nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (580) hide show
  1. nexaai/__init__.py +99 -0
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +4 -0
  4. nexaai/asr.py +68 -0
  5. nexaai/asr_impl/__init__.py +0 -0
  6. nexaai/asr_impl/mlx_asr_impl.py +93 -0
  7. nexaai/asr_impl/pybind_asr_impl.py +127 -0
  8. nexaai/base.py +39 -0
  9. nexaai/binds/__init__.py +7 -0
  10. nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
  11. nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
  12. nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
  13. nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
  14. nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
  15. nexaai/binds/cpu_gpu/libggml.dylib +0 -0
  16. nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
  17. nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
  18. nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
  19. nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
  20. nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
  21. nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
  22. nexaai/binds/libnexa_bridge.dylib +0 -0
  23. nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
  24. nexaai/binds/metal/libnexa_plugin.dylib +0 -0
  25. nexaai/binds/metal/py-lib/ml.py +888 -0
  26. nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
  27. nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
  28. nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
  29. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  30. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  31. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  32. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  33. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  34. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  35. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
  36. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
  37. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
  38. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  39. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  40. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  41. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
  42. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
  43. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
  44. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
  45. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  46. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  47. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  48. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  49. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  50. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  51. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
  52. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
  53. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
  54. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
  55. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
  56. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
  57. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
  58. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
  59. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
  60. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
  61. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
  62. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
  63. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
  64. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  65. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
  66. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
  67. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
  68. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
  69. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
  70. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
  71. nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
  72. nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
  73. nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  74. nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
  75. nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
  76. nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
  77. nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
  78. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  79. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  80. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
  81. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
  82. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  83. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  84. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  85. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  86. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  87. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  88. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  89. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
  90. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
  91. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
  92. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
  93. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  94. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
  95. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
  96. nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
  97. nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
  98. nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
  99. nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
  100. nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
  101. nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
  102. nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
  103. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
  104. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
  105. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
  106. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
  107. nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
  108. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
  109. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
  110. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
  111. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
  112. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
  113. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
  114. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
  115. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  116. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
  117. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  118. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  119. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  120. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  121. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  122. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  123. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
  124. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
  125. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
  126. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  127. nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
  128. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  129. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  130. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  131. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
  132. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  133. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
  134. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
  135. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
  136. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
  137. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  138. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  139. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
  140. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  141. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
  142. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
  143. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
  144. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
  145. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  146. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
  147. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  148. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
  149. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  150. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  151. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  152. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  153. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  154. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  155. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  156. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  157. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  158. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  159. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  160. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  161. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  162. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  163. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  164. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
