config.upsample_initial_channel // (2 ** (i + 1)),
41
+ 1,
42
+ )
43
+ for i in range(len(self.ups))
44
+ ]
45
+ else:
46
+ self.conds = []
47
+
48
+ def __call__(
49
+ self, x: mx.array, mel_refer: mx.array
50
+ ) -> mx.array: # (batch, num_mels, seq)
51
+ x = x.transpose(0, 2, 1)
52
+ mel_refer = mel_refer.transpose(0, 2, 1)
53
+
54
+ speaker_embedding = self.speaker_encoder(mel_refer)
55
+
56
+ x = self.conv_pre(x)
57
+ x += self.cond_layer(speaker_embedding)
58
+
59
+ for step in range(self.num_upsamples):
60
+ for idx in range(len(self.ups[step])):
61
+ x = self.ups[step][idx](x)
62
+
63
+ if self.cond_in_each_up_layer:
64
+ x += self.conds[step](speaker_embedding)
65
+
66
+ xs = self.resblocks[step * self.num_kernels](x)
67
+ for idx in range(1, self.num_kernels):
68
+ xs += self.resblocks[step * self.num_kernels + idx](x)
69
+
70
+ x = xs / self.num_kernels
71
+
72
+ x = self.activation_post(x)
73
+ x = self.conv_post(x)
74
+
75
+ if self.use_tanh_at_final:
76
+ x = mx.tanh(x)
77
+ else:
78
+ x = mx.clip(x, -1.0, 1.0)
79
+
80
+ return x.transpose(0, 2, 1)
81
+
82
+ def sanitize(self, weights: dict[str, mx.array]):
83
+ new_weights = {}
84
+
85
+ curr_weights = dict(tree_flatten(self.parameters()))
86
+
87
+ for key, value in weights.items():
88
+ if "num_batches_tracked" in key:
89
+ continue
90
+
91
+ key = (
92
+ key.replace("norm.norm", "norm")
93
+ .replace("conv.conv", "conv")
94
+ .replace("conv1.conv", "conv1")
95
+ .replace("conv2.conv", "conv2")
96
+ .replace("fc.conv", "fc")
97
+ .replace("asp_bn.norm", "asp_bn")
98
+ )
99
+
100
+ if (
101
+ "conv" in key
102
+ or "cond_layer" in key
103
+ or "lowpass.filter" in key
104
+ or "upsample.filter" in key
105
+ or "conds" in key
106
+ or "fc" in key
107
+ ):
108
+ if value.ndim == 3:
109
+ if value.shape != curr_weights[key].shape:
110
+ value = value.transpose(0, 2, 1)
111
+ elif value.ndim == 4:
112
+ if value.shape != curr_weights[key].shape:
113
+ value = value.transpose(0, 2, 3, 1)
114
+
115
+ if "ups." in key:
116
+ if value.ndim == 3:
117
+ if value.shape != curr_weights[key].shape:
118
+ value = value.transpose(1, 2, 0)
119
+
120
+ new_weights[key] = value
121
+
122
+ del curr_weights
123
+
124
+ return new_weights
@@ -0,0 +1,247 @@
1
+ from dataclasses import dataclass
2
+ from typing import Optional
3
+
4
+ import mlx.core as mx
5
+ import mlx.nn as nn
6
+
7
+ from mlx_audio.tts.models.indextts.attention import (
8
+ MultiHeadAttention,
9
+ RelPositionalEncoding,
10
+ RelPositionMultiHeadAttention,
11
+ )
12
+
13
+
14
+ @dataclass
15
+ class ConformerArgs:
16
+ input_size: int = 100
17
+ output_size: int = 256
18
+ num_blocks: int = 6
19
+ linear_units: int = 2048
20
+ attention_heads: int = 4
21
+ pos_enc_layer_type: str = "rel_pos"
22
+ input_layer: str = "conv2d"
23
+ cnn_module_kernel: int = 15
24
+ pos_emb_max_len: int = 2048
25
+ causal_downsampling: bool = False
26
+ use_bias: bool = True
27
+ xscaling: bool = True
28
+ macaron_style: bool = False
29
+ pos_bias_u: mx.array | None = None
30
+ pos_bias_v: mx.array | None = None
31
+ perceiver_mult: int = 2
32
+
33
+
34
+ class FeedForward(nn.Module):
35
+ def __init__(self, dim: int, d_ff: int, use_bias: bool = True):
36
+ super().__init__()
37
+ self.w_1 = nn.Linear(dim, d_ff, bias=use_bias)
38
+ self.activation = nn.SiLU()
39
+ self.w_2 = nn.Linear(d_ff, dim, bias=use_bias)
