nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (580) hide show
  1. nexaai/__init__.py +99 -0
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +4 -0
  4. nexaai/asr.py +68 -0
  5. nexaai/asr_impl/__init__.py +0 -0
  6. nexaai/asr_impl/mlx_asr_impl.py +93 -0
  7. nexaai/asr_impl/pybind_asr_impl.py +127 -0
  8. nexaai/base.py +39 -0
  9. nexaai/binds/__init__.py +7 -0
  10. nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
  11. nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
  12. nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
  13. nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
  14. nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
  15. nexaai/binds/cpu_gpu/libggml.dylib +0 -0
  16. nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
  17. nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
  18. nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
  19. nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
  20. nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
  21. nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
  22. nexaai/binds/libnexa_bridge.dylib +0 -0
  23. nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
  24. nexaai/binds/metal/libnexa_plugin.dylib +0 -0
  25. nexaai/binds/metal/py-lib/ml.py +888 -0
  26. nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
  27. nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
  28. nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
  29. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  30. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  31. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  32. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  33. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  34. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  35. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
  36. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
  37. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
  38. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  39. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  40. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  41. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
  42. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
  43. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
  44. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
  45. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  46. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  47. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  48. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  49. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  50. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  51. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
  52. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
  53. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
  54. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
  55. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
  56. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
  57. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
  58. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
  59. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
  60. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
  61. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
  62. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
  63. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
  64. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  65. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
  66. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
  67. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
  68. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
  69. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
  70. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
  71. nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
  72. nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
  73. nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  74. nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
  75. nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
  76. nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
  77. nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
  78. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  79. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  80. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
  81. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
  82. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  83. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  84. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  85. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  86. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  87. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  88. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  89. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
  90. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
  91. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
  92. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
  93. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  94. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
  95. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
  96. nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
  97. nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
  98. nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
  99. nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
  100. nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
  101. nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
  102. nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
  103. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
  104. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
  105. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
  106. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
  107. nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
  108. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
  109. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
  110. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
  111. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
  112. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
  113. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
  114. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
  115. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  116. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
  117. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  118. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  119. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  120. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  121. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  122. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  123. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
  124. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
  125. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
  126. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  127. nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
  128. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  129. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  130. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  131. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
  132. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  133. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
  134. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
  135. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
  136. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
  137. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  138. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  139. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
  140. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  141. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
  142. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
  143. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
  144. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
  145. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  146. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
  147. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  148. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
  149. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  150. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  151. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  152. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  153. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  154. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  155. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  156. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  157. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  158. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  159. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  160. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  161. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  162. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  163. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  164. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
  165. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  166. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
  167. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  168. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
  169. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
  170. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
  171. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
  172. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
  173. nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
  174. nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
  175. nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
  176. nexaai/binds/metal/py-lib/profiling.py +239 -0
  177. nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
  178. nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
  179. nexaai/binds/nexaml/libggml-base.dylib +0 -0
  180. nexaai/binds/nexaml/libggml-cpu.so +0 -0
  181. nexaai/binds/nexaml/libggml-metal.so +0 -0
  182. nexaai/binds/nexaml/libggml.dylib +0 -0
  183. nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
  184. nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
  185. nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
  186. nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
  187. nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
  188. nexaai/binds/nexaml/libnexaproc.dylib +0 -0
  189. nexaai/binds/nexaml/libomp.dylib +0 -0
  190. nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
  191. nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
  192. nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
  193. nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
  194. nexaai/common.py +106 -0
  195. nexaai/cv.py +95 -0
  196. nexaai/cv_impl/__init__.py +0 -0
  197. nexaai/cv_impl/mlx_cv_impl.py +91 -0
  198. nexaai/cv_impl/pybind_cv_impl.py +124 -0
  199. nexaai/diarize.py +80 -0
  200. nexaai/diarize_impl/__init__.py +1 -0
  201. nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
  202. nexaai/embedder.py +73 -0
  203. nexaai/embedder_impl/__init__.py +0 -0
  204. nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
  205. nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
  206. nexaai/image_gen.py +141 -0
  207. nexaai/image_gen_impl/__init__.py +0 -0
  208. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
  209. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
  210. nexaai/llm.py +98 -0
  211. nexaai/llm_impl/__init__.py +0 -0
  212. nexaai/llm_impl/mlx_llm_impl.py +271 -0
