nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nexaai/__init__.py +99 -0
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +4 -0
- nexaai/asr.py +68 -0
- nexaai/asr_impl/__init__.py +0 -0
- nexaai/asr_impl/mlx_asr_impl.py +93 -0
- nexaai/asr_impl/pybind_asr_impl.py +127 -0
- nexaai/base.py +39 -0
- nexaai/binds/__init__.py +7 -0
- nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
- nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
- nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
- nexaai/binds/cpu_gpu/libggml.dylib +0 -0
- nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
- nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/metal/libnexa_plugin.dylib +0 -0
- nexaai/binds/metal/py-lib/ml.py +888 -0
- nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
- nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
- nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
- nexaai/binds/metal/py-lib/profiling.py +239 -0
- nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
- nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
- nexaai/binds/nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexaml/libggml.dylib +0 -0
- nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
- nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
- nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
- nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
- nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexaml/libnexaproc.dylib +0 -0
- nexaai/binds/nexaml/libomp.dylib +0 -0
- nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
- nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
- nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
- nexaai/common.py +106 -0
- nexaai/cv.py +95 -0
- nexaai/cv_impl/__init__.py +0 -0
- nexaai/cv_impl/mlx_cv_impl.py +91 -0
- nexaai/cv_impl/pybind_cv_impl.py +124 -0
- nexaai/diarize.py +80 -0
- nexaai/diarize_impl/__init__.py +1 -0
- nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
- nexaai/embedder.py +73 -0
- nexaai/embedder_impl/__init__.py +0 -0
- nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
- nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
- nexaai/image_gen.py +141 -0
- nexaai/image_gen_impl/__init__.py +0 -0
- nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
- nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
- nexaai/llm.py +98 -0
- nexaai/llm_impl/__init__.py +0 -0
- nexaai/llm_impl/mlx_llm_impl.py +271 -0
- nexaai/llm_impl/pybind_llm_impl.py +238 -0
- nexaai/log.py +92 -0
- nexaai/mlx_backend/asr/__init__.py +12 -0
- nexaai/mlx_backend/asr/interface.py +122 -0
- nexaai/mlx_backend/common/__init__.py +0 -0
- nexaai/mlx_backend/common/utils.py +25 -0
- nexaai/mlx_backend/cv/__init__.py +0 -0
- nexaai/mlx_backend/cv/generate.py +195 -0
- nexaai/mlx_backend/cv/interface.py +162 -0
- nexaai/mlx_backend/cv/main.py +81 -0
- nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/mlx_backend/embedding/__init__.py +0 -0
- nexaai/mlx_backend/embedding/generate.py +333 -0
- nexaai/mlx_backend/embedding/interface.py +617 -0
- nexaai/mlx_backend/embedding/main.py +173 -0
- nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
- nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/mlx_backend/image_gen/__init__.py +1 -0
- nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
- nexaai/mlx_backend/image_gen/interface.py +82 -0
- nexaai/mlx_backend/image_gen/main.py +281 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/mlx_backend/llm/__init__.py +0 -0
- nexaai/mlx_backend/llm/generate.py +149 -0
- nexaai/mlx_backend/llm/interface.py +764 -0
- nexaai/mlx_backend/llm/main.py +68 -0
- nexaai/mlx_backend/ml.py +888 -0
- nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/mlx_backend/mlx_audio/server.py +525 -0
- nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
- nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
- nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
- nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
- nexaai/mlx_backend/mlx_audio/utils.py +237 -0
- nexaai/mlx_backend/mlx_audio/version.py +1 -0
- nexaai/mlx_backend/profiling.py +239 -0
- nexaai/mlx_backend/rerank/__init__.py +0 -0
- nexaai/mlx_backend/rerank/generate.py +174 -0
- nexaai/mlx_backend/rerank/interface.py +287 -0
- nexaai/mlx_backend/rerank/main.py +127 -0
- nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
- nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/mlx_backend/sd/__init__.py +1 -0
- nexaai/mlx_backend/sd/interface.py +362 -0
- nexaai/mlx_backend/sd/main.py +286 -0
- nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
- nexaai/mlx_backend/sd/modeling/clip.py +116 -0
- nexaai/mlx_backend/sd/modeling/config.py +65 -0
- nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
- nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
- nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
- nexaai/mlx_backend/sd/modeling/unet.py +460 -0
- nexaai/mlx_backend/sd/modeling/vae.py +274 -0
- nexaai/mlx_backend/tts/__init__.py +12 -0
- nexaai/mlx_backend/tts/interface.py +276 -0
- nexaai/mlx_backend/vlm/__init__.py +3 -0
- nexaai/mlx_backend/vlm/generate.py +572 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
- nexaai/mlx_backend/vlm/interface.py +559 -0