40
+
41
+ def __call__(self, x: mx.array) -> mx.array:
42
+ return self.w_2(self.activation(self.w_1(x)))
43
+
44
+
45
+ class Convolution(nn.Module):
46
+ def __init__(self, args: ConformerArgs):
47
+ assert (args.cnn_module_kernel - 1) % 2 == 0
48
+ super().__init__()
49
+
50
+ self.pointwise_conv1 = nn.Conv1d(
51
+ args.output_size,
52
+ args.output_size * 2,
53
+ kernel_size=1,
54
+ stride=1,
55
+ padding=0,
56
+ bias=args.use_bias,
57
+ )
58
+ self.depthwise_conv = nn.Conv1d(
59
+ args.output_size,
60
+ args.output_size,
61
+ kernel_size=args.cnn_module_kernel,
62
+ stride=1,
63
+ padding=(args.cnn_module_kernel - 1) // 2,
64
+ groups=args.output_size,
65
+ bias=args.use_bias,
66
+ )
67
+ self.norm = nn.LayerNorm(args.output_size)
68
+ self.activation = nn.SiLU()
69
+ self.pointwise_conv2 = nn.Conv1d(
70
+ args.output_size,
71
+ args.output_size,
72
+ kernel_size=1,
73
+ stride=1,
74
+ padding=0,
75
+ bias=args.use_bias,
76
+ )
77
+
78
+ def __call__(self, x: mx.array) -> mx.array:
79
+ x = self.pointwise_conv1(x)
80
+ x = nn.glu(x, axis=2)
81
+
82
+ x = self.depthwise_conv(x)
83
+ x = self.norm(x)
84
+ x = self.activation(x)
85
+ x = self.pointwise_conv2(x)
86
+
87
+ return x
88
+
89
+
90
+ class ConformerBlock(nn.Module):
91
+ def __init__(self, args: ConformerArgs):
92
+ super().__init__()
93
+ self.macaron_style = args.macaron_style
94
+ self.ff_scale = 0.5 if self.macaron_style else 1
95
+ if args.macaron_style:
96
+ self.norm_ff_macaron = nn.LayerNorm(args.output_size)
97
+ self.feed_forward_macaron = FeedForward(
98
+ args.output_size, args.linear_units, args.use_bias
99
+ )
100
+
101
+ self.norm_mha = nn.LayerNorm(args.output_size)
102
+ self.self_attn = (
103
+ RelPositionMultiHeadAttention(
104
+ args.attention_heads,
105
+ args.output_size,
106
+ bias=args.use_bias,
107
+ pos_bias_u=args.pos_bias_u,
108
+ pos_bias_v=args.pos_bias_v,
109
+ )
110
+ if args.pos_enc_layer_type == "rel_pos"
111
+ else MultiHeadAttention(
112
+ args.attention_heads,
113
+ args.output_size,
114
+ bias=True,
115
+ )
116
+ )
117
+
118
+ self.norm_conv = nn.LayerNorm(args.output_size)
119
+ self.conv_module = Convolution(args)
120
+
121
+ self.norm_ff = nn.LayerNorm(args.output_size)
122
+ self.feed_forward = FeedForward(
123
+ args.output_size, args.linear_units, args.use_bias
124
+ )
125
+
126
+ self.norm_final = nn.LayerNorm(args.output_size)
127
+
128
+ def __call__(
129
+ self,
130
+ x: mx.array,
131
+ pos_emb: mx.array | None = None,
132
+ mask: mx.array | None = None,
133
+ cache=None,
134
+ ) -> mx.array:
135
+ if self.macaron_style:
136
+ x += self.ff_scale * self.feed_forward_macaron(self.norm_ff_macaron(x))
137
+
138
+ x_norm = self.norm_mha(x)
139
+ x += self.self_attn(
140
+ x_norm, x_norm, x_norm, mask=mask, pos_emb=pos_emb, cache=cache
141
+ )
142
+
143
+ x += self.conv_module(self.norm_conv(x))
144
+ x += self.ff_scale * self.feed_forward(self.norm_ff(x))
145
+
146
+ return self.norm_final(x)
147
+
148
+
149
+ class Conv2dSubsampling(nn.Module):
150
+ CONV_LAYERS = {
151
+ "conv2d2": [(3, 2)],
152
+ "conv2d3": [(5, 3)],
153
+ "conv2d4": [(3, 2), (3, 2)],
154
+ "conv2d6": [(3, 2), (5, 3)],
155
+ "conv2d8": [(3, 2), (3, 2), (3, 2)],
156
+ }
157
+ CONV_MASKS = {
158
+ "conv2d2": [slice(2, None, 2)],
159
+ "conv2d3": [slice(None, -2, 3)],
160
