nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (580) hide show
  1. nexaai/__init__.py +99 -0
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +4 -0
  4. nexaai/asr.py +68 -0
  5. nexaai/asr_impl/__init__.py +0 -0
  6. nexaai/asr_impl/mlx_asr_impl.py +93 -0
  7. nexaai/asr_impl/pybind_asr_impl.py +127 -0
  8. nexaai/base.py +39 -0
  9. nexaai/binds/__init__.py +7 -0
  10. nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
  11. nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
  12. nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
  13. nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
  14. nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
  15. nexaai/binds/cpu_gpu/libggml.dylib +0 -0
  16. nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
  17. nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
  18. nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
  19. nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
  20. nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
  21. nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
  22. nexaai/binds/libnexa_bridge.dylib +0 -0
  23. nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
  24. nexaai/binds/metal/libnexa_plugin.dylib +0 -0
  25. nexaai/binds/metal/py-lib/ml.py +888 -0
  26. nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
  27. nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
  28. nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
  29. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  30. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  31. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  32. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  33. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  34. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  35. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
  36. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
  37. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
  38. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  39. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  40. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  41. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
  42. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
  43. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
  44. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
  45. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  46. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  47. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  48. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  49. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  50. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  51. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
  52. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
  53. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
  54. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
  55. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
  56. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
  57. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
  58. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
  59. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
  60. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
  61. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
  62. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
  63. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
  64. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  65. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
  66. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
  67. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
  68. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
  69. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
  70. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
  71. nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
  72. nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
  73. nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  74. nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
  75. nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
  76. nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
  77. nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
  78. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  79. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  80. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
  81. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
  82. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  83. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  84. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  85. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  86. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  87. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  88. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  89. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
  90. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
  91. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
  92. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
  93. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  94. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
  95. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
  96. nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
  97. nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
  98. nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
  99. nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
  100. nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
  101. nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
  102. nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
  103. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
  104. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
  105. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
  106. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
  107. nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
  108. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
  109. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
  110. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
  111. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
  112. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
  113. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
  114. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
  115. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  116. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
  117. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  118. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  119. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  120. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  121. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  122. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  123. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
  124. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
  125. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
  126. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  127. nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
  128. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  129. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  130. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  131. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
  132. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  133. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
  134. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
  135. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
  136. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
  137. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  138. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  139. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
  140. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  141. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
  142. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
  143. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
  144. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
  145. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  146. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
  147. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  148. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
  149. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  150. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  151. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  152. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  153. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  154. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  155. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  156. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  157. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  158. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  159. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  160. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  161. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  162. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  163. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  164. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
  165. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  166. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
  167. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  168. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
  169. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
  170. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
  171. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