- nexaai/mlx_backend/vlm/main.py +365 -0
- nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
- nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
- nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
- nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
- nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
- nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
- nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
- nexaai/rerank.py +57 -0
- nexaai/rerank_impl/__init__.py +0 -0
- nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
- nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
- nexaai/runtime.py +68 -0
- nexaai/runtime_error.py +24 -0
- nexaai/tts.py +75 -0
- nexaai/tts_impl/__init__.py +0 -0
- nexaai/tts_impl/mlx_tts_impl.py +94 -0
- nexaai/tts_impl/pybind_tts_impl.py +43 -0
- nexaai/utils/decode.py +18 -0
- nexaai/utils/manifest_utils.py +531 -0
- nexaai/utils/model_manager.py +1745 -0
- nexaai/utils/model_types.py +49 -0
- nexaai/utils/progress_tracker.py +389 -0
- nexaai/utils/quantization_utils.py +245 -0
- nexaai/vlm.py +130 -0
- nexaai/vlm_impl/__init__.py +0 -0
- nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
- nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
- nexaai-1.0.29.dist-info/METADATA +35 -0
- nexaai-1.0.29.dist-info/RECORD +580 -0
- nexaai-1.0.29.dist-info/WHEEL +5 -0
- nexaai-1.0.29.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,701 @@
|
|
|
1
|
+
import contextlib
|
|
2
|
+
import functools
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from typing import (
|
|
5
|
+
Any,
|
|
6
|
+
Callable,
|
|
7
|
+
Generator,
|
|
8
|
+
List,
|
|
9
|
+
Optional,
|
|
10
|
+
Tuple,
|
|
11
|
+
Union,
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
import mlx.core as mx
|
|
15
|
+
import mlx.nn as nn
|
|
16
|
+
from mlx.utils import tree_reduce
|
|
17
|
+
from transformers import PreTrainedTokenizer
|
|
18
|
+
|
|
19
|
+
from .cache import (
|
|
20
|
+
QuantizedKVCache,
|
|
21
|
+
load_prompt_cache,
|
|
22
|
+
)
|
|
23
|
+
from . import cache
|
|
24
|
+
from .sample_utils import make_sampler
|
|
25
|
+
from .tokenizer_utils import TokenizerWrapper
|
|
26
|
+
|
|
27
|
+
DEFAULT_PROMPT = "hello"
|
|
28
|
+
DEFAULT_MAX_TOKENS = 100
|
|
29
|
+
DEFAULT_TEMP = 0.0
|
|
30
|
+
DEFAULT_TOP_P = 1.0
|
|
31
|
+
DEFAULT_MIN_P = 0.0
|
|
32
|
+
DEFAULT_TOP_K = 0
|
|
33
|
+
DEFAULT_XTC_PROBABILITY = 0.0
|
|
34
|
+
DEFAULT_XTC_THRESHOLD = 0.0
|
|
35
|
+
DEFAULT_MIN_TOKENS_TO_KEEP = 1
|
|
36
|
+
DEFAULT_SEED = None
|
|
37
|
+
DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
|
38
|
+
DEFAULT_QUANTIZED_KV_START = 5000
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def str2bool(string):
|
|
42
|
+
return string.lower() not in ["false", "f"]
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
# A stream on the default device just for generation
|
|
46
|
+
generation_stream = mx.new_stream(mx.default_device())
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
@contextlib.contextmanager
|
|
50
|
+
def wired_limit(model: nn.Module, streams: Optional[List[mx.Stream]] = None):
|
|
51
|
+
"""
|
|
52
|
+
A context manager to temporarily change the wired limit.
|
|
53
|
+
|
|
54
|
+
Note, the wired limit should not be changed during an async eval. If an
|
|
55
|
+
async eval could be running pass in the streams to synchronize with prior
|
|
56
|
+
to exiting the context manager.
|
|
57
|
+
"""
|
|
58
|
+
model_bytes = tree_reduce(
|
|
59
|
+
lambda acc, x: acc + x.nbytes if isinstance(x, mx.array) else acc, model, 0
|
|
60
|
+
)
|
|
61
|
+
max_rec_size = mx.metal.device_info()["max_recommended_working_set_size"]
|
|
62
|
+
if model_bytes > 0.9 * max_rec_size:
|
|
63
|
+
model_mb = model_bytes // 2**20
|
|
64
|
+
max_rec_mb = max_rec_size // 2**20
|
|
65
|
+
print(
|
|
66
|
+
f"[WARNING] Generating with a model that requires {model_mb} MB "
|
|
67
|
+
f"which is close to the maximum recommended size of {max_rec_mb} "
|
|
68
|
+
"MB. This can be slow. See the documentation for possible work-arounds: "
|
|
69
|
+
"https://github.com/ml-explore/mlx-lm/tree/main#large-models"
|
|
70
|
+
)
|
|
71
|
+
old_limit = mx.set_wired_limit(max_rec_size)
|
|
72
|
+
try:
|
|
73
|
+
yield None
|
|
74
|
+
finally:
|
|
75
|
+
if streams is not None:
|
|
76
|
+
for s in streams:
|
|
77
|
+
mx.synchronize(s)
|
|
78
|
+
else:
|
|
79
|
+
mx.synchronize()
|
|
80
|
+
mx.set_wired_limit(old_limit)
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
@dataclass
|
|
84
|
+
class GenerationResponse:
|
|
85
|
+
"""
|
|
86
|
+
The output of :func:`stream_generate`.
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
text (str): The next segment of decoded text. This can be an empty string.
|
|
90
|
+
token (int): The next token.
|
|
91
|
+
from_draft (bool): Whether the token was generated by the draft model.
|
|
92
|
+
logprobs (mx.array): A vector of log probabilities.
|
|
93
|
+
prompt_tokens (int): The number of tokens in the prompt.
|
|
94
|
+
prompt_tps (float): The prompt processing tokens-per-second.
|
|
95
|
+
generation_tokens (int): The number of generated tokens.
|
|
96
|
+
generation_tps (float): The tokens-per-second for generation.
|
|
97
|
+
peak_memory (float): The peak memory used so far in GB.