  165. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  166. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
  167. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  168. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
  169. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
  170. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
  171. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
  172. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
  173. nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
  174. nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
  175. nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
  176. nexaai/binds/metal/py-lib/profiling.py +239 -0
  177. nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
  178. nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
  179. nexaai/binds/nexaml/libggml-base.dylib +0 -0
  180. nexaai/binds/nexaml/libggml-cpu.so +0 -0
  181. nexaai/binds/nexaml/libggml-metal.so +0 -0
  182. nexaai/binds/nexaml/libggml.dylib +0 -0
  183. nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
  184. nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
  185. nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
  186. nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
  187. nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
  188. nexaai/binds/nexaml/libnexaproc.dylib +0 -0
  189. nexaai/binds/nexaml/libomp.dylib +0 -0
  190. nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
  191. nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
  192. nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
  193. nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
  194. nexaai/common.py +106 -0
  195. nexaai/cv.py +95 -0
  196. nexaai/cv_impl/__init__.py +0 -0
  197. nexaai/cv_impl/mlx_cv_impl.py +91 -0
  198. nexaai/cv_impl/pybind_cv_impl.py +124 -0
  199. nexaai/diarize.py +80 -0
  200. nexaai/diarize_impl/__init__.py +1 -0
  201. nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
  202. nexaai/embedder.py +73 -0
  203. nexaai/embedder_impl/__init__.py +0 -0
  204. nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
  205. nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
  206. nexaai/image_gen.py +141 -0
  207. nexaai/image_gen_impl/__init__.py +0 -0
  208. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
  209. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
  210. nexaai/llm.py +98 -0
  211. nexaai/llm_impl/__init__.py +0 -0
  212. nexaai/llm_impl/mlx_llm_impl.py +271 -0
  213. nexaai/llm_impl/pybind_llm_impl.py +238 -0
  214. nexaai/log.py +92 -0
  215. nexaai/mlx_backend/asr/__init__.py +12 -0
  216. nexaai/mlx_backend/asr/interface.py +122 -0
  217. nexaai/mlx_backend/common/__init__.py +0 -0
  218. nexaai/mlx_backend/common/utils.py +25 -0
  219. nexaai/mlx_backend/cv/__init__.py +0 -0
  220. nexaai/mlx_backend/cv/generate.py +195 -0
  221. nexaai/mlx_backend/cv/interface.py +162 -0
  222. nexaai/mlx_backend/cv/main.py +81 -0
  223. nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
  224. nexaai/mlx_backend/embedding/__init__.py +0 -0
  225. nexaai/mlx_backend/embedding/generate.py +333 -0
  226. nexaai/mlx_backend/embedding/interface.py +617 -0
  227. nexaai/mlx_backend/embedding/main.py +173 -0
  228. nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
  229. nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
  230. nexaai/mlx_backend/image_gen/__init__.py +1 -0
  231. nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
  232. nexaai/mlx_backend/image_gen/interface.py +82 -0
  233. nexaai/mlx_backend/image_gen/main.py +281 -0
  234. nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
  235. nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
  236. nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
  237. nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
  238. nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
  239. nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
  240. nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
  241. nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
  242. nexaai/mlx_backend/llm/__init__.py +0 -0
  243. nexaai/mlx_backend/llm/generate.py +149 -0
  244. nexaai/mlx_backend/llm/interface.py +764 -0
  245. nexaai/mlx_backend/llm/main.py +68 -0
  246. nexaai/mlx_backend/ml.py +888 -0
  247. nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
  248. nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
  249. nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
  250. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  251. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  252. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  253. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  254. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  255. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  256. nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
  257. nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
  258. nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
  259. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  260. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  261. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  262. nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
  263. nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
  264. nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
  265. nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
  266. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  267. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  268. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  269. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  270. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  271. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  272. nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
  273. nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
  274. nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
  275. nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
  276. nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
  277. nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
  278. nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
  279. nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
  280. nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
  281. nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
  282. nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
  283. nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
  284. nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
  285. nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  286. nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
  287. nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
  288. nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
  289. nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
  290. nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
  291. nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
  292. nexaai/mlx_backend/mlx_audio/server.py +525 -0
  293. nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
  294. nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  295. nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
  296. nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
  297. nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
  298. nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
  299. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  300. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  301. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
  302. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
  303. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  304. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  305. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  306. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  307. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  308. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  309. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  310. nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
  311. nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
  312. nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
  313. nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
  314. nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  315. nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
  316. nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
  317. nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
  318. nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
  319. nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
  320. nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
  321. nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
  322. nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
  323. nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
  324. nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
  325. nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
  326. nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
  327. nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
  328. nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
  329. nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
  330. nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
  331. nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
  332. nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
  333. nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