  172. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
  173. nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
  174. nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
  175. nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
  176. nexaai/binds/metal/py-lib/profiling.py +239 -0
  177. nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
  178. nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
  179. nexaai/binds/nexaml/libggml-base.dylib +0 -0
  180. nexaai/binds/nexaml/libggml-cpu.so +0 -0
  181. nexaai/binds/nexaml/libggml-metal.so +0 -0
  182. nexaai/binds/nexaml/libggml.dylib +0 -0
  183. nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
  184. nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
  185. nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
  186. nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
  187. nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
  188. nexaai/binds/nexaml/libnexaproc.dylib +0 -0
  189. nexaai/binds/nexaml/libomp.dylib +0 -0
  190. nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
  191. nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
  192. nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
  193. nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
  194. nexaai/common.py +106 -0
  195. nexaai/cv.py +95 -0
  196. nexaai/cv_impl/__init__.py +0 -0
  197. nexaai/cv_impl/mlx_cv_impl.py +91 -0
  198. nexaai/cv_impl/pybind_cv_impl.py +124 -0
  199. nexaai/diarize.py +80 -0
  200. nexaai/diarize_impl/__init__.py +1 -0
  201. nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
  202. nexaai/embedder.py +73 -0
  203. nexaai/embedder_impl/__init__.py +0 -0
  204. nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
  205. nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
  206. nexaai/image_gen.py +141 -0
  207. nexaai/image_gen_impl/__init__.py +0 -0
  208. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
  209. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
  210. nexaai/llm.py +98 -0
  211. nexaai/llm_impl/__init__.py +0 -0
  212. nexaai/llm_impl/mlx_llm_impl.py +271 -0
  213. nexaai/llm_impl/pybind_llm_impl.py +238 -0
  214. nexaai/log.py +92 -0
  215. nexaai/mlx_backend/asr/__init__.py +12 -0
  216. nexaai/mlx_backend/asr/interface.py +122 -0
  217. nexaai/mlx_backend/common/__init__.py +0 -0
  218. nexaai/mlx_backend/common/utils.py +25 -0
  219. nexaai/mlx_backend/cv/__init__.py +0 -0
  220. nexaai/mlx_backend/cv/generate.py +195 -0
  221. nexaai/mlx_backend/cv/interface.py +162 -0
  222. nexaai/mlx_backend/cv/main.py +81 -0
  223. nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
  224. nexaai/mlx_backend/embedding/__init__.py +0 -0
  225. nexaai/mlx_backend/embedding/generate.py +333 -0
  226. nexaai/mlx_backend/embedding/interface.py +617 -0
  227. nexaai/mlx_backend/embedding/main.py +173 -0
  228. nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
  229. nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
  230. nexaai/mlx_backend/image_gen/__init__.py +1 -0
  231. nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
  232. nexaai/mlx_backend/image_gen/interface.py +82 -0
  233. nexaai/mlx_backend/image_gen/main.py +281 -0
  234. nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
  235. nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
  236. nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
  237. nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
  238. nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
  239. nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
  240. nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
  241. nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
  242. nexaai/mlx_backend/llm/__init__.py +0 -0
  243. nexaai/mlx_backend/llm/generate.py +149 -0
  244. nexaai/mlx_backend/llm/interface.py +764 -0
  245. nexaai/mlx_backend/llm/main.py +68 -0
  246. nexaai/mlx_backend/ml.py +888 -0
  247. nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
  248. nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
  249. nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
  250. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  251. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  252. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  253. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  254. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  255. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  256. nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
  257. nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
  258. nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
  259. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  260. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  261. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  262. nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
  263. nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
  264. nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
  265. nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
  266. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  267. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  268. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  269. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  270. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  271. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  272. nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
  273. nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
  274. nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
  275. nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
  276. nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
  277. nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
  278. nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
  279. nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
  280. nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
  281. nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
  282. nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
  283. nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
  284. nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
  285. nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  286. nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
  287. nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
  288. nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
  289. nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
  290. nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
  291. nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
  292. nexaai/mlx_backend/mlx_audio/server.py +525 -0
  293. nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
  294. nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  295. nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
  296. nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
  297. nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
  298. nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
  299. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  300. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  301. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
  302. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
  303. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  304. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  305. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  306. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  307. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  308. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  309. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  310. nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
  311. nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
  312. nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
  313. nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
  314. nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  315. nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
  316. nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
  317. nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
  318. nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
  319. nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
  320. nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
  321. nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
  322. nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
  323. nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
  324. nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
  325. nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
  326. nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
  327. nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
  328. nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
  329. nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
  330. nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
  331. nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
  332. nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
  333. nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
  334. nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
  335. nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
  336. nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  337. nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
  338. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  339. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  340. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  341. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  342. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  343. nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  344. nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