  213. nexaai/llm_impl/pybind_llm_impl.py +238 -0
  214. nexaai/log.py +92 -0
  215. nexaai/mlx_backend/asr/__init__.py +12 -0
  216. nexaai/mlx_backend/asr/interface.py +122 -0
  217. nexaai/mlx_backend/common/__init__.py +0 -0
  218. nexaai/mlx_backend/common/utils.py +25 -0
  219. nexaai/mlx_backend/cv/__init__.py +0 -0
  220. nexaai/mlx_backend/cv/generate.py +195 -0
  221. nexaai/mlx_backend/cv/interface.py +162 -0
  222. nexaai/mlx_backend/cv/main.py +81 -0
  223. nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
  224. nexaai/mlx_backend/embedding/__init__.py +0 -0
  225. nexaai/mlx_backend/embedding/generate.py +333 -0
  226. nexaai/mlx_backend/embedding/interface.py +617 -0
  227. nexaai/mlx_backend/embedding/main.py +173 -0
  228. nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
  229. nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
  230. nexaai/mlx_backend/image_gen/__init__.py +1 -0
  231. nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
  232. nexaai/mlx_backend/image_gen/interface.py +82 -0
  233. nexaai/mlx_backend/image_gen/main.py +281 -0
  234. nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
  235. nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
  236. nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
  237. nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
  238. nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
  239. nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
  240. nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
  241. nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
  242. nexaai/mlx_backend/llm/__init__.py +0 -0
  243. nexaai/mlx_backend/llm/generate.py +149 -0
  244. nexaai/mlx_backend/llm/interface.py +764 -0
  245. nexaai/mlx_backend/llm/main.py +68 -0
  246. nexaai/mlx_backend/ml.py +888 -0
  247. nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
  248. nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
  249. nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
  250. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  251. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  252. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  253. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  254. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  255. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  256. nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
  257. nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
  258. nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
  259. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  260. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  261. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  262. nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
  263. nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
  264. nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
  265. nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
  266. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  267. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  268. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  269. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  270. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  271. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  272. nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
  273. nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
  274. nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
  275. nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
  276. nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
  277. nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
  278. nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
  279. nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
  280. nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
  281. nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
  282. nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
  283. nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
  284. nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
  285. nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  286. nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
  287. nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
  288. nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
  289. nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
  290. nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
  291. nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
  292. nexaai/mlx_backend/mlx_audio/server.py +525 -0
  293. nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
  294. nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  295. nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
  296. nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
  297. nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
  298. nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
  299. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  300. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  301. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
  302. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
  303. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  304. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  305. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  306. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  307. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  308. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  309. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  310. nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
  311. nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
  312. nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
  313. nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
  314. nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  315. nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
  316. nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
  317. nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
  318. nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
  319. nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
  320. nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
  321. nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
  322. nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
  323. nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
  324. nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
  325. nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
  326. nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
  327. nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
  328. nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
  329. nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
  330. nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
  331. nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
  332. nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
  333. nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
  334. nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
  335. nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
  336. nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  337. nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
  338. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  339. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  340. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  341. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  342. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  343. nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  344. nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
  345. nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
  346. nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
  347. nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  348. nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
  349. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  350. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  351. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  352. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
  353. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  354. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
  355. nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
  356. nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
  357. nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
  358. nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  359. nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  360. nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
  361. nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
  362. nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  363. nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
  364. nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
  365. nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
  366. nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
  367. nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  368. nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
  369. nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  370. nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
  371. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  372. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  373. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  374. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  375. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  376. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  377. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  378. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  379. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  380. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  381. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  382. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  383. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  384. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  385. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  386. nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
  387. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  388. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
  389. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  390. nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
  391. nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
  392. nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
  393. nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
  394. nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
  395. nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
  396. nexaai/mlx_backend/mlx_audio/utils.py +237 -0
  397. nexaai/mlx_backend/mlx_audio/version.py +1 -0
  398. nexaai/mlx_backend/profiling.py +239 -0
  399. nexaai/mlx_backend/rerank/__init__.py +0 -0
  400. nexaai/mlx_backend/rerank/generate.py +174 -0
  401. nexaai/mlx_backend/rerank/interface.py +287 -0
  402. nexaai/mlx_backend/rerank/main.py +127 -0
  403. nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
  404. nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
  405. nexaai/mlx_backend/sd/__init__.py +1 -0
  406. nexaai/mlx_backend/sd/interface.py +362 -0
  407. nexaai/mlx_backend/sd/main.py +286 -0
  408. nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
  409. nexaai/mlx_backend/sd/modeling/clip.py +116 -0
  410. nexaai/mlx_backend/sd/modeling/config.py +65 -0
  411. nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
  412. nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
  413. nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
  414. nexaai/mlx_backend/sd/modeling/unet.py +460 -0
  415. nexaai/mlx_backend/sd/modeling/vae.py +274 -0
  416. nexaai/mlx_backend/tts/__init__.py +12 -0
  417. nexaai/mlx_backend/tts/interface.py +276 -0