+ "conv2d4": [slice(2, None, 2), slice(2, None, 2)],
161
+ "conv2d6": [slice(2, None, 2), slice(4, None, 3)],
162
+ "conv2d8": [slice(2, None, 2), slice(2, None, 2), slice(2, None, 2)],
163
+ }
164
+
165
+ def __init__(self, args: ConformerArgs):
166
+ super().__init__()
167
+ conv_layers = self.CONV_LAYERS[args.input_layer]
168
+
169
+ self.mask_patterns = self.CONV_MASKS[args.input_layer]
170
+ self.conv = []
171
+ self.subsampling_rate = 0
172
+
173
+ in_channels = 1
174
+ out_freq = args.input_size
175
+ for kernel_size, stride in conv_layers:
176
+ self.conv.append(
177
+ nn.Conv2d(
178
+ in_channels,
179
+ args.output_size,
180
+ kernel_size=kernel_size,
181
+ stride=stride,
182
+ )
183
+ )
184
+ self.conv.append(nn.ReLU())
185
+
186
+ in_channels = args.output_size
187
+ out_freq = (out_freq - kernel_size + stride) // stride
188
+ self.subsampling_rate *= stride
189
+
190
+ self.out = [nn.Linear(args.output_size * out_freq, args.output_size)]
191
+
192
+ def __call__(self, x: mx.array, mask: Optional[mx.array] = None):
193
+ x = x[:, :, :, None]
194
+
195
+ for layer in self.conv:
196
+ x = layer(x)
197
+
198
+ x = x.swapaxes(2, 3).reshape(*x.shape[:2], -1)
199
+
200
+ for layer in self.out:
201
+ x = layer(x)
202
+
203
+ if mask is not None:
204
+ for pattern in self.mask_patterns:
205
+ mask = mask[pattern]
206
+
207
+ return x, mask
208
+
209
+
210
+ class Conformer(nn.Module):
211
+ def __init__(self, args: ConformerArgs):
212
+ super().__init__()
213
+
214
+ if args.pos_enc_layer_type == "rel_pos":
215
+ self.pos_enc = RelPositionalEncoding(
216
+ d_model=args.output_size,
217
+ max_len=args.pos_emb_max_len,
218
+ scale_input=args.xscaling,
219
+ )
220
+ else:
221
+ self.pos_enc = None
222
+
223
+ self.embed = Conv2dSubsampling(args)
224
+ self.encoders = [ConformerBlock(args) for _ in range(args.num_blocks)]
225
+ self.after_norm = nn.LayerNorm(args.output_size, eps=1e-5)
226
+
227
+ def __call__(
228
+ self, x: mx.array, mask: Optional[mx.array] = None, cache=None
229
+ ) -> mx.array:
230
+ x, mask = self.embed(x, mask)
231
+
232
+ if cache is None:
233
+ cache = [None] * len(self.encoders)
234
+
235
+ pos_emb = None
236
+ if self.pos_enc is not None:
237
+ x, pos_emb = self.pos_enc(
238
+ x,
239
+ offset=cache[0].offset if cache[0] is not None else 0, # type: ignore
240
+ )
241
+
242
+ for layer, c in zip(self.encoders, cache):
243
+ x = layer(x, pos_emb=pos_emb, cache=c, mask=mask)
244
+
245
+ x = self.after_norm(x)
246
+
247
+ return x
@@ -0,0 +1,59 @@
1
+ from typing import Optional
2
+
3
+ import mlx.core as mx
4
+ import mlx.nn as nn
5
+
6
+ from mlx_audio.tts.models.indextts.ecapa_tdnn.tdnn import TDNN
7
+
8
+
9
+ class AttentiveStatisticsPooling(nn.Module):
10
+ def __init__(
11
+ self, channels: int, attention_channels: int, global_context: bool = True
12
+ ):
13
+ super().__init__()
14
+
15
+ self.eps = 1e-12
16
+ self.global_context = global_context
17
+
18
+ self.tdnn = TDNN(
19
+ channels * 3 if global_context else channels, attention_channels, 1
20
+ )
21
+ self.tanh = nn.Tanh()
22
+ self.conv = nn.Conv1d(attention_channels, channels, 1)
23
+
24
+ def __call__(self, x: mx.array, mask: Optional[mx.array] = None): # NLC
25
+ N, L, C = x.shape
26
+
27
+ if mask is not None:
28
+ mask = mask[:, :, None]
29
+ else:
30
+ mask = mx.ones((N, L, 1))
31
+
32
+ if self.global_context:
33