  345. nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
  346. nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
  347. nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  348. nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
  349. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  350. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  351. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  352. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
  353. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  354. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
  355. nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
  356. nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
  357. nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
  358. nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  359. nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  360. nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
  361. nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
  362. nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  363. nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
  364. nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
  365. nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
  366. nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
  367. nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  368. nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
  369. nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  370. nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
  371. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  372. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  373. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  374. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  375. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  376. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  377. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  378. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  379. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  380. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  381. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  382. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  383. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  384. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  385. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  386. nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
  387. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  388. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
  389. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  390. nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
  391. nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
  392. nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
  393. nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
  394. nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
  395. nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
  396. nexaai/mlx_backend/mlx_audio/utils.py +237 -0
  397. nexaai/mlx_backend/mlx_audio/version.py +1 -0
  398. nexaai/mlx_backend/profiling.py +239 -0
  399. nexaai/mlx_backend/rerank/__init__.py +0 -0
  400. nexaai/mlx_backend/rerank/generate.py +174 -0
  401. nexaai/mlx_backend/rerank/interface.py +287 -0
  402. nexaai/mlx_backend/rerank/main.py +127 -0
  403. nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
  404. nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
  405. nexaai/mlx_backend/sd/__init__.py +1 -0
  406. nexaai/mlx_backend/sd/interface.py +362 -0
  407. nexaai/mlx_backend/sd/main.py +286 -0
  408. nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
  409. nexaai/mlx_backend/sd/modeling/clip.py +116 -0
  410. nexaai/mlx_backend/sd/modeling/config.py +65 -0
  411. nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
  412. nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
  413. nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
  414. nexaai/mlx_backend/sd/modeling/unet.py +460 -0
  415. nexaai/mlx_backend/sd/modeling/vae.py +274 -0
  416. nexaai/mlx_backend/tts/__init__.py +12 -0
  417. nexaai/mlx_backend/tts/interface.py +276 -0
  418. nexaai/mlx_backend/vlm/__init__.py +3 -0
  419. nexaai/mlx_backend/vlm/generate.py +572 -0
  420. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
  421. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
  422. nexaai/mlx_backend/vlm/interface.py +559 -0
  423. nexaai/mlx_backend/vlm/main.py +365 -0
  424. nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
  425. nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
  426. nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
  427. nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
  428. nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  429. nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  430. nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
  431. nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
  432. nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
  433. nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
  434. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  435. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  436. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  437. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  438. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  439. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  440. nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
  441. nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
  442. nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
  443. nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
  444. nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
  445. nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
  446. nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
  447. nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
  448. nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
  449. nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
  450. nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
  451. nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  452. nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
  453. nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
  454. nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
  455. nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
  456. nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
  457. nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
  458. nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
  459. nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
  460. nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
  461. nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
  462. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  463. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  464. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
  465. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
  466. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
  467. nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
  468. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  469. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  470. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
  471. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
  472. nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
  473. nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
  474. nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
  475. nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
  476. nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
  477. nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
  478. nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
  479. nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
  480. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  481. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
  482. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  483. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
  484. nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
  485. nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
  486. nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
  487. nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
  488. nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
  489. nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
  490. nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
  491. nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
  492. nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
  493. nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
  494. nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
  495. nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
  496. nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
  497. nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
  498. nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
  499. nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
  500. nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  501. nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
  502. nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
  503. nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
  504. nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
  505. nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
  506. nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
  507. nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
  508. nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
  509. nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  510. nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  511. nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