  418. nexaai/mlx_backend/vlm/__init__.py +3 -0
  419. nexaai/mlx_backend/vlm/generate.py +572 -0
  420. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
  421. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
  422. nexaai/mlx_backend/vlm/interface.py +559 -0
  423. nexaai/mlx_backend/vlm/main.py +365 -0
  424. nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
  425. nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
  426. nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
  427. nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
  428. nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  429. nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  430. nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
  431. nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
  432. nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
  433. nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
  434. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  435. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  436. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  437. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  438. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  439. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  440. nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
  441. nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
  442. nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
  443. nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
  444. nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
  445. nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
  446. nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
  447. nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
  448. nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
  449. nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
  450. nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
  451. nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  452. nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
  453. nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
  454. nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
  455. nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
  456. nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
  457. nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
  458. nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
  459. nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
  460. nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
  461. nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
  462. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  463. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  464. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
  465. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
  466. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
  467. nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
  468. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  469. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  470. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
  471. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
  472. nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
  473. nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
  474. nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
  475. nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
  476. nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
  477. nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
  478. nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
  479. nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
  480. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  481. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
  482. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  483. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
  484. nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
  485. nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
  486. nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
  487. nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
  488. nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
  489. nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
  490. nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
  491. nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
  492. nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
  493. nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
  494. nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
  495. nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
  496. nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
  497. nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
  498. nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
  499. nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
  500. nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  501. nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
  502. nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
  503. nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
  504. nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
  505. nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
  506. nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
  507. nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
  508. nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
  509. nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  510. nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  511. nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
  512. nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
  513. nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
  514. nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
  515. nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
  516. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  517. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  518. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  519. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  520. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  521. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  522. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
  523. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
  524. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  525. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  526. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  527. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  528. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  529. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  530. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  531. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  532. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  533. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  534. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
  535. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  536. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  537. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  538. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  539. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  540. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  541. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  542. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  543. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
  544. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  545. nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
  546. nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  547. nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  548. nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
  549. nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
  550. nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
  551. nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
  552. nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
  553. nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
  554. nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
  555. nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
  556. nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
  557. nexaai/rerank.py +57 -0
  558. nexaai/rerank_impl/__init__.py +0 -0
  559. nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
  560. nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
  561. nexaai/runtime.py +68 -0
  562. nexaai/runtime_error.py +24 -0
  563. nexaai/tts.py +75 -0
  564. nexaai/tts_impl/__init__.py +0 -0
  565. nexaai/tts_impl/mlx_tts_impl.py +94 -0
  566. nexaai/tts_impl/pybind_tts_impl.py +43 -0
  567. nexaai/utils/decode.py +18 -0
  568. nexaai/utils/manifest_utils.py +531 -0
  569. nexaai/utils/model_manager.py +1745 -0
  570. nexaai/utils/model_types.py +49 -0
  571. nexaai/utils/progress_tracker.py +389 -0
  572. nexaai/utils/quantization_utils.py +245 -0
  573. nexaai/vlm.py +130 -0
  574. nexaai/vlm_impl/__init__.py +0 -0
  575. nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
  576. nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
  577. nexaai-1.0.29.dist-info/METADATA +35 -0
  578. nexaai-1.0.29.dist-info/RECORD +580 -0
  579. nexaai-1.0.29.dist-info/WHEEL +5 -0
  580. nexaai-1.0.29.dist-info/top_level.txt +1 -0
@@ -0,0 +1,701 @@
1
+ import contextlib
2
+ import functools
3
+ from dataclasses import dataclass
4
+ from typing import (
5
+ Any,
6
+ Callable,
7
+ Generator,
8
+ List,
9
+ Optional,
10
+ Tuple,
11
+ Union,
12
+ )
13
+
14
+ import mlx.core as mx
15
+ import mlx.nn as nn
16
+ from mlx.utils import tree_reduce
17
+ from transformers import PreTrainedTokenizer
18
+
19
+ from .cache import (
20
+ QuantizedKVCache,
21
+ load_prompt_cache,
22
+ )
23
+ from . import cache
24
+ from .sample_utils import make_sampler
25
+ from .tokenizer_utils import TokenizerWrapper
26
+
27
+ DEFAULT_PROMPT = "hello"
28
+ DEFAULT_MAX_TOKENS = 100
29
+ DEFAULT_TEMP = 0.0
30
+ DEFAULT_TOP_P = 1.0
31
+ DEFAULT_MIN_P = 0.0
32
+ DEFAULT_TOP_K = 0
33
+ DEFAULT_XTC_PROBABILITY = 0.0
34
+ DEFAULT_XTC_THRESHOLD = 0.0
35
+ DEFAULT_MIN_TOKENS_TO_KEEP = 1
36
+ DEFAULT_SEED = None
37
+ DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
38
+ DEFAULT_QUANTIZED_KV_START = 5000
39
+
40
+
41
+ def str2bool(string):
42
+ return string.lower() not in ["false", "f"]
43
+
44
+
45
+ # A stream on the default device just for generation
46
+ generation_stream = mx.new_stream(mx.default_device())
47
+
48
+
49
+ @contextlib.contextmanager
50
+ def wired_limit(model: nn.Module, streams: Optional[List[mx.Stream]] = None):
51
+ """
52
+ A context manager to temporarily change the wired limit.
53
+
54
+ Note, the wired limit should not be changed during an async eval. If an
55
+ async eval could be running pass in the streams to synchronize with prior
56
+ to exiting the context manager.
57
+ """
58
+ model_bytes = tree_reduce(
59
+ lambda acc, x: acc + x.nbytes if isinstance(x, mx.array) else acc, model, 0
60
+ )
61
+ max_rec_size = mx.metal.device_info()["max_recommended_working_set_size"]
62
+ if model_bytes > 0.9 * max_rec_size:
63
+ model_mb = model_bytes // 2**20
64
+ max_rec_mb = max_rec_size // 2**20
65
+ print(
66
+ f"[WARNING] Generating with a model that requires {model_mb} MB "
67
+ f"which is close to the maximum recommended size of {max_rec_mb} "
68
+ "MB. This can be slow. See the documentation for possible work-arounds: "
69
+ "https://github.com/ml-explore/mlx-lm/tree/main#large-models"
70
+ )
71
+ old_limit = mx.set_wired_limit(max_rec_size)
72
+ try:
73
+ yield None
74
+ finally:
75
+ if streams is not None:
76
+ for s in streams:
77
+ mx.synchronize(s)
78
+ else:
79
+ mx.synchronize()
80
+ mx.set_wired_limit(old_limit)
81
+
82
+
83
+ @dataclass
84
+ class GenerationResponse:
85
+ """
86
+ The output of :func:`stream_generate`.