+ global_mean = (x * mask).sum(1, keepdims=True) / (
34
+ mask.sum(1, keepdims=True) + self.eps
35
+ )
36
+ global_std = mx.sqrt(
37
+ ((x - global_mean) ** 2 * mask).sum(1, keepdims=True)
38
+ / (mask.sum(1, keepdims=True) + self.eps)
39
+ + self.eps
40
+ )
41
+ attn = mx.concat(
42
+ [
43
+ x,
44
+ mx.repeat(global_mean, L, axis=1),
45
+ mx.repeat(global_std, L, axis=1),
46
+ ],
47
+ axis=2,
48
+ )
49
+ else:
50
+ attn = x
51
+
52
+ attn = self.conv(self.tanh(self.tdnn(attn)))
53
+
54
+ attn = mx.softmax(mx.where(mask == 0, -mx.inf, attn), axis=1)
55
+
56
+ mean = (x * attn).sum(1, keepdims=True)
57
+ std = mx.sqrt(((x - mean) ** 2 * attn).sum(1, keepdims=True) + self.eps)
58
+
59
+ return mx.concat([mean, std], axis=2)
@@ -0,0 +1,91 @@
1
+ from dataclasses import dataclass, field
2
+ from typing import Optional
3
+
4
+ import mlx.core as mx
5
+ import mlx.nn as nn
6
+
7
+ from mlx_audio.tts.models.indextts.ecapa_tdnn.asp import AttentiveStatisticsPooling
8
+ from mlx_audio.tts.models.indextts.ecapa_tdnn.se_res2net import SeRes2Net
9
+ from mlx_audio.tts.models.indextts.ecapa_tdnn.tdnn import TDNN
10
+
11
+
12
+ @dataclass
13
+ class ECPATDNNArgs:
14
+ input_size: int
15
+ lin_neurons: int = 192
16
+ channels: list[int] = field(default_factory=lambda: [512, 512, 512, 512, 1536])
17
+ kernel_sizes: list[int] = field(default_factory=lambda: [5, 3, 3, 3, 1])
18
+ dilations: list[int] = field(default_factory=lambda: [1, 2, 3, 4, 1])
19
+ attention_channels: int = 128
20
+ res2net_scale: int = 8
21
+ se_channels: int = 128
22
+ global_context: bool = True
23
+ groups: list[int] = field(default_factory=lambda: [1, 1, 1, 1, 1])
24
+
25
+
26
+ class ECPATDNN(nn.Module):
27
+ def __init__(self, args: ECPATDNNArgs):
28
+ super().__init__()
29
+ assert len(args.channels) == len(args.kernel_sizes) and len(
30
+ args.channels
31
+ ) == len(args.dilations)
32
+
33
+ self.args = args
34
+
35
+ self.blocks = [
36
+ TDNN(
37
+ args.input_size,
38
+ args.channels[0],
39
+ args.kernel_sizes[0],
40
+ dilation=args.dilations[0],
41
+ groups=args.groups[0],
42
+ )
43
+ ] + [
44
+ SeRes2Net(
45
+ args.channels[i - 1],
46
+ args.channels[i],
47
+ scale=args.res2net_scale,
48
+ attention_channels=args.se_channels,
49
+ kernel_size=args.kernel_sizes[i],
50
+ dilation=args.dilations[i],
51
+ groups=args.groups[i],
52
+ )
53
+ for i in range(1, len(args.channels) - 1)
54
+ ]
55
+ self.mfa = TDNN(
56
+ args.channels[-2] * (len(args.channels) - 2),
57
+ args.channels[-1],
58
+ args.kernel_sizes[-1],
59
+ dilation=args.dilations[-1],
60
+ groups=args.groups[-1],
61
+ )
62
+ self.asp = AttentiveStatisticsPooling(
63
+ args.channels[-1],
64
+ attention_channels=args.attention_channels,
65
+ global_context=args.global_context,
66
+ )
67
+ self.asp_bn = nn.BatchNorm(args.channels[-1] * 2)
68
+ self.fc = nn.Conv1d(
69
+ in_channels=args.channels[-1] * 2,
70
+ out_channels=args.lin_neurons,
71
+ kernel_size=1,
72
+ )
73
+
74
+ def __call__(self, x: mx.array, mask: Optional[mx.array] = None): #
75
+ xl = []
76
+ for layer in self.blocks:
77
+ if isinstance(layer, SeRes2Net):
78
+ x = layer(x, mask=mask)
79
+ xl.append(mx.array(x))
80
+ else:
81
+ x = layer(x)
82
+
83
+ x = mx.concat(xl, axis=2)
84
+ x = self.mfa(x)
85
+
86
+ x = self.asp(x, mask=mask)
87
+ x = self.asp_bn(x)
88
+
89
+ x = self.fc(x)
90
+
91
+ return x