  334. nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
  335. nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
  336. nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  337. nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
  338. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  339. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  340. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  341. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  342. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  343. nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  344. nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
  345. nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
  346. nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
  347. nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  348. nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
  349. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  350. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  351. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  352. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
  353. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  354. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
  355. nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
  356. nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
  357. nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
  358. nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  359. nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  360. nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
  361. nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
  362. nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  363. nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
  364. nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
  365. nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
  366. nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
  367. nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  368. nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
  369. nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  370. nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
  371. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  372. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  373. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  374. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  375. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  376. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  377. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  378. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  379. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  380. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  381. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  382. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  383. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  384. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  385. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  386. nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
  387. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  388. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
  389. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  390. nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
  391. nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
  392. nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
  393. nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
  394. nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
  395. nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
  396. nexaai/mlx_backend/mlx_audio/utils.py +237 -0
  397. nexaai/mlx_backend/mlx_audio/version.py +1 -0
  398. nexaai/mlx_backend/profiling.py +239 -0
  399. nexaai/mlx_backend/rerank/__init__.py +0 -0
  400. nexaai/mlx_backend/rerank/generate.py +174 -0
  401. nexaai/mlx_backend/rerank/interface.py +287 -0
  402. nexaai/mlx_backend/rerank/main.py +127 -0
  403. nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
  404. nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
  405. nexaai/mlx_backend/sd/__init__.py +1 -0
  406. nexaai/mlx_backend/sd/interface.py +362 -0
  407. nexaai/mlx_backend/sd/main.py +286 -0
  408. nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
  409. nexaai/mlx_backend/sd/modeling/clip.py +116 -0
  410. nexaai/mlx_backend/sd/modeling/config.py +65 -0
  411. nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
  412. nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
  413. nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
  414. nexaai/mlx_backend/sd/modeling/unet.py +460 -0
  415. nexaai/mlx_backend/sd/modeling/vae.py +274 -0
  416. nexaai/mlx_backend/tts/__init__.py +12 -0
  417. nexaai/mlx_backend/tts/interface.py +276 -0
  418. nexaai/mlx_backend/vlm/__init__.py +3 -0
  419. nexaai/mlx_backend/vlm/generate.py +572 -0
  420. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
  421. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
  422. nexaai/mlx_backend/vlm/interface.py +559 -0
  423. nexaai/mlx_backend/vlm/main.py +365 -0
  424. nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
  425. nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
  426. nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
  427. nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
  428. nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  429. nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  430. nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
  431. nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
  432. nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
  433. nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
  434. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  435. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  436. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  437. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  438. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  439. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  440. nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
  441. nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
  442. nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
  443. nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
  444. nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
  445. nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
  446. nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
  447. nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
  448. nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
  449. nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
  450. nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
  451. nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  452. nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
  453. nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
  454. nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
  455. nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
  456. nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
  457. nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
  458. nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
  459. nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
  460. nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
  461. nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
  462. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  463. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  464. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
  465. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
  466. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
  467. nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
  468. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  469. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  470. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
  471. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
  472. nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
  473. nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
  474. nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
  475. nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
  476. nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
  477. nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
  478. nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
  479. nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
  480. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  481. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
  482. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  483. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
  484. nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
  485. nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
  486. nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
  487. nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
  488. nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
  489. nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
  490. nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
  491. nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
  492. nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
  493. nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
  494. nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