87
+
88
+ Args:
89
+ text (str): The next segment of decoded text. This can be an empty string.
90
+ token (int): The next token.
91
+ from_draft (bool): Whether the token was generated by the draft model.
92
+ logprobs (mx.array): A vector of log probabilities.
93
+ prompt_tokens (int): The number of tokens in the prompt.
94
+ prompt_tps (float): The prompt processing tokens-per-second.
95
+ generation_tokens (int): The number of generated tokens.
96
+ generation_tps (float): The tokens-per-second for generation.
97
+ peak_memory (float): The peak memory used so far in GB.
98
+ finish_reason (str): The reason the response is being sent: "length", "stop" or `None`
99
+ """
100
+
101
+ text: str
102
+ token: int
103
+ logprobs: mx.array
104
+ from_draft: bool
105
+ prompt_tokens: int
106
+ prompt_tps: float
107
+ generation_tokens: int
108
+ generation_tps: float
109
+ peak_memory: float
110
+ finish_reason: Optional[str] = None
111
+
112
+
113
+ def maybe_quantize_kv_cache(prompt_cache, quantized_kv_start, kv_group_size, kv_bits):
114
+ if (
115
+ kv_bits is not None
116
+ and not isinstance(prompt_cache[0], cache.QuantizedKVCache)
117
+ and prompt_cache[0].offset > quantized_kv_start
118
+ ):
119
+ for i in range(len(prompt_cache)):
120
+ if isinstance(prompt_cache[i], cache.KVCache):
121
+ prompt_cache[i] = prompt_cache[i].to_quantized(
122
+ group_size=kv_group_size, bits=kv_bits
123
+ )
124
+
125
+
126
+ def generate_step(
127
+ prompt: mx.array,
128
+ model: nn.Module,
129
+ *,
130
+ max_tokens: int = 256,
131
+ sampler: Optional[Callable[mx.array, mx.array]] = None,
132
+ logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
133
+ max_kv_size: Optional[int] = None,
134
+ prompt_cache: Optional[Any] = None,
135
+ prefill_step_size: int = 2048,
136
+ kv_bits: Optional[int] = None,
137
+ kv_group_size: int = 64,
138
+ quantized_kv_start: int = 0,
139
+ prompt_progress_callback: Optional[Callable[int, int]] = None,
140
+ input_embeddings: Optional[mx.array] = None,
141
+ ) -> Generator[Tuple[mx.array, mx.array], None, None]:
142
+ """
143
+ A generator producing token ids based on the given prompt from the model.
144
+
145
+ Args:
146
+ prompt (mx.array): The input prompt.
147
+ model (nn.Module): The model to use for generation.
148
+ max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
149
+ generator. Default: ``256``.
150
+ sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
151
+ token from a vector of log probabilities. Default: ``None``.
152
+ logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
153
+ A list of functions that take tokens and logits and return the processed
154
+ logits. Default: ``None``.
155
+ max_kv_size (int, optional): Maximum size of the key-value cache. Old
156
+ entries (except the first 4 tokens) will be overwritten.
157
+ prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
158
+ provided, the cache will be updated in place.
159
+ prefill_step_size (int): Step size for processing the prompt.
160
+ kv_bits (int, optional): Number of bits to use for KV cache quantization.
161
+ None implies no cache quantization. Default: ``None``.
162
+ kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
163
+ quantized_kv_start (int): Step to begin using a quantized KV cache.
164
+ when ``kv_bits`` is non-None. Default: ``0``.
165
+ prompt_progress_callback (Callable[int, int]): A call-back which takes the
166
+ prompt tokens processed so far and the total number of prompt tokens.
167
+ input_embeddings (mx.array, optional): Input embeddings to use in place of
168
+ prompt tokens. Default: ``None``.