|
|
98
|
+
finish_reason (str): The reason the response is being sent: "length", "stop" or `None`
|
|
99
|
+
"""
|
|
100
|
+
|
|
101
|
+
text: str
|
|
102
|
+
token: int
|
|
103
|
+
logprobs: mx.array
|
|
104
|
+
from_draft: bool
|
|
105
|
+
prompt_tokens: int
|
|
106
|
+
prompt_tps: float
|
|
107
|
+
generation_tokens: int
|
|
108
|
+
generation_tps: float
|
|
109
|
+
peak_memory: float
|
|
110
|
+
finish_reason: Optional[str] = None
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def maybe_quantize_kv_cache(prompt_cache, quantized_kv_start, kv_group_size, kv_bits):
|
|
114
|
+
if (
|
|
115
|
+
kv_bits is not None
|
|
116
|
+
and not isinstance(prompt_cache[0], cache.QuantizedKVCache)
|
|
117
|
+
and prompt_cache[0].offset > quantized_kv_start
|
|
118
|
+
):
|
|
119
|
+
for i in range(len(prompt_cache)):
|
|
120
|
+
if isinstance(prompt_cache[i], cache.KVCache):
|
|
121
|
+
prompt_cache[i] = prompt_cache[i].to_quantized(
|
|
122
|
+
group_size=kv_group_size, bits=kv_bits
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def generate_step(
|
|
127
|
+
prompt: mx.array,
|
|
128
|
+
model: nn.Module,
|
|
129
|
+
*,
|
|
130
|
+
max_tokens: int = 256,
|
|
131
|
+
sampler: Optional[Callable[mx.array, mx.array]] = None,
|
|
132
|
+
logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
|
|
133
|
+
max_kv_size: Optional[int] = None,
|
|
134
|
+
prompt_cache: Optional[Any] = None,
|
|
135
|
+
prefill_step_size: int = 2048,
|
|
136
|
+
kv_bits: Optional[int] = None,
|
|
137
|
+
kv_group_size: int = 64,
|
|
138
|
+
quantized_kv_start: int = 0,
|
|
139
|
+
prompt_progress_callback: Optional[Callable[int, int]] = None,
|
|
140
|
+
input_embeddings: Optional[mx.array] = None,
|
|
141
|
+
) -> Generator[Tuple[mx.array, mx.array], None, None]:
|
|
142
|
+
"""
|
|
143
|
+
A generator producing token ids based on the given prompt from the model.
|
|
144
|
+
|
|
145
|
+
Args:
|
|
146
|
+
prompt (mx.array): The input prompt.
|
|
147
|
+
model (nn.Module): The model to use for generation.
|
|
148
|
+
max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
|
|
149
|
+
generator. Default: ``256``.
|
|
150
|
+
sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
|
|
151
|
+
token from a vector of log probabilities. Default: ``None``.
|
|
152
|
+
logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
|
|
153
|
+
A list of functions that take tokens and logits and return the processed
|
|
154
|
+
logits. Default: ``None``.
|
|
155
|
+
max_kv_size (int, optional): Maximum size of the key-value cache. Old
|
|
156
|
+
entries (except the first 4 tokens) will be overwritten.
|
|
157
|
+
prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
|
|
158
|
+
provided, the cache will be updated in place.
|
|
159
|
+
prefill_step_size (int): Step size for processing the prompt.
|
|
160
|
+
kv_bits (int, optional): Number of bits to use for KV cache quantization.
|
|
161
|
+
None implies no cache quantization. Default: ``None``.
|
|
162
|
+
kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
|
|
163
|
+
quantized_kv_start (int): Step to begin using a quantized KV cache.
|
|
164
|
+
when ``kv_bits`` is non-None. Default: ``0``.
|
|
165
|
+
prompt_progress_callback (Callable[int, int]): A call-back which takes the
|
|
166
|
+
prompt tokens processed so far and the total number of prompt tokens.
|
|
167
|
+
input_embeddings (mx.array, optional): Input embeddings to use in place of
|
|
168
|
+
prompt tokens. Default: ``None``.
|
|
169
|
+
|
|
170
|
+
Yields:
|
|
171
|
+
Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
|
|
172
|
+
"""
|
|
173
|
+
assert (prompt is not None) ^ (
|
|
174
|
+
input_embeddings is not None
|
|
175
|
+
), "Exactly one of prompt or input_embeddings must be provided, not both"
|
|
176
|
+
|
|
177
|
+
tokens = None
|
|
178
|
+
|
|
179
|
+
# Create the KV cache for generation
|
|
180
|
+
if prompt_cache is None:
|
|
181
|
+
prompt_cache = cache.make_prompt_cache(
|
|
182
|
+
model,
|
|
183
|
+
max_kv_size=max_kv_size,
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
|
|
187
|
+
|
|
188
|
+
quantize_cache_fn = functools.partial(
|
|
189
|
+
maybe_quantize_kv_cache,
|
|
190
|
+
quantized_kv_start=quantized_kv_start,
|
|
191
|
+
kv_group_size=kv_group_size,
|
|
192
|
+
kv_bits=kv_bits,
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
|
|
196
|
+
|
|
197
|
+
def _model_call(y):
|
|
198
|
+
if y.ndim == 3:
|
|
199
|
+
return model(None, cache=prompt_cache, input_embeddings=y)
|
|
200
|
+
else:
|
|
201
|
+
return model(y, cache=prompt_cache)
|
|
202
|
+
|
|
203
|
+
def _step(y):
|
|
204
|
+
nonlocal tokens
|
|
205
|
+
|
|
206
|
+