  495. nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
  496. nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
  497. nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
  498. nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
  499. nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
  500. nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  501. nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
  502. nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
  503. nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
  504. nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
  505. nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
  506. nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
  507. nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
  508. nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
  509. nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  510. nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  511. nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
  512. nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
  513. nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
  514. nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
  515. nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
  516. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  517. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  518. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  519. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  520. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  521. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  522. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
  523. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
  524. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  525. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  526. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  527. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  528. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  529. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  530. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  531. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  532. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  533. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  534. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
  535. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  536. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  537. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  538. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  539. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  540. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  541. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  542. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  543. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
  544. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  545. nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
  546. nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  547. nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  548. nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
  549. nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
  550. nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
  551. nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
  552. nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
  553. nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
  554. nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
  555. nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
  556. nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
  557. nexaai/rerank.py +57 -0
  558. nexaai/rerank_impl/__init__.py +0 -0
  559. nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
  560. nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
  561. nexaai/runtime.py +68 -0
  562. nexaai/runtime_error.py +24 -0
  563. nexaai/tts.py +75 -0
  564. nexaai/tts_impl/__init__.py +0 -0
  565. nexaai/tts_impl/mlx_tts_impl.py +94 -0
  566. nexaai/tts_impl/pybind_tts_impl.py +43 -0
  567. nexaai/utils/decode.py +18 -0
  568. nexaai/utils/manifest_utils.py +531 -0
  569. nexaai/utils/model_manager.py +1745 -0
  570. nexaai/utils/model_types.py +49 -0
  571. nexaai/utils/progress_tracker.py +389 -0
  572. nexaai/utils/quantization_utils.py +245 -0
  573. nexaai/vlm.py +130 -0
  574. nexaai/vlm_impl/__init__.py +0 -0
  575. nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
  576. nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
  577. nexaai-1.0.29.dist-info/METADATA +35 -0
  578. nexaai-1.0.29.dist-info/RECORD +580 -0
  579. nexaai-1.0.29.dist-info/WHEEL +5 -0
  580. nexaai-1.0.29.dist-info/top_level.txt +1 -0
@@ -0,0 +1,324 @@
1
+ import time
2
+ from dataclasses import dataclass
3
+ from typing import List, Optional
4
+
5
+ import mlx.core as mx
6
+ from mlx_lm.generate import stream_generate
7
+ from mlx_lm.models.llama import Model as LlamaModel
8
+ from mlx_lm.models.llama import ModelArgs as LlamaModelConfig
9
+ from mlx_lm.sample_utils import make_logits_processors, make_sampler
10
+ from tqdm import tqdm
11
+ from transformers import AutoTokenizer
12
+
13
+ from mlx_audio.codec.models.snac import SNAC
14
+
15
+ from ..base import GenerationResult
16
+
17
+
18
+ @dataclass
19
+ class ModelConfig(LlamaModelConfig):
20
+ tokenizer_name: str = "mlx-community/orpheus-3b-0.1-ft-bf16"
21
+ sample_rate: int = 24000
22
+
23
+ def __post_init__(self):
24
+ if self.num_key_value_heads is None:
25
+ self.num_key_value_heads = self.num_attention_heads
26
+
27
+
28
+ snac_model = SNAC.from_pretrained("mlx-community/snac_24khz").eval()
29
+
30
+
31
+ def decode_audio_from_codes(code_list):
32
+ layer_1 = []
33
+ layer_2 = []
34
+ layer_3 = []
35
+ for i in range((len(code_list) + 1) // 7):
36
+ layer_1.append(code_list[7 * i])
37
+ layer_2.append(code_list[7 * i + 1] - 4096)
38
+ layer_3.append(code_list[7 * i + 2] - (2 * 4096))
39
+ layer_3.append(code_list[7 * i + 3] - (3 * 4096))
40
+ layer_2.append(code_list[7 * i + 4] - (4 * 4096))
41
+ layer_3.append(code_list[7 * i + 5] - (5 * 4096))
42
+ layer_3.append(code_list[7 * i + 6] - (6 * 4096))
43
+ codes = [
44
+ mx.expand_dims(mx.array(layer_1), 0),
45
+ mx.expand_dims(mx.array(layer_2), 0),
46
+ mx.expand_dims(mx.array(layer_3), 0),
47
+ ]
48
+ audio_hat = snac_model.decode(codes).squeeze(-1)
49
+ return audio_hat
50
+
51
+
52
+ def encode_audio_to_codes(audio):
53
+ audio = audio[None, None, :]
54
+
55
+ codes = snac_model.encode(audio)
56
+
57
+ layer_1 = codes[0].squeeze(0).tolist()
58
+ layer_2 = codes[1].squeeze(0).tolist()
59
+ layer_3 = codes[2].squeeze(0).tolist()
60
+
61
+ code_list = []
62
+ num_groups = len(layer_1)
63
+ for i in range(num_groups):
64
+ code_list.append(layer_1[i])
65
+ code_list.append(layer_2[2 * i] + 4096)
66
+ code_list.append(layer_3[4 * i] + 2 * 4096)
67
+ code_list.append(layer_3[4 * i + 1] + 3 * 4096)
68
+ code_list.append(layer_2[2 * i + 1] + 4 * 4096)
69
+ code_list.append(layer_3[4 * i + 2] + 5 * 4096)
70
+ code_list.append(layer_3[4 * i + 3] + 6 * 4096)
71
+
72
+ return mx.array(code_list)[None, :]
73
+
74
+
75
+ class Model(LlamaModel):
76
+ def __init__(self, config: ModelConfig, **kwargs):
77
+ super().__init__(config)
78
+ self.config = config
79
+ self.model_type = config.model_type
80
+ self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name)
81
+
82
+ @property
83
+ def layers(self):
84
+ return self.model.layers
85
+
86
+ @property
87
+ def sample_rate(self):
88
+ return self.config.sample_rate
89
+
90
+ def parse_output(self, input_ids):
91
+ token_to_find = 128257
92
+ token_to_remove = 128258
93
+
94
+ # MLX doesn't have nonzero, so we need to create indices manually
95
+ mask = input_ids == token_to_find
96
+ indices = []
97
+ for i in range(mask.shape[0]):
98
+ for j in range(mask.shape[1]):
99
+ if mask[i, j]:
100
+ indices.append((i, j))
101
+ token_indices = [[], []]
102
+ for i, j in indices:
103
+ token_indices[0].append(i)
104
+ token_indices[1].append(j)
105
+
106
+ token_indices = mx.array(token_indices)
107
+
108
+ if len(token_indices[1]) > 0:
109
+ last_occurrence_idx = int(token_indices[1][-1])
110
+ cropped_tensor = input_ids[:, last_occurrence_idx + 1 :]
111
+ else:
112
+ cropped_tensor = input_ids
113
+
114
+ mask = cropped_tensor != token_to_remove
115
+
116
+ processed_rows = []
117
+
118
+ for row in cropped_tensor:
119
+ # Create a mask and filter manually since boolean indexing isn't supported
120
+ row_list = row.tolist()
121
+ masked_row = mx.array([val for val in row_list if val != token_to_remove])
122
+ processed_rows.append(masked_row)
123
+
124
+ code_lists = []
125
+
126
+ for row in processed_rows:
127
+ row_length = row.shape[0]
128
+ new_length = (row_length // 7) * 7
129
+ trimmed_row = row[:new_length]
130
+ trimmed_row = [t - 128266 for t in trimmed_row]
131
+ code_lists.append(trimmed_row)
132
+
133
+ return code_lists
134
+
135
+ def prepare_input_ids(
136
+ self,
137
+ prompts: List[str],
138
+ voice: Optional[str] = None,
139
+ ref_audio: Optional[mx.array] = None,
140
+ ref_text: Optional[str] = None,
141
+ ):
142
+ audio_input_ids = None
143
+ if ref_audio is not None and ref_text is not None:
144
+ print(
145
+ "\033[93mWARNING: Audio cloning doesn't work reliably on Orpheus.\033[0m \nA known issue affecting Torch and MLX versions. \nWill be fixed once the Canopy labs repo update their code or the model."