169
+
170
+ Yields:
171
+ Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
172
+ """
173
+ assert (prompt is not None) ^ (
174
+ input_embeddings is not None
175
+ ), "Exactly one of prompt or input_embeddings must be provided, not both"
176
+
177
+ tokens = None
178
+
179
+ # Create the KV cache for generation
180
+ if prompt_cache is None:
181
+ prompt_cache = cache.make_prompt_cache(
182
+ model,
183
+ max_kv_size=max_kv_size,
184
+ )
185
+
186
+ prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
187
+
188
+ quantize_cache_fn = functools.partial(
189
+ maybe_quantize_kv_cache,
190
+ quantized_kv_start=quantized_kv_start,
191
+ kv_group_size=kv_group_size,
192
+ kv_bits=kv_bits,
193
+ )
194
+
195
+ sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
196
+
197
+ def _model_call(y):
198
+ if y.ndim == 3:
199
+ return model(None, cache=prompt_cache, input_embeddings=y)
200
+ else:
201
+ return model(y, cache=prompt_cache)
202
+
203
+ def _step(y):
204
+ nonlocal tokens
205
+
206
+ with mx.stream(generation_stream):
207
+ logits = _model_call(y[None])
208
+
209
+ logits = logits[:, -1, :]
210
+
211
+ if logits_processors and input_embeddings is None:
212
+ tokens = mx.concat([tokens, y]) if tokens is not None else y
213
+ for processor in logits_processors:
214
+ logits = processor(tokens, logits)
215
+
216
+ quantize_cache_fn(prompt_cache)
217
+
218
+ logprobs = logits - mx.logsumexp(logits, keepdims=True)
219
+ y = sampler(logprobs)
220
+ return y, logprobs.squeeze(0)
221
+
222
+ using_embeddings = input_embeddings is not None
223
+
224
+ y = input_embeddings if using_embeddings else prompt
225
+ with mx.stream(generation_stream):
226
+ total_prompt_tokens = y.shape[0]
227
+ prompt_processed_tokens = 0
228
+ while y.shape[0] > prefill_step_size:
229
+ _model_call(y[:prefill_step_size][None])
230
+ quantize_cache_fn(prompt_cache)
231
+ mx.eval([c.state for c in prompt_cache])
232
+ prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
233
+ prompt_processed_tokens += prefill_step_size
234
+ y = y[prefill_step_size:]
235
+ mx.clear_cache()
236
+
237
+ y, logprobs = _step(y)
238
+
239
+ mx.async_eval(y, logprobs)
240
+ n = 0
241
+ while True:
242
+ if n != max_tokens:
243
+ next_y, next_logprobs = _step(y)
244
+ mx.async_eval(next_y, next_logprobs)
245
+ if n == 0:
246
+ mx.eval(y)
247
+ prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
248
+ if n == max_tokens:
249
+ break
250
+ yield y.item(), logprobs
251
+ if n % 256 == 0:
252
+ mx.clear_cache()
253
+ y, logprobs = next_y, next_logprobs
254
+ n += 1
255
+
256
+
257
+ def nexa_generate_step(
258
+ model: nn.Module,
259
+ *, # enforces explicit parameter naming
260
+ prompt: Optional[mx.array] = None,
261
+ max_tokens: int = 256,
262
+ sampler: Optional[Callable[mx.array, mx.array]] = None,
263
+ logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
264
+ max_kv_size: Optional[int] = None,
265
+ prompt_cache: Optional[Any] = None,
266
+ prefill_step_size: int = 2048,
267
+ kv_bits: Optional[int] = None,
268
+ kv_group_size: int = 64,
269
+ quantized_kv_start: int = 0,
270
+ prompt_progress_callback: Optional[Callable[int, int]] = None,
271
+ input_embeddings: Optional[mx.array] = None,
272
+ visual_pos_masks: Optional[mx.array] = None,
273
+ deepstack_visual_embeds: Optional[List[mx.array]] = None,
274
+ cos: Optional[mx.array] = None,
275
+ sin: Optional[mx.array] = None,
276
+ rope_deltas: Optional[mx.array] = None,
277
+ ) -> Generator[Tuple[mx.array, mx.array], None, None]:
278
+ """
279
+ A generator producing token ids based on the given prompt from the model.
280
+
281
+ Args:
282
+ prompt (mx.array): The input prompt.
283
+ model (nn.Module): The model to use for generation.
284
+ max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
285
+ generator. Default: ``256``.
286
+ sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
287
+ token from a vector of log probabilities. Default: ``None``.
288
+ logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
289
+ A list of functions that take tokens and logits and return the processed
290
+ logits. Default: ``None``.
291
+ max_kv_size (int, optional): Maximum size of the key-value cache. Old
292
+ entries (except the first 4 tokens) will be overwritten.
293
+ prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
294
+ provided, the cache will be updated in place.
295
+ prefill_step_size (int): Step size for processing the prompt.
296
+ kv_bits (int, optional): Number of bits to use for KV cache quantization.
297
+ None implies no cache quantization. Default: ``None``.
298
+ kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
299
+ quantized_kv_start (int): Step to begin using a quantized KV cache.
300
+ when ``kv_bits`` is non-None. Default: ``0``.
301
+ prompt_progress_callback (Callable[int, int]): A call-back which takes the
302
+ prompt tokens processed so far and the total number of prompt tokens.
303
+ input_embeddings (mx.array, optional): Input embeddings to use in place of
304
+ prompt tokens. Default: ``None``.