with mx.stream(generation_stream):
|
|
207
|
+
logits = _model_call(y[None])
|
|
208
|
+
|
|
209
|
+
logits = logits[:, -1, :]
|
|
210
|
+
|
|
211
|
+
if logits_processors and input_embeddings is None:
|
|
212
|
+
tokens = mx.concat([tokens, y]) if tokens is not None else y
|
|
213
|
+
for processor in logits_processors:
|
|
214
|
+
logits = processor(tokens, logits)
|
|
215
|
+
|
|
216
|
+
quantize_cache_fn(prompt_cache)
|
|
217
|
+
|
|
218
|
+
logprobs = logits - mx.logsumexp(logits, keepdims=True)
|
|
219
|
+
y = sampler(logprobs)
|
|
220
|
+
return y, logprobs.squeeze(0)
|
|
221
|
+
|
|
222
|
+
using_embeddings = input_embeddings is not None
|
|
223
|
+
|
|
224
|
+
y = input_embeddings if using_embeddings else prompt
|
|
225
|
+
with mx.stream(generation_stream):
|
|
226
|
+
total_prompt_tokens = y.shape[0]
|
|
227
|
+
prompt_processed_tokens = 0
|
|
228
|
+
while y.shape[0] > prefill_step_size:
|
|
229
|
+
_model_call(y[:prefill_step_size][None])
|
|
230
|
+
quantize_cache_fn(prompt_cache)
|
|
231
|
+
mx.eval([c.state for c in prompt_cache])
|
|
232
|
+
prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
|
|
233
|
+
prompt_processed_tokens += prefill_step_size
|
|
234
|
+
y = y[prefill_step_size:]
|
|
235
|
+
mx.clear_cache()
|
|
236
|
+
|
|
237
|
+
y, logprobs = _step(y)
|
|
238
|
+
|
|
239
|
+
mx.async_eval(y, logprobs)
|
|
240
|
+
n = 0
|
|
241
|
+
while True:
|
|
242
|
+
if n != max_tokens:
|
|
243
|
+
next_y, next_logprobs = _step(y)
|
|
244
|
+
mx.async_eval(next_y, next_logprobs)
|
|
245
|
+
if n == 0:
|
|
246
|
+
mx.eval(y)
|
|
247
|
+
prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
|
|
248
|
+
if n == max_tokens:
|
|
249
|
+
break
|
|
250
|
+
yield y.item(), logprobs
|
|
251
|
+
if n % 256 == 0:
|
|
252
|
+
mx.clear_cache()
|
|
253
|
+
y, logprobs = next_y, next_logprobs
|
|
254
|
+
n += 1
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
def nexa_generate_step(
|
|
258
|
+
model: nn.Module,
|
|
259
|
+
*, # enforces explicit parameter naming
|
|
260
|
+
prompt: Optional[mx.array] = None,
|
|
261
|
+
max_tokens: int = 256,
|
|
262
|
+
sampler: Optional[Callable[mx.array, mx.array]] = None,
|
|
263
|
+
logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
|
|
264
|
+
max_kv_size: Optional[int] = None,
|
|
265
|
+
prompt_cache: Optional[Any] = None,
|
|
266
|
+
prefill_step_size: int = 2048,
|
|
267
|
+
kv_bits: Optional[int] = None,
|
|
268
|
+
kv_group_size: int = 64,
|
|
269
|
+
quantized_kv_start: int = 0,
|
|
270
|
+
prompt_progress_callback: Optional[Callable[int, int]] = None,
|
|
271
|
+
input_embeddings: Optional[mx.array] = None,
|
|
272
|
+
visual_pos_masks: Optional[mx.array] = None,
|
|
273
|
+
deepstack_visual_embeds: Optional[List[mx.array]] = None,
|
|
274
|
+
cos: Optional[mx.array] = None,
|
|
275
|
+
sin: Optional[mx.array] = None,
|
|
276
|
+
rope_deltas: Optional[mx.array] = None,
|
|
277
|
+
) -> Generator[Tuple[mx.array, mx.array], None, None]:
|
|
278
|
+
"""
|
|
279
|
+
A generator producing token ids based on the given prompt from the model.
|
|
280
|
+
|
|
281
|
+
Args:
|
|
282
|
+
prompt (mx.array): The input prompt.
|
|
283
|
+
model (nn.Module): The model to use for generation.
|
|
284
|
+
max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
|
|
285
|
+
generator. Default: ``256``.
|
|
286
|
+
sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
|
|
287
|
+
token from a vector of log probabilities. Default: ``None``.
|
|
288
|
+
logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
|
|
289
|
+
A list of functions that take tokens and logits and return the processed
|
|
290
|
+
logits. Default: ``None``.
|
|
291
|
+
max_kv_size (int, optional): Maximum size of the key-value cache. Old
|
|
292
|
+
entries (except the first 4 tokens) will be overwritten.
|
|
293
|
+
prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
|
|
294
|
+
provided, the cache will be updated in place.
|
|
295
|
+
prefill_step_size (int): Step size for processing the prompt.
|
|
296
|
+
kv_bits (int, optional): Number of bits to use for KV cache quantization.
|
|
297
|
+
None implies no cache quantization. Default: ``None``.
|
|
298
|
+
kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
|
|
299
|
+
quantized_kv_start (int): Step to begin using a quantized KV cache.
|
|
300
|
+
when ``kv_bits`` is non-None. Default: ``0``.
|
|
301
|
+
prompt_progress_callback (Callable[int, int]): A call-back which takes the
|
|
302
|
+
prompt tokens processed so far and the total number of prompt tokens.
|
|
303
|
+
input_embeddings (mx.array, optional): Input embeddings to use in place of
|
|
304
|
+
prompt tokens. Default: ``None``.