146
+ )
147
+ audio_input_ids = encode_audio_to_codes(ref_audio) + 128266
148
+ audio_transcript_ids = self.tokenizer(
149
+ ref_text, return_tensors="mlx"
150
+ ).input_ids
151
+ elif voice is not None:
152
+ prompts = [f"{voice}: " + p for p in prompts]
153
+
154
+ start_token = mx.array([[128259]], dtype=mx.int64) # Start of human
155
+ end_tokens = mx.array(
156
+ [[128009, 128260]], dtype=mx.int64
157
+ ) # End of text, End of human
158
+
159
+ prompt_input_ids = []
160
+ for prompt in prompts:
161
+ prompt_input_ids.append(
162
+ self.tokenizer(prompt, return_tensors="mlx").input_ids
163
+ )
164
+
165
+ batch_input_ids = []
166
+ pad_token = mx.array([128263], dtype=mx.int64)
167
+ max_len = max([p.shape[1] for p in prompt_input_ids])
168
+
169
+ for input_ids in prompt_input_ids:
170
+ modified_input_ids = []
171
+
172
+ padding_len = max_len - input_ids.shape[1]
173
+ if padding_len > 0:
174
+ modified_input_ids.append(mx.repeat(pad_token, padding_len)[None, :])
175
+
176
+ # reference audio and transcript
177
+ if audio_input_ids is not None:
178
+ audio_start_tokens = mx.array([[128261, 128257]], dtype=mx.int64)
179
+ audio_end_tokens = mx.array([[128258, 128262]], dtype=mx.int64)
180
+ ref_input_ids = mx.concatenate(
181
+ [
182
+ start_token,
183
+ audio_transcript_ids,
184
+ end_tokens,
185
+ audio_start_tokens,
186
+ audio_input_ids,
187
+ audio_end_tokens,
188
+ ],
189
+ axis=1,
190
+ )
191
+ modified_input_ids.append(ref_input_ids)
192
+
193
+ # prompt
194
+ one_prompt_input_ids = mx.concatenate(
195
+ [start_token, input_ids, end_tokens], axis=1
196
+ ) # SOH SOT Text EOT EOH
197
+ modified_input_ids.append(one_prompt_input_ids)
198
+
199
+ batch_input_ids.append(mx.concatenate(modified_input_ids, axis=1))
200
+
201
+ batch_input_ids = mx.concatenate(batch_input_ids, axis=0)
202
+ batch_mask = mx.where(batch_input_ids == pad_token, False, True)
203
+
204
+ return batch_input_ids, batch_mask
205
+
206
+ def generate(
207
+ self,
208
+ text,
209
+ voice: str,
210
+ temperature: float = 0.6,
211
+ top_p: float = 0.8,
212
+ split_pattern: str = "\n",
213
+ max_tokens: int = 1200,
214
+ verbose: bool = False,
215
+ ref_audio: mx.array = None,
216
+ ref_text: Optional[str] = None,
217
+ **kwargs,
218
+ ):
219
+ prompt = text.replace("\\n", "\n").replace("\\t", "\t")
220
+ prompts = prompt.split(split_pattern)
221
+
222
+ input_ids, _ = self.prepare_input_ids(
223
+ prompts,
224
+ voice,
225
+ ref_audio,
226
+ ref_text,
227
+ )
228
+
229
+ sampler = make_sampler(temperature, top_p, top_k=kwargs.get("top_k", -1))
230
+ logits_processors = make_logits_processors(
231
+ kwargs.get("logit_bias", None),
232
+ kwargs.get("repetition_penalty", 1.3),
233
+ kwargs.get("repetition_context_size", 20),
234
+ )
235
+
236
+ time_start = time.time()
237
+ # TODO: Support batch processing as in the Colab: https://github.com/canopyai/Orpheus-TTS
238
+ for i, response in enumerate(
239
+ tqdm(
240
+ stream_generate(
241
+ self,
242
+ tokenizer=self.tokenizer,
243
+ prompt=input_ids.squeeze(0),
244
+ max_tokens=max_tokens,
245
+ sampler=sampler,
246
+ logits_processors=logits_processors,
247
+ ),
248
+ total=max_tokens,
249
+ disable=not verbose,
250
+ )
251
+ ):
252
+ next_token = mx.array([response.token])
253
+ input_ids = mx.concatenate([input_ids, next_token[None, :]], axis=1)
254
+ if i % 50 == 0:
255
+ mx.clear_cache()
256
+
257
+ if next_token == 128258:
258
+ break
259
+
260
+ code_lists = self.parse_output(input_ids)
261
+
262
+ my_samples = []
263
+ for code_list in code_lists:
264
+ samples = decode_audio_from_codes(code_list)
265
+ my_samples.append(samples)
266
+
267
+ time_end = time.time()
268
+
269
+ if len(prompts) != len(my_samples):
270
+ raise Exception("Number of prompts and samples do not match")
271
+ else:
272
+ for i in range(len(my_samples)):
273
+ audio = my_samples[i][0]
274
+
275
+ samples = audio.shape[0] if audio is not None else 0
276
+ assert samples > 0, "No audio generated"
277
+
278
+ # Calculate token count
279
+ token_count = input_ids.shape[1] if input_ids is not None else 0
280
+
281
+ # Calculate audio duration in seconds
282
+ sample_rate = self.config.sample_rate
283
+ audio_duration_seconds = samples / sample_rate
284
+
285
+ # Calculate real-time factor (RTF)
286
+ rtf = audio_duration_seconds / (time_end - time_start)
287
+
288
+ # Format duration as HH:MM:SS.mmm
289
+ duration_mins = int(audio_duration_seconds // 60)
290
+ duration_secs = int(audio_duration_seconds % 60)
291
+ duration_ms = int((audio_duration_seconds % 1) * 1000)
292
+ duration_hours = int(audio_duration_seconds // 3600)
293
+ duration_str = f"{duration_hours:02d}:{duration_mins:02d}:{duration_secs:02d}.{duration_ms:03d}"