305
+
306
+ Yields:
307
+ Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
308
+ """
309
+ assert (prompt is not None) ^ (
310
+ input_embeddings is not None
311
+ ), "Exactly one of prompt or input_embeddings must be provided, not both"
312
+
313
+ tokens = None
314
+
315
+ # Create the KV cache for generation
316
+ if prompt_cache is None:
317
+ prompt_cache = cache.make_prompt_cache(
318
+ model,
319
+ max_kv_size=max_kv_size,
320
+ )
321
+
322
+ prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
323
+
324
+ quantize_cache_fn = functools.partial(
325
+ maybe_quantize_kv_cache,
326
+ quantized_kv_start=quantized_kv_start,
327
+ kv_group_size=kv_group_size,
328
+ kv_bits=kv_bits,
329
+ )
330
+
331
+ sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
332
+
333
+ def _model_call(y):
334
+ if y.ndim == 4:
335
+ y = y[0]
336
+ return model(None, cache=prompt_cache, inputs_embeds=y, cos=cos, sin=sin, visual_pos_masks=visual_pos_masks, deepstack_visual_embeds=deepstack_visual_embeds, rope_deltas=rope_deltas)
337
+ elif y.ndim == 3:
338
+ return model(None, cache=prompt_cache, inputs_embeds=y, cos=cos, sin=sin, visual_pos_masks=visual_pos_masks, deepstack_visual_embeds=deepstack_visual_embeds, rope_deltas=rope_deltas)
339
+ else:
340
+ return model(y, cache=prompt_cache, rope_deltas=rope_deltas)
341
+
342
+ def _step(y):
343
+ nonlocal tokens
344
+
345
+ with mx.stream(generation_stream):
346
+ logits = _model_call(y[None])
347
+
348
+ logits = logits[:, -1, :]
349
+
350
+ if logits_processors and input_embeddings is None:
351
+ tokens = mx.concat([tokens, y]) if tokens is not None else y
352
+ for processor in logits_processors:
353
+ logits = processor(tokens, logits)
354
+
355
+ quantize_cache_fn(prompt_cache)
356
+
357
+ logprobs = logits - mx.logsumexp(logits, keepdims=True)
358
+ y = sampler(logprobs)
359
+ return y, logprobs.squeeze(0)
360
+
361
+ using_embeddings = input_embeddings is not None
362
+
363
+ y = input_embeddings if using_embeddings else prompt
364
+ with mx.stream(generation_stream):
365
+ total_prompt_tokens = y.shape[0]
366
+ prompt_processed_tokens = 0
367
+ while y.shape[0] > prefill_step_size:
368
+ _model_call(y[:prefill_step_size][None])
369
+ quantize_cache_fn(prompt_cache)
370
+ mx.eval([c.state for c in prompt_cache])
371
+ prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
372
+ prompt_processed_tokens += prefill_step_size
373
+ y = y[prefill_step_size:]
374
+ mx.clear_cache()
375
+
376
+ y, logprobs = _step(y)
377
+
378
+ mx.async_eval(y, logprobs)
379
+ n = 0
380
+ while True:
381
+ if n != max_tokens:
382
+ next_y, next_logprobs = _step(y)
383
+ mx.async_eval(next_y, next_logprobs)
384
+ if n == 0:
385
+ mx.eval(y)
386
+ prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
387
+ if n == max_tokens:
388
+ break
389
+ yield y.item(), logprobs
390
+ if n % 256 == 0:
391
+ mx.clear_cache()
392
+ y, logprobs = next_y, next_logprobs
393
+ n += 1
394
+
395
+
396
+
397
+ ## Explicit parameter naming means we need to specify the parameter names.
398
+ def nexa_multimodal_generate_step(
399
+ model: nn.Module,
400
+ *, # enforces explicit parameter naming
401
+ prompt: Optional[mx.array] = None,
402
+ max_tokens: int = 256,
403
+ sampler: Optional[Callable[mx.array, mx.array]] = None,
404
+ logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
405
+ max_kv_size: Optional[int] = None,
406
+ prompt_cache: Optional[Any] = None,
407
+ prefill_step_size: int = 2048,
408
+ kv_bits: Optional[int] = None,
409
+ kv_group_size: int = 64,
410
+ quantized_kv_start: int = 0,
411
+ prompt_progress_callback: Optional[Callable[int, int]] = None,
412
+ input_embeddings: Optional[mx.array] = None,
413
+ cos: Optional[mx.array] = None,
414
+ sin: Optional[mx.array] = None,
415
+ rope_deltas: Optional[mx.array] = None,
416
+ ) -> Generator[Tuple[mx.array, mx.array], None, None]:
417
+ """
418
+ A generator producing token ids based on the given prompt from the model.
419
+
420
+ Args:
421
+ prompt (mx.array): The input prompt.
422
+ model (nn.Module): The model to use for generation.
423
+ max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
424
+ generator. Default: ``256``.
425
+ sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
426
+ token from a vector of log probabilities. Default: ``None``.
427
+ logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
428
+ A list of functions that take tokens and logits and return the processed
429
+ logits. Default: ``None``.
430
+ max_kv_size (int, optional): Maximum size of the key-value cache. Old
431
+ entries (except the first 4 tokens) will be overwritten.
432
+ prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
433
+ provided, the cache will be updated in place.
434
+ prefill_step_size (int): Step size for processing the prompt.
435
+ kv_bits (int, optional): Number of bits to use for KV cache quantization.
436
+ None implies no cache quantization. Default: ``None``.
437
+ kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
438
+ quantized_kv_start (int): Step to begin using a quantized KV cache.
439
+ when ``kv_bits`` is non-None. Default: ``0``.
440
+ prompt_progress_callback (Callable[int, int]): A call-back which takes the
441
+ prompt tokens processed so far and the total number of prompt tokens.
442
+ input_embeddings (mx.array, optional): Input embeddings to use in place of
443
+ prompt tokens. Default: ``None``.