|
|
305
|
+
|
|
306
|
+
Yields:
|
|
307
|
+
Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
|
|
308
|
+
"""
|
|
309
|
+
assert (prompt is not None) ^ (
|
|
310
|
+
input_embeddings is not None
|
|
311
|
+
), "Exactly one of prompt or input_embeddings must be provided, not both"
|
|
312
|
+
|
|
313
|
+
tokens = None
|
|
314
|
+
|
|
315
|
+
# Create the KV cache for generation
|
|
316
|
+
if prompt_cache is None:
|
|
317
|
+
prompt_cache = cache.make_prompt_cache(
|
|
318
|
+
model,
|
|
319
|
+
max_kv_size=max_kv_size,
|
|
320
|
+
)
|
|
321
|
+
|
|
322
|
+
prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
|
|
323
|
+
|
|
324
|
+
quantize_cache_fn = functools.partial(
|
|
325
|
+
maybe_quantize_kv_cache,
|
|
326
|
+
quantized_kv_start=quantized_kv_start,
|
|
327
|
+
kv_group_size=kv_group_size,
|
|
328
|
+
kv_bits=kv_bits,
|
|
329
|
+
)
|
|
330
|
+
|
|
331
|
+
sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
|
|
332
|
+
|
|
333
|
+
def _model_call(y):
|
|
334
|
+
if y.ndim == 4:
|
|
335
|
+
y = y[0]
|
|
336
|
+
return model(None, cache=prompt_cache, inputs_embeds=y, cos=cos, sin=sin, visual_pos_masks=visual_pos_masks, deepstack_visual_embeds=deepstack_visual_embeds, rope_deltas=rope_deltas)
|
|
337
|
+
elif y.ndim == 3:
|
|
338
|
+
return model(None, cache=prompt_cache, inputs_embeds=y, cos=cos, sin=sin, visual_pos_masks=visual_pos_masks, deepstack_visual_embeds=deepstack_visual_embeds, rope_deltas=rope_deltas)
|
|
339
|
+
else:
|
|
340
|
+
return model(y, cache=prompt_cache, rope_deltas=rope_deltas)
|
|
341
|
+
|
|
342
|
+
def _step(y):
|
|
343
|
+
nonlocal tokens
|
|
344
|
+
|
|
345
|
+
with mx.stream(generation_stream):
|
|
346
|
+
logits = _model_call(y[None])
|
|
347
|
+
|
|
348
|
+
logits = logits[:, -1, :]
|
|
349
|
+
|
|
350
|
+
if logits_processors and input_embeddings is None:
|
|
351
|
+
tokens = mx.concat([tokens, y]) if tokens is not None else y
|
|
352
|
+
for processor in logits_processors:
|
|
353
|
+
logits = processor(tokens, logits)
|
|
354
|
+
|
|
355
|
+
quantize_cache_fn(prompt_cache)
|
|
356
|
+
|
|
357
|
+
logprobs = logits - mx.logsumexp(logits, keepdims=True)
|
|
358
|
+
y = sampler(logprobs)
|
|
359
|
+
return y, logprobs.squeeze(0)
|
|
360
|
+
|
|
361
|
+
using_embeddings = input_embeddings is not None
|
|
362
|
+
|
|
363
|
+
y = input_embeddings if using_embeddings else prompt
|
|
364
|
+
with mx.stream(generation_stream):
|
|
365
|
+
total_prompt_tokens = y.shape[0]
|
|
366
|
+
prompt_processed_tokens = 0
|
|
367
|
+
while y.shape[0] > prefill_step_size:
|
|
368
|
+
_model_call(y[:prefill_step_size][None])
|
|
369
|
+
quantize_cache_fn(prompt_cache)
|
|
370
|
+
mx.eval([c.state for c in prompt_cache])
|
|
371
|
+
prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
|
|
372
|
+
prompt_processed_tokens += prefill_step_size
|
|
373
|
+
y = y[prefill_step_size:]
|
|
374
|
+
mx.clear_cache()
|
|
375
|
+
|
|
376
|
+
y, logprobs = _step(y)
|
|
377
|
+
|
|
378
|
+
mx.async_eval(y, logprobs)
|
|
379
|
+
n = 0
|
|
380
|
+
while True:
|
|
381
|
+
if n != max_tokens:
|
|
382
|
+
next_y, next_logprobs = _step(y)
|
|
383
|
+
mx.async_eval(next_y, next_logprobs)
|
|
384
|
+
if n == 0:
|
|
385
|
+
mx.eval(y)
|
|
386
|
+
prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
|
|
387
|
+
if n == max_tokens:
|
|
388
|
+
break
|
|
389
|
+
yield y.item(), logprobs
|
|
390
|
+
if n % 256 == 0:
|
|
391
|
+
mx.clear_cache()
|
|
392
|
+
y, logprobs = next_y, next_logprobs
|
|
393
|
+
n += 1
|
|
394
|
+
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
## Explicit parameter naming means we need to specify the parameter names.
|
|
398
|
+
def nexa_multimodal_generate_step(
|
|
399
|
+
model: nn.Module,
|
|
400
|
+
*, # enforces explicit parameter naming
|
|
401
|
+
prompt: Optional[mx.array] = None,
|
|
402
|
+
max_tokens: int = 256,
|
|
403
|
+
sampler: Optional[Callable[mx.array, mx.array]] = None,
|
|
404
|
+
logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
|
|
405
|
+
max_kv_size: Optional[int] = None,
|
|
406
|
+
prompt_cache: Optional[Any] = None,
|
|
407
|
+
prefill_step_size: int = 2048,
|
|
408
|
+
kv_bits: Optional[int] = None,
|
|
409
|
+
kv_group_size: int = 64,
|
|
410
|
+
quantized_kv_start: int = 0,
|
|
411
|
+
prompt_progress_callback: Optional[Callable[int, int]] = None,
|
|
412
|
+
input_embeddings: Optional[mx.array] = None,
|
|
413
|
+
cos: Optional[mx.array] = None,
|
|
414
|
+
sin: Optional[mx.array] = None,
|
|
415
|
+
rope_deltas: Optional[mx.array] = None,
|
|
416
|
+
) -> Generator[Tuple[mx.array, mx.array], None, None]:
|
|
417
|
+
"""
|
|
418
|
+
A generator producing token ids based on the given prompt from the model.