294
+
295
+ yield GenerationResult(
296
+ audio=audio,
297
+ samples=samples,
298
+ sample_rate=sample_rate,
299
+ segment_idx=i,
300
+ token_count=token_count,
301
+ audio_duration=duration_str,
302
+ real_time_factor=rtf,
303
+ prompt={
304
+ "tokens": token_count,
305
+ "tokens-per-sec": (
306
+ round(token_count / audio_duration_seconds, 2)
307
+ if audio_duration_seconds > 0
308
+ else 0
309
+ ),
310
+ },
311
+ audio_samples={
312
+ "samples": samples,
313
+ "samples-per-sec": (
314
+ round(samples / audio_duration_seconds, 2)
315
+ if audio_duration_seconds > 0
316
+ else 0
317
+ ),
318
+ },
319
+ processing_time_seconds=time_end - time_start,
320
+ peak_memory_usage=mx.get_peak_memory() / 1e9,
321
+ )
322
+
323
+ # Clear cache after each segment to avoid memory leaks
324
+ mx.clear_cache()
@@ -0,0 +1 @@
1
+ from .outetts import Model, ModelConfig
@@ -0,0 +1,351 @@
1
+ import io
2
+ import json
3
+ import os
4
+ from dataclasses import asdict
5
+ from typing import Union
6
+
7
+ import mlx.core as mx
8
+ import numpy as np
9
+
10
+ from mlx_audio.stt.utils import SAMPLE_RATE as WHISPER_SAMPLE_RATE
11
+ from mlx_audio.stt.utils import load_model, resample_audio
12
+
13
+ from .dac_interface import DacInterface
14
+ from .prompt_processor import PromptProcessor
15
+
16
+
17
+ def calculate_pitch(
18
+ audio_array: mx.array,
19
+ sr: int,
20
+ min_freq: float = 75.0,
21
+ max_freq: float = 600.0,
22
+ frame_length: int = 400,
23
+ hop_length: int = 160,
24
+ threshold: float = 0.3,
25
+ ) -> mx.array:
26
+ """
27
+ Calculate pitch frequencies for short audio clips using autocorrelation.
28
+
29
+ Args:
30
+ audio_array: Input audio array (1D or 2D [channels, samples])
31
+ sr: Sampling rate
32
+ min_freq: Minimum detectable frequency (Hz)
33
+ max_freq: Maximum detectable frequency (Hz)
34
+ frame_length: Analysis frame length in samples
35
+ hop_length: Hop size in samples
36
+ threshold: Voicing threshold (0.0-1.0)
37
+
38
+ Returns:
39
+ Array of pitch values (Hz) per frame
40
+ """
41
+ audio_np = np.array(audio_array)
42
+
43
+ # convert to mono and ensure 1D
44
+ if len(audio_np.shape) > 1:
45
+ audio_np = np.mean(audio_np, axis=0)
46
+ audio_np = np.squeeze(audio_np)
47
+
48
+ num_samples = audio_np.shape[-1]
49
+ pad_len = (frame_length - (num_samples % hop_length)) % hop_length
50
+ audio_np = np.pad(audio_np, (0, pad_len))
51
+
52
+ num_frames = (len(audio_np) - frame_length) // hop_length + 1
53
+ frames = np.zeros((num_frames, frame_length))
54
+ for i in range(num_frames):
55
+ frames[i] = audio_np[i * hop_length : i * hop_length + frame_length]
56
+
57
+ window = np.hanning(frame_length)
58
+ frames_windowed = frames * window
59
+
60
+ # compute autocorrelation using FFT
61
+ fft_frames = np.fft.rfft(frames_windowed, n=2 * frame_length, axis=1)
62
+ power_spectrum = fft_frames.real**2 + fft_frames.imag**2
63
+ autocorr = np.fft.irfft(power_spectrum, axis=1)[:, :frame_length]
64
+
65
+ # find valid frequency range indices
66
+ min_idx = max(1, int(sr / max_freq))
67
+ max_idx = min(frame_length, int(sr / min_freq))
68
+
69
+ # find peak indices in valid range
70
+ relevant_autocorr = autocorr[:, min_idx:max_idx]
71
+ peak_indices = np.argmax(relevant_autocorr, axis=1) + min_idx
72
+ peak_values = np.array([autocorr[i, peak_indices[i]] for i in range(num_frames)])
73
+
74
+ # parabolic interpolation for sub-sample accuracy
75
+ indices = np.clip(peak_indices, 1, frame_length - 2)
76
+ alpha = np.array([autocorr[i, indices[i] - 1] for i in range(num_frames)])
77
+ beta = np.array([autocorr[i, indices[i]] for i in range(num_frames)])
78
+ gamma = np.array([autocorr[i, indices[i] + 1] for i in range(num_frames)])
79
+
80
+ delta = 0.5 * (alpha - gamma) / (alpha - 2 * beta + gamma + 1e-8)
81
+ valid_mask = (peak_indices > 0) & (peak_indices < frame_length - 1)
82
+ delta = np.where(valid_mask, delta, 0.0)
83
+
84
+ # calculate final periods and pitches
85
+ best_period = (peak_indices + delta) / sr
86
+ pitch = np.where(best_period > 0, 1.0 / best_period, 0.0)
87
+
88
+ # apply voicing threshold
89
+ autocorr_0 = autocorr[:, 0]
90
+ voiced = (peak_values / (autocorr_0 + 1e-8)) > threshold
91
+ pitch = np.where(voiced, pitch, 0.0)
92
+
93
+ # clamp valid frequencies
94
+ pitch = np.clip(pitch, min_freq, max_freq)
95
+
96
+ return mx.array(pitch)
97
+
98
+
99
+ def extract_single_pitch_value(
100
+ audio_array: mx.array,
101
+ sr: int,
102
+ min_freq: float = 75.0,
103
+ max_freq: float = 600.0,
104
+ frame_length: int = 400,
105
+ hop_length: int = 160,
106
+ threshold: float = 0.3,
107
+ ) -> float:
108
+ """
109
+ Calculates the average pitch of an audio array and normalizes it to 0-1 range.