444
+
445
+ Yields:
446
+ Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
447
+ """
448
+ assert (prompt is not None) ^ (
449
+ input_embeddings is not None
450
+ ), "Exactly one of prompt or input_embeddings must be provided, not both"
451
+
452
+ tokens = None
453
+
454
+ # Create the KV cache for generation
455
+ if prompt_cache is None:
456
+ prompt_cache = cache.make_prompt_cache(
457
+ model,
458
+ max_kv_size=max_kv_size,
459
+ )
460
+
461
+ prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
462
+
463
+ quantize_cache_fn = functools.partial(
464
+ maybe_quantize_kv_cache,
465
+ quantized_kv_start=quantized_kv_start,
466
+ kv_group_size=kv_group_size,
467
+ kv_bits=kv_bits,
468
+ )
469
+
470
+ sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
471
+
472
+ def _model_call(y):
473
+ if y.ndim == 3:
474
+ return model(None, cache=prompt_cache, input_embeddings=y, cos=cos, sin=sin, rope_deltas=rope_deltas)
475
+ else:
476
+ return model(y, cache=prompt_cache, rope_deltas=rope_deltas)
477
+
478
+ def _step(y):
479
+ nonlocal tokens
480
+
481
+ with mx.stream(generation_stream):
482
+ logits = _model_call(y[None])
483
+
484
+ logits = logits[:, -1, :]
485
+
486
+ if logits_processors and input_embeddings is None:
487
+ tokens = mx.concat([tokens, y]) if tokens is not None else y
488
+ for processor in logits_processors:
489
+ logits = processor(tokens, logits)
490
+
491
+ quantize_cache_fn(prompt_cache)
492
+
493
+ logprobs = logits - mx.logsumexp(logits, keepdims=True)
494
+ y = sampler(logprobs)
495
+ return y, logprobs.squeeze(0)
496
+
497
+ using_embeddings = input_embeddings is not None
498
+
499
+ y = input_embeddings if using_embeddings else prompt
500
+ with mx.stream(generation_stream):
501
+ total_prompt_tokens = y.shape[0]
502
+ prompt_processed_tokens = 0
503
+ while y.shape[0] > prefill_step_size:
504
+ _model_call(y[:prefill_step_size][None])
505
+ quantize_cache_fn(prompt_cache)
506
+ mx.eval([c.state for c in prompt_cache])
507
+ prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
508
+ prompt_processed_tokens += prefill_step_size
509
+ y = y[prefill_step_size:]
510
+ mx.clear_cache()
511
+
512
+ y, logprobs = _step(y)
513
+
514
+ mx.async_eval(y, logprobs)
515
+ n = 0
516
+ while True:
517
+ if n != max_tokens:
518
+ next_y, next_logprobs = _step(y)
519
+ mx.async_eval(next_y, next_logprobs)
520
+ if n == 0:
521
+ mx.eval(y)
522
+ prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
523
+ if n == max_tokens:
524
+ break
525
+ yield y.item(), logprobs
526
+ if n % 256 == 0:
527
+ mx.clear_cache()
528
+ y, logprobs = next_y, next_logprobs
529
+ n += 1
530
+
531
+
532
+
533
+
534
+
535
+ def speculative_generate_step(
536
+ prompt: mx.array,
537
+ model: nn.Module,
538
+ draft_model: nn.Module,
539
+ *,
540
+ num_draft_tokens=2,
541
+ max_tokens: int = 256,
542
+ sampler: Optional[Callable[mx.array, mx.array]] = None,
543
+ logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
544
+ prompt_cache: Optional[Any] = None,
545
+ prefill_step_size: int = 512,
546
+ kv_bits: Optional[int] = None,
547
+ kv_group_size: int = 64,
548
+ quantized_kv_start: int = 0,
549
+ ) -> Generator[Tuple[mx.array, mx.array, bool], None, None]:
550
+ """
551
+ A generator producing token ids based on the given prompt from the model.
552
+
553
+ Args:
554
+ prompt (mx.array): The input prompt.
555
+ model (nn.Module): The model to use for generation.
556
+ draft_model (nn.Module): The draft model for speculative decoding.
557
+ num_draft_tokens (int, optional): The number of draft tokens for
558
+ speculative decoding. Default: ``2``.
559
+ max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
560
+ generator. Default: ``256``.
561
+ sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
562
+ token from a vector of log probabilities. Default: ``None``.
563
+ logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
564
+ A list of functions that take tokens and logits and return the processed
565
+ logits. Default: ``None``.
566
+ prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
567
+ provided, the cache will be updated in place. The cache must be trimmable.
568
+ prefill_step_size (int): Step size for processing the prompt.
569
+ kv_bits (int, optional): Number of bits to use for KV cache quantization.
570
+ None implies no cache quantization. Default: ``None``.
571
+ kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
572
+ quantized_kv_start (int): Step to begin using a quantized KV cache.
573
+ when ``kv_bits`` is non-None. Default: ``0``.