|
|
419
|
+
|
|
420
|
+
Args:
|
|
421
|
+
prompt (mx.array): The input prompt.
|
|
422
|
+
model (nn.Module): The model to use for generation.
|
|
423
|
+
max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
|
|
424
|
+
generator. Default: ``256``.
|
|
425
|
+
sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
|
|
426
|
+
token from a vector of log probabilities. Default: ``None``.
|
|
427
|
+
logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
|
|
428
|
+
A list of functions that take tokens and logits and return the processed
|
|
429
|
+
logits. Default: ``None``.
|
|
430
|
+
max_kv_size (int, optional): Maximum size of the key-value cache. Old
|
|
431
|
+
entries (except the first 4 tokens) will be overwritten.
|
|
432
|
+
prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
|
|
433
|
+
provided, the cache will be updated in place.
|
|
434
|
+
prefill_step_size (int): Step size for processing the prompt.
|
|
435
|
+
kv_bits (int, optional): Number of bits to use for KV cache quantization.
|
|
436
|
+
None implies no cache quantization. Default: ``None``.
|
|
437
|
+
kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
|
|
438
|
+
quantized_kv_start (int): Step to begin using a quantized KV cache.
|
|
439
|
+
when ``kv_bits`` is non-None. Default: ``0``.
|
|
440
|
+
prompt_progress_callback (Callable[int, int]): A call-back which takes the
|
|
441
|
+
prompt tokens processed so far and the total number of prompt tokens.
|
|
442
|
+
input_embeddings (mx.array, optional): Input embeddings to use in place of
|
|
443
|
+
prompt tokens. Default: ``None``.
|
|
444
|
+
|
|
445
|
+
Yields:
|
|
446
|
+
Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
|
|
447
|
+
"""
|
|
448
|
+
assert (prompt is not None) ^ (
|
|
449
|
+
input_embeddings is not None
|
|
450
|
+
), "Exactly one of prompt or input_embeddings must be provided, not both"
|
|
451
|
+
|
|
452
|
+
tokens = None
|
|
453
|
+
|
|
454
|
+
# Create the KV cache for generation
|
|
455
|
+
if prompt_cache is None:
|
|
456
|
+
prompt_cache = cache.make_prompt_cache(
|
|
457
|
+
model,
|
|
458
|
+
max_kv_size=max_kv_size,
|
|
459
|
+
)
|
|
460
|
+
|
|
461
|
+
prompt_progress_callback = prompt_progress_callback or (lambda *_: None)
|
|
462
|
+
|
|
463
|
+
quantize_cache_fn = functools.partial(
|
|
464
|
+
maybe_quantize_kv_cache,
|
|
465
|
+
quantized_kv_start=quantized_kv_start,
|
|
466
|
+
kv_group_size=kv_group_size,
|
|
467
|
+
kv_bits=kv_bits,
|
|
468
|
+
)
|
|
469
|
+
|
|
470
|
+
sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
|
|
471
|
+
|
|
472
|
+
def _model_call(y):
|
|
473
|
+
if y.ndim == 3:
|
|
474
|
+
return model(None, cache=prompt_cache, input_embeddings=y, cos=cos, sin=sin, rope_deltas=rope_deltas)
|
|
475
|
+
else:
|
|
476
|
+
return model(y, cache=prompt_cache, rope_deltas=rope_deltas)
|
|
477
|
+
|
|
478
|
+
def _step(y):
|
|
479
|
+
nonlocal tokens
|
|
480
|
+
|
|
481
|
+
with mx.stream(generation_stream):
|
|
482
|
+
logits = _model_call(y[None])
|
|
483
|
+
|
|
484
|
+
logits = logits[:, -1, :]
|
|
485
|
+
|
|
486
|
+
if logits_processors and input_embeddings is None:
|
|
487
|
+
tokens = mx.concat([tokens, y]) if tokens is not None else y
|
|
488
|
+
for processor in logits_processors:
|
|
489
|
+
logits = processor(tokens, logits)
|
|
490
|
+
|
|
491
|
+
quantize_cache_fn(prompt_cache)
|
|
492
|
+
|
|
493
|
+
logprobs = logits - mx.logsumexp(logits, keepdims=True)
|
|
494
|
+
y = sampler(logprobs)
|
|
495
|
+
return y, logprobs.squeeze(0)
|
|
496
|
+
|
|
497
|
+
using_embeddings = input_embeddings is not None
|
|
498
|
+
|
|
499
|
+
y = input_embeddings if using_embeddings else prompt
|
|
500
|
+
with mx.stream(generation_stream):
|
|
501
|
+
total_prompt_tokens = y.shape[0]
|
|
502
|
+
prompt_processed_tokens = 0
|
|
503
|
+
while y.shape[0] > prefill_step_size:
|
|
504
|
+
_model_call(y[:prefill_step_size][None])
|
|
505
|
+
quantize_cache_fn(prompt_cache)
|
|
506
|
+
mx.eval([c.state for c in prompt_cache])
|
|
507
|
+
prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
|
|
508
|
+
prompt_processed_tokens += prefill_step_size
|
|
509
|
+
y = y[prefill_step_size:]
|
|
510
|
+
mx.clear_cache()
|
|
511
|
+
|
|
512
|
+
y, logprobs = _step(y)
|
|
513
|
+
|
|
514
|
+
mx.async_eval(y, logprobs)
|
|
515
|
+
n = 0
|
|
516
|
+
while True:
|
|
517
|
+
if n != max_tokens:
|
|
518
|
+
next_y, next_logprobs = _step(y)
|
|
519
|
+
mx.async_eval(next_y, next_logprobs)
|
|
520
|
+
if n == 0:
|
|
521
|
+
mx.eval(y)
|
|
522
|
+
prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
|
|
523
|
+
if n == max_tokens:
|
|
524
|
+
break
|
|
525
|
+
yield y.item(), logprobs
|
|
526
|
+
if n % 256 == 0:
|
|
527
|
+
mx.clear_cache()
|
|
528
|
+
y, logprobs = next_y, next_logprobs
|
|
529
|
+
n += 1
|
|
530
|
+
|
|
531
|
+
|
|
532
|
+
|
|
533
|
+
|
|
534
|
+
|
|
535
|
+
def speculative_generate_step(
|
|
536
|
+
prompt: mx.array,
|
|
537
|
+
model: nn.Module,
|
|
538
|
+
draft_model: nn.Module,
|
|
539
|
+
*,
|
|
540
|
+
num_draft_tokens=2,
|
|
541
|
+
max_tokens: int = 256,
|
|
542
|
+
sampler: Optional[Callable[mx.array, mx.array]] = None,
|
|
543
|
+
logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
|
|
544
|
+
prompt_cache: Optional[Any] = None,
|
|
545
|
+
prefill_step_size: int = 512,
|
|
546
|
+
kv_bits: Optional[int] = None,
|
|
547
|
+
kv_group_size: int = 64,
|
|
548
|
+
quantized_kv_start: int = 0,
|
|
549
|
+
) -> Generator[Tuple[mx.array, mx.array, bool], None, None]:
|
|
550
|
+
"""
|
|
551
|
+
A generator producing token ids based on the given prompt from the model.
|
|
552
|
+
|
|
553
|
+
Args:
|
|
554
|
+
prompt (mx.array): The input prompt.
|
|
555
|
+
model (nn.Module): The model to use for generation.
|
|
556
|
+
draft_model (nn.Module): The draft model for speculative decoding.
|
|
557
|
+
num_draft_tokens (int, optional): The number of draft tokens for
|
|
558
|
+
speculative decoding. Default: ``2``.
|
|
559
|
+
max_tokens (int): The maximum number of tokens. Use``-1`` for an infinite
|
|
560
|
+
generator. Default: ``256``.
|
|
561
|
+
sampler (Callable[mx.array, mx.array], optional): A sampler for sampling a
|
|
562
|
+
token from a vector of log probabilities. Default: ``None``.
|
|
563
|
+
logits_processors (List[Callable[[mx.array, mx.array], mx.array]], optional):
|
|
564
|
+
A list of functions that take tokens and logits and return the processed
|
|
565
|
+
logits. Default: ``None``.
|
|
566
|
+
prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
|
|
567
|
+
provided, the cache will be updated in place. The cache must be trimmable.
|
|
568
|
+
prefill_step_size (int): Step size for processing the prompt.
|
|
569
|
+
kv_bits (int, optional): Number of bits to use for KV cache quantization.
|
|
570
|
+
None implies no cache quantization. Default: ``None``.
|
|
571
|
+
kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
|
|
572
|
+
quantized_kv_start (int): Step to begin using a quantized KV cache.
|
|
573
|
+
when ``kv_bits`` is non-None. Default: ``0``.
|
|
574
|
+
|
|
575
|
+
Yields:
|
|
576
|
+
Tuple[mx.array, mx.array, bool]: One token, a vector of log probabilities,
|
|
577
|
+
and a bool indicating if the token was generated by the draft model
|
|
578
|
+
"""
|
|
579
|
+
|
|
580
|
+
y = prompt.astype(mx.uint32)
|
|
581
|
+
prev_tokens = None
|
|
582
|
+
|
|
583
|
+
# Create the KV cache for generation
|
|
584
|
+
if prompt_cache is None:
|
|
585
|
+
model_cache = cache.make_prompt_cache(model)
|
|
586
|
+
draft_cache = cache.make_prompt_cache(draft_model)
|
|
587
|
+
else:
|
|
588
|
+
model_cache = prompt_cache[: len(model.layers)]
|
|
589
|
+
draft_cache = prompt_cache[len(model.layers) :]
|
|
590
|
+
|
|
591
|
+
sampler = sampler or (lambda x: mx.argmax(x, axis=-1))
|
|
592
|
+
|
|
593
|
+
quantize_cache_fn = functools.partial(
|
|
594
|
+
maybe_quantize_kv_cache,
|
|
595
|
+
quantized_kv_start=quantized_kv_start,
|
|
596
|
+
kv_group_size=kv_group_size,
|
|
597
|
+
kv_bits=kv_bits,
|
|
598
|
+
)
|
|
599
|
+
|
|
600
|
+