110
+
111
+ Args:
112
+ audio_array: Input audio array (1D or 2D [channels, samples])
113
+ sr: Sampling rate
114
+ min_freq: Minimum detectable frequency (Hz)
115
+ max_freq: Maximum detectable frequency (Hz)
116
+ frame_length: Analysis frame length in samples
117
+ hop_length: Hop size in samples
118
+ threshold: Voicing threshold (0.0-1.0)
119
+
120
+ Returns:
121
+ A single float value representing the normalized average pitch (0.0-1.0).
122
+ """
123
+ pitch_array = calculate_pitch(
124
+ audio_array, sr, min_freq, max_freq, frame_length, hop_length, threshold
125
+ )
126
+
127
+ # calculate the average pitch across frames
128
+ average_pitch = float(mx.mean(pitch_array))
129
+
130
+ # normalize to 0-1 range
131
+ normalized_pitch = (average_pitch - min_freq) / (max_freq - min_freq)
132
+
133
+ # clamp to ensure it's strictly within 0-1
134
+ normalized_pitch = min(max(normalized_pitch, 0.0), 1.0)
135
+
136
+ return normalized_pitch
137
+
138
+
139
+ class Features:
140
+ def __init__(self):
141
+ self.eps = 1e-10
142
+
143
+ def scale_values(self, value: float) -> int:
144
+ """
145
+ Scale a value from [0,1] to [0,100] and round to nearest integer
146
+ """
147
+ return round(value * 100)
148
+
149
+ def features_to_tokens(self, features: dict) -> list:
150
+ """
151
+ Convert features to token strings in format <|feature_value|>
152
+ """
153
+ return [f"<|{name}_{value}|>" for name, value in features.items()]
154
+
155
+ def validate_audio(self, audio: mx.array) -> bool:
156
+ if audio is None or not isinstance(audio, mx.array):
157
+ return False
158
+ if audio.size == 0: # Check if array is empty
159
+ return False
160
+ audio_np = np.array(audio)
161
+ if np.isnan(audio_np).any() or np.isinf(audio_np).any():
162
+ return False
163
+ return True
164
+
165
+ def get_default_features(self) -> dict:
166
+ """
167
+ Return default feature values when audio is invalid
168
+ """
169
+ return {"energy": 0, "spectral_centroid": 0, "pitch": 0}
170
+
171
+ def extract_audio_features(self, audio: mx.array, sr: int) -> dict:
172
+ """
173
+ Extract fast-to-compute features from audio segments.
174
+ Each feature is normalized to [0, 1] range.
175
+
176
+ Args:
177
+ audio: Audio array of shape [channels, samples]
178
+ sr: Sample rate
179
+
180
+ Returns:
181
+ Dictionary of features, each as a single float value
182
+ """
183
+ if not self.validate_audio(audio):
184
+ return self.get_default_features()
185
+
186
+ audio_np = np.array(audio)
187
+
188
+ # convert to mono if stereo
189
+ if len(audio_np.shape) == 2 and audio_np.shape[0] > 1:
190
+ audio_np = np.mean(audio_np, axis=0, keepdims=True)
191
+
192
+ audio = mx.array(audio_np)
193
+
194
+ features = {}
195
+
196
+ # rms energy (loudness) - normalized to [0, 1]
197
+ features["energy"] = float(mx.sqrt(mx.mean(audio**2)))
198
+
199
+ # spectral centroid - normalized to [0, 1]
200
+ spec_np = np.abs(np.fft.rfft(audio_np))
201
+ freqs_np = np.linspace(0, sr / 2, spec_np.shape[-1])
202
+ spec_sum = np.sum(spec_np) + self.eps
203
+ centroid = np.sum(freqs_np * spec_np.squeeze()) / spec_sum
204
+ features["spectral_centroid"] = float(centroid / (sr / 2))
205
+
206
+ # pitch - normalized to [0, 1]
207
+ features["pitch"] = extract_single_pitch_value(audio, sr)
208
+
209
+ # scale values to 0-100 range
210
+ for name, value in features.items():
211
+ features[name] = self.scale_values(value)
212
+
213
+ return features
214
+
215
+
216
+ class AudioProcessor:
217
+ def __init__(
218
+ self, audio_codec_path: str = "mlx-community/dac-speech-24khz-1.5kbps"
219
+ ):
220
+ self.features = Features()
221
+ self.audio_codec = DacInterface(audio_codec_path)
222
+
223
+ def create_speaker_from_whisper(
224
+ self,
225
+ audio: str,
226
+ whisper_model: str = "mlx-community/whisper-large-v3-turbo",
227
+ ):
228
+ if isinstance(audio, str):
229
+ audio = self.audio_codec.load_audio(audio)
230
+ else:
231
+ # resample audio to 16000 for whisper
232
+ resampled_audio = resample_audio(
233
+ audio[..., None], self.audio_codec.sr, WHISPER_SAMPLE_RATE
234
+ )
235
+ resampled_audio = mx.array(resampled_audio, dtype=mx.float32).mean(axis=1)
236
+
237
+ # convert to 2d array
238
+ audio = audio[None, None, ...]