574
+
575
+ Yields:
576
+ Tuple[mx.array, mx.array, bool]: One token, a vector of log probabilities,
577
+ and a bool indicating if the token was generated by the draft model
578
+ """
579
+
580
+ y = prompt.astype(mx.uint32)
581
+ prev_tokens = None
582
+
583
+ # Create the KV cache for generation
584
+ if prompt_cache is None:
585
+ model_cache = cache.make_prompt_cache(model)
586
+ draft_cache = cache.make_prompt_cache(draft_model)
587
+ else:
588
+ model_cache = prompt_cache[: len(model.layers)]
589
+ draft_cache = prompt_cache[len(model.layers) :]
590
+
591
+ sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
592
+
593
+ quantize_cache_fn = functools.partial(
594
+ maybe_quantize_kv_cache,
595
+ quantized_kv_start=quantized_kv_start,
596
+ kv_group_size=kv_group_size,
597
+ kv_bits=kv_bits,
598
+ )
599
+
600
+ def _process_and_sample(tokens, logits):
601
+ if logits_processors:
602
+ for processor in logits_processors:
603
+ logits = processor(tokens, logits)
604
+
605
+ logprobs = logits - mx.logsumexp(logits, axis=-1, keepdims=True)
606
+ y = sampler(logprobs)
607
+ return y, logprobs
608
+
609
+ def _step(model, cache, y, n_predict=1):
610
+ with mx.stream(generation_stream):
611
+ logits = model(y[None], cache=cache)
612
+ logits = logits[:, -n_predict:, :]
613
+
614
+ quantize_cache_fn(cache)
615
+ if logits_processors:
616
+ nonlocal prev_tokens
617
+ out_y, out_logprobs = [], []
618
+ if n_predict > 1:
619
+ y = y[: -(n_predict - 1)]
620
+ for i in range(n_predict):
621
+ prev_tokens = mx.concat([prev_tokens, y]) if prev_tokens is not None else y
622
+ y, logprobs = _process_and_sample(prev_tokens, logits[:, i, :])
623
+ out_y.append(y)
624
+ out_logprobs.append(logprobs)
625
+ return mx.concatenate(out_y, axis=0), mx.concatenate(out_logprobs, axis=0)
626
+ else:
627
+ return _process_and_sample(None, logits.squeeze(0))
628
+
629
+ def _prefill(model, cache, y):
630
+ while y.size > prefill_step_size:
631
+ model(y[:prefill_step_size][None], cache=cache)
632
+ quantize_cache_fn(cache)
633
+ mx.eval([c.state for c in cache])
634
+ y = y[prefill_step_size:]
635
+ mx.clear_cache()
636
+ return y
637
+
638
+ def _rewind_cache(num_draft, num_accept):
639
+ cache.trim_prompt_cache(model_cache, num_draft - num_accept)
640
+ cache.trim_prompt_cache(draft_cache, max(num_draft - num_accept - 1, 0))
641
+
642
+ def _draft_generate(y, num_draft):
643
+ if num_draft == 0:
644
+ return mx.array([], mx.uint32)
645
+ ys = []
646
+ for _ in range(num_draft):
647
+ y, _ = _step(draft_model, draft_cache, y)
648
+ mx.async_eval(y)
649
+ ys.append(y)
650
+ return mx.concatenate(ys)
651
+
652
+ with mx.stream(generation_stream):
653
+ draft_y = _prefill(draft_model, draft_cache, y)
654
+ y = _prefill(model, model_cache, y)
655
+
656
+ ntoks = 0
657
+ # Set these so the finally block doesn't raise
658
+ num_draft = 0
659
+ n = 0
660
+ try:
661
+ while True:
662
+ num_draft = min(max_tokens - ntoks, num_draft_tokens)
663
+ draft_tokens = _draft_generate(draft_y, num_draft)
664
+ if prev_tokens is not None:
665
+ prev_tokens = prev_tokens[: prev_tokens.size - y.size - num_draft + 1]
666
+ y = mx.concatenate([y, draft_tokens])
667
+ tokens, logprobs = _step(model, model_cache, y, num_draft + 1)
668
+ mx.eval(tokens, draft_tokens)
669
+ draft_tokens = draft_tokens.tolist()
670
+ tokens = tokens.tolist()
671
+ n = 0
672
+ while n < num_draft:
673
+ tn, dtn, lpn = tokens[n], draft_tokens[n], logprobs[n]
674
+ if tn != dtn:
675
+ break
676
+ n += 1
677
+ ntoks += 1
678
+ yield tn, lpn, True
679
+ if ntoks == max_tokens:
680
+ break
681
+ if ntoks < max_tokens:
682
+ ntoks += 1
683
+ yield tokens[n], logprobs[n], False
684
+
685
+ if ntoks == max_tokens:
686
+ break
687
+
688
+ y = mx.array([tokens[n]], mx.uint32)
689
+ draft_y = y
690
+
691
+ # If we accepted all the draft tokens, include the last
692
+ # draft token in the next draft step since it hasn't been
693
+ # processed yet by the draft model
694
+ if n == num_draft:
695
+ draft_y = mx.concatenate([mx.array(draft_tokens[-1:], mx.uint32), draft_y])
696
+
697
+ if prev_tokens is not None:
698
+ prev_tokens = prev_tokens[: -max(num_draft - n, 1)]
699
+ _rewind_cache(num_draft, n)
700
+ finally:
701
+ _rewind_cache(num_draft, n)