def _process_and_sample(tokens, logits):
|
|
601
|
+
if logits_processors:
|
|
602
|
+
for processor in logits_processors:
|
|
603
|
+
logits = processor(tokens, logits)
|
|
604
|
+
|
|
605
|
+
logprobs = logits - mx.logsumexp(logits, axis=-1, keepdims=True)
|
|
606
|
+
y = sampler(logprobs)
|
|
607
|
+
return y, logprobs
|
|
608
|
+
|
|
609
|
+
def _step(model, cache, y, n_predict=1):
|
|
610
|
+
with mx.stream(generation_stream):
|
|
611
|
+
logits = model(y[None], cache=cache)
|
|
612
|
+
logits = logits[:, -n_predict:, :]
|
|
613
|
+
|
|
614
|
+
quantize_cache_fn(cache)
|
|
615
|
+
if logits_processors:
|
|
616
|
+
nonlocal prev_tokens
|
|
617
|
+
out_y, out_logprobs = [], []
|
|
618
|
+
if n_predict > 1:
|
|
619
|
+
y = y[: -(n_predict - 1)]
|
|
620
|
+
for i in range(n_predict):
|
|
621
|
+
prev_tokens = mx.concat([prev_tokens, y]) if prev_tokens is not None else y
|
|
622
|
+
y, logprobs = _process_and_sample(prev_tokens, logits[:, i, :])
|
|
623
|
+
out_y.append(y)
|
|
624
|
+
out_logprobs.append(logprobs)
|
|
625
|
+
return mx.concatenate(out_y, axis=0), mx.concatenate(out_logprobs, axis=0)
|
|
626
|
+
else:
|
|
627
|
+
return _process_and_sample(None, logits.squeeze(0))
|
|
628
|
+
|
|
629
|
+
def _prefill(model, cache, y):
|
|
630
|
+
while y.size > prefill_step_size:
|
|
631
|
+
model(y[:prefill_step_size][None], cache=cache)
|
|
632
|
+
quantize_cache_fn(cache)
|
|
633
|
+
mx.eval([c.state for c in cache])
|
|
634
|
+
y = y[prefill_step_size:]
|
|
635
|
+
mx.clear_cache()
|
|
636
|
+
return y
|
|
637
|
+
|
|
638
|
+
def _rewind_cache(num_draft, num_accept):
|
|
639
|
+
cache.trim_prompt_cache(model_cache, num_draft - num_accept)
|
|
640
|
+
cache.trim_prompt_cache(draft_cache, max(num_draft - num_accept - 1, 0))
|
|
641
|
+
|
|
642
|
+
def _draft_generate(y, num_draft):
|
|
643
|
+
if num_draft == 0:
|
|
644
|
+
return mx.array([], mx.uint32)
|
|
645
|
+
ys = []
|
|
646
|
+
for _ in range(num_draft):
|
|
647
|
+
y, _ = _step(draft_model, draft_cache, y)
|
|
648
|
+
mx.async_eval(y)
|
|
649
|
+
ys.append(y)
|
|
650
|
+
return mx.concatenate(ys)
|
|
651
|
+
|
|
652
|
+
with mx.stream(generation_stream):
|
|
653
|
+
draft_y = _prefill(draft_model, draft_cache, y)
|
|
654
|
+
y = _prefill(model, model_cache, y)
|
|
655
|
+
|
|
656
|
+
ntoks = 0
|
|
657
|
+
# Set these so the finally block doesn't raise
|
|
658
|
+
num_draft = 0
|
|
659
|
+
n = 0
|
|
660
|
+
try:
|
|
661
|
+
while True:
|
|
662
|
+
num_draft = min(max_tokens - ntoks, num_draft_tokens)
|
|
663
|
+
draft_tokens = _draft_generate(draft_y, num_draft)
|
|
664
|
+
if prev_tokens is not None:
|
|
665
|
+
prev_tokens = prev_tokens[: prev_tokens.size - y.size - num_draft + 1]
|
|
666
|
+
y = mx.concatenate([y, draft_tokens])
|
|
667
|
+
tokens, logprobs = _step(model, model_cache, y, num_draft + 1)
|
|
668
|
+
mx.eval(tokens, draft_tokens)
|
|
669
|
+
draft_tokens = draft_tokens.tolist()
|
|
670
|
+
tokens = tokens.tolist()
|
|
671
|
+
n = 0
|
|
672
|
+
while n < num_draft:
|
|
673
|
+
tn, dtn, lpn = tokens[n], draft_tokens[n], logprobs[n]
|
|
674
|
+
if tn != dtn:
|
|
675
|
+
break
|
|
676
|
+
n += 1
|
|
677
|
+
ntoks += 1
|
|
678
|
+
yield tn, lpn, True
|
|
679
|
+
if ntoks == max_tokens:
|
|
680
|
+
break
|
|
681
|
+
if ntoks < max_tokens:
|
|
682
|
+
ntoks += 1
|
|
683
|
+
yield tokens[n], logprobs[n], False
|
|
684
|
+
|
|
685
|
+
if ntoks == max_tokens:
|
|
686
|
+
break
|
|
687
|
+
|
|
688
|
+
y = mx.array([tokens[n]], mx.uint32)
|
|
689
|
+
draft_y = y
|
|
690
|
+
|
|
691
|
+
# If we accepted all the draft tokens, include the last
|
|
692
|
+
# draft token in the next draft step since it hasn't been
|
|
693
|
+
# processed yet by the draft model
|
|
694
|
+
if n == num_draft:
|
|
695
|
+
draft_y = mx.concatenate([mx.array(draft_tokens[-1:], mx.uint32), draft_y])
|
|
696
|
+
|
|
697
|
+
if prev_tokens is not None:
|
|
698
|
+
prev_tokens = prev_tokens[: -max(num_draft - n, 1)]
|
|
699
|
+
_rewind_cache(num_draft, n)
|
|
700
|
+
finally:
|
|
701
|
+
_rewind_cache(num_draft, n)
|