239
+
240
+ seconds = audio.flatten().shape[0] / self.audio_codec.sr
241
+ if seconds > 20:
242
+ print(
243
+ "Speaker audio is longer than 20 seconds. Use a shorter clip for best results."
244
+ )
245
+ if seconds > 15:
246
+ print(
247
+ "Speaker audio is longer than 15 seconds. For best results, consider using an audio clip up to 15 seconds."
248
+ )
249
+
250
+ # load whisper model
251
+ whisper_model = load_model(whisper_model)
252
+
253
+ # transcribe audio
254
+ data = whisper_model.generate(resampled_audio.flatten(), word_timestamps=True)
255
+ data = asdict(data)
256
+
257
+ # clear memory
258
+ del whisper_model
259
+ mx.clear_cache()
260
+
261
+ text = PromptProcessor.text_normalizations(data["text"])
262
+ words = []
263
+ for s in data["segments"]:
264
+ words.extend(
265
+ [
266
+ {
267
+ "word": i["word"].strip(),
268
+ "start": float(i["start"]),
269
+ "end": float(i["end"]),
270
+ }
271
+ for i in s["words"]
272
+ ]
273
+ )
274
+
275
+ return self.create_speaker_from_dict(
276
+ {"audio": {"bytes": audio}, "text": text, "words": words}
277
+ )
278
+
279
+ def create_speaker_from_dict(self, data: dict):
280
+ audio = data["audio"]["bytes"]
281
+ if isinstance(audio, str):
282
+ audio = io.BytesIO(audio)
283
+ audio = self.audio_codec.load_audio(audio)
284
+
285
+ full_codes = self.audio_codec.encode(audio, verbose=True).tolist()[0]
286
+
287
+ c1 = full_codes[0]
288
+ c2 = full_codes[1]
289
+
290
+ sr = self.audio_codec.sr
291
+ text = data["text"]
292
+ words = data["words"]
293
+
294
+ tps = 75
295
+
296
+ audio = audio.squeeze(0)
297
+ global_features = self.features.extract_audio_features(audio, sr)
298
+
299
+ start = None
300
+ word_codes = []
301
+ max_extension = 20
302
+
303
+ for idx, i in enumerate(words):
304
+ if start is None:
305
+ start = max(0, int(i["start"] * tps) - max_extension)
306
+ word = i["word"].strip()
307
+ if idx == len(words) - 1:
308
+ end = min(len(c1), int(i["end"] * tps) + max_extension)
309
+ else:
310
+ end = int(i["end"] * tps)
311
+
312
+ word_c1 = c1[start:end]
313
+ word_c2 = c2[start:end]
314
+
315
+ word_audio = audio[:, int(i["start"] * sr) : int(i["end"] * sr)]
316
+ features = self.features.extract_audio_features(word_audio, sr)
317
+
318
+ start = end
319
+
320
+ word_codes.append(
321
+ {
322
+ "word": word,
323
+ "duration": round(len(word_c1) / tps, 2),
324
+ "c1": word_c1,
325
+ "c2": word_c2,
326
+ "features": features,
327
+ }
328
+ )
329
+
330
+ return {"text": text, "words": word_codes, "global_features": global_features}
331
+
332
+ def save_speaker(self, speaker: dict, path: str):
333
+ # Expand ~ to home directory to save in ~/.cache/mlx_audio/voices
334
+ path = os.path.expanduser(path)
335
+ os.makedirs(os.path.dirname(path), exist_ok=True)
336
+
337
+ with open(path, "w") as f:
338
+ json.dump(speaker, f)
339
+
340
+ print(f"Speaker saved to: {path}")
341
+
342
+ def load_speaker(self, path: str):
343
+ # Expand ~ to home directory to load from ~/.cache/mlx_audio/voices
344
+ path = os.path.expanduser(path)
345
+ if not os.path.exists(path):
346
+ raise FileNotFoundError(f"Speaker file not found: {path}")
347
+
348
+ with open(path, "r") as f:
349
+ return json.load(f)
350
+
351
+ print(f"Speaker loaded from: {path}")