  512. nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
  513. nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
  514. nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
  515. nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
  516. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  517. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  518. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  519. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  520. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  521. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  522. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
  523. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
  524. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  525. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  526. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  527. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  528. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  529. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  530. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  531. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  532. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  533. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  534. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
  535. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  536. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  537. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  538. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  539. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  540. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  541. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  542. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  543. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
  544. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  545. nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
  546. nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  547. nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  548. nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
  549. nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
  550. nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
  551. nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
  552. nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
  553. nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
  554. nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
  555. nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
  556. nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
  557. nexaai/rerank.py +57 -0
  558. nexaai/rerank_impl/__init__.py +0 -0
  559. nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
  560. nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
  561. nexaai/runtime.py +68 -0
  562. nexaai/runtime_error.py +24 -0
  563. nexaai/tts.py +75 -0
  564. nexaai/tts_impl/__init__.py +0 -0
  565. nexaai/tts_impl/mlx_tts_impl.py +94 -0
  566. nexaai/tts_impl/pybind_tts_impl.py +43 -0
  567. nexaai/utils/decode.py +18 -0
  568. nexaai/utils/manifest_utils.py +531 -0
  569. nexaai/utils/model_manager.py +1745 -0
  570. nexaai/utils/model_types.py +49 -0
  571. nexaai/utils/progress_tracker.py +389 -0
  572. nexaai/utils/quantization_utils.py +245 -0
  573. nexaai/vlm.py +130 -0
  574. nexaai/vlm_impl/__init__.py +0 -0
  575. nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
  576. nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
  577. nexaai-1.0.29.dist-info/METADATA +35 -0
  578. nexaai-1.0.29.dist-info/RECORD +580 -0
  579. nexaai-1.0.29.dist-info/WHEEL +5 -0
  580. nexaai-1.0.29.dist-info/top_level.txt +1 -0
@@ -0,0 +1,229 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import Dict, Optional, Tuple, Union
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+
8
+ from ..base import (
9
+ LanguageModelOutput,
10
+ create_attention_mask,
11
+ scaled_dot_product_attention,
12
+ )
13
+ from ..cache import KVCache
14
+
15
+
16
+ @dataclass
17
+ class TextConfig:
18
+ model_type: str
19
+ hidden_size: int = 5120
20
+ head_dim: int = 128
21
+ num_hidden_layers: int = 40
22
+ intermediate_size: int = 14336
23
+ num_attention_heads: int = 32
24
+ rms_norm_eps: float = 1e-06
25
+ vocab_size: int = 131072
26
+ num_key_value_heads: int = 8
27
+ rope_theta: float = 1000000000.0
28
+ rope_traditional: bool = False
29
+ rope_scaling: Optional[Dict[str, Union[float, str]]] = None
30
+ max_position_embeddings: int = 4096
31
+
32
+ @classmethod
33
+ def from_dict(cls, params):
34
+ return cls(
35
+ **{
36
+ k: v
37
+ for k, v in params.items()
38
+ if k in inspect.signature(cls).parameters
39
+ }
40
+ )
41
+
42
+ def __post_init__(self):
43
+ if self.num_key_value_heads is None:
44
+ self.num_key_value_heads = self.num_attention_heads
45
+
46
+ if self.rope_scaling:
47
+ required_keys = {"factor", "type"}
48
+ if not all(key in self.rope_scaling for key in required_keys):
49
+ raise ValueError(f"rope_scaling must contain keys {required_keys}")
50
+
51
+ if self.rope_scaling["type"] != "linear":
52
+ raise ValueError("rope_scaling 'type' currently only supports 'linear'")
53
+
54
+
55
+ class Attention(nn.Module):
56
+ def __init__(self, config: TextConfig):
57
+ super().__init__()
58
+
59
+ dim = config.hidden_size
60
+ self.n_heads = n_heads = config.num_attention_heads
61
+ self.n_kv_heads = n_kv_heads = config.num_key_value_heads
62
+
63
+ head_dim = config.head_dim
64
+ self.scale = head_dim**-0.5
65
+
66
+ self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
67
+ self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
68
+ self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
69
+ self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
70
+
71
+ rope_scale = (
72
+ 1 / config.rope_scaling["factor"]
73
+ if config.rope_scaling is not None
74
+ and config.rope_scaling["type"] == "linear"
75
+ else 1
76
+ )
77
+ self.rope = nn.RoPE(
78
+ head_dim,
79
+ traditional=config.rope_traditional,
80
+ base=config.rope_theta,
81
+ scale=rope_scale,
82
+ )
83
+
84
+ def __call__(
85
+ self,
86
+ x: mx.array,
87
+ mask: Optional[mx.array] = None,
88
+ cache: Optional[KVCache] = None,
89
+ ) -> mx.array:
90
+ B, L, D = x.shape
91
+
92
+ queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
93
+
94
+ # Prepare the queries, keys and values for the attention computation
95
+ queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
96
+ keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
97
+ values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
98
+
99
+ if cache is not None:
100
+ queries = self.rope(queries, offset=cache.offset)
101
+ keys = self.rope(keys, offset=cache.offset)
102
+ keys, values = cache.update_and_fetch(keys, values)
103
+ else:
104
+ queries = self.rope(queries)
105
+ keys = self.rope(keys)
106
+
107
+ output = scaled_dot_product_attention(
108
+ queries, keys, values, cache, scale=self.scale, mask=mask
109
+ )
110
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
111
+ return self.o_proj(output)
112
+
113
+
114
+ class MLP(nn.Module):
115
+ def __init__(self, dim, hidden_dim):
116
+ super().__init__()
117
+ self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
118
+ self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
119
+ self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
120
+
121
+ def __call__(self, x) -> mx.array:
122
+ return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
123
+
124
+
125
+ class TransformerBlock(nn.Module):
126
+ def __init__(self, config: TextConfig):
127
+ super().__init__()
128
+ self.num_attention_heads = config.num_attention_heads
129
+ self.hidden_size = config.hidden_size
130
+ self.self_attn = Attention(config)
131
+ self.mlp = MLP(config.hidden_size, config.intermediate_size)
132
+ self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
133
+ self.post_attention_layernorm = nn.RMSNorm(
134
+ config.hidden_size, eps=config.rms_norm_eps
135
+ )
136
+ self.config = config
137
+
138
+ def __call__(
139
+ self,
140
+ x: mx.array,
141
+ mask: Optional[mx.array] = None,
142
+ cache: Optional[KVCache] = None,
143
+ ) -> mx.array:
144
+ r = self.self_attn(self.input_layernorm(x), mask, cache)
145
+ h = x + r
146
+ r = self.mlp(self.post_attention_layernorm(h))
147
+ out = h + r
148
+ return out
149
+
150
+
151
+ class Mistral(nn.Module):
152
+ def __init__(self, config: TextConfig):
153
+ super().__init__()
154
+ self.config = config
155
+ self.vocab_size = config.vocab_size
156
+ self.num_hidden_layers = config.num_hidden_layers
157
+ assert self.vocab_size > 0
158
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
159
+ self.layers = [
160
+ TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
161
+ ]
162
+ self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
163
+
164
+ def __call__(
165
+ self,
166
+ inputs: mx.array,
167
+ inputs_embeds: Optional[mx.array] = None,
168
+ mask: Optional[mx.array] = None,
169
+ cache=None,
170
+ ):
171
+ # for passing merged input embeddings
172
+ if inputs_embeds is None:
173
+ h = self.embed_tokens(inputs)
174
+ else:
175
+ h = inputs_embeds
176
+
177
+ if cache is None:
178
+ cache = [None] * len(self.layers)
179
+
180
+ if mask is None:
181
+ mask = create_attention_mask(h, cache)
182
+
183
+ for layer, c in zip(self.layers, cache):
184
+ h = layer(h, mask, c)
185
+
186
+ return self.norm(h)
187
+
188
+
189
+ class LanguageModel(nn.Module):
190
+ def __init__(self, config: TextConfig):
191
+ super().__init__()
192
+ self.config = config
193
+ self.model_type = config.model_type
194
+ if self.model_type != "mistral":
195
+ raise ValueError(
196
+ f"Model type {self.model_type} not supported. Currently only 'mistral' is supported"
197
+ )
198
+ self.model = Mistral(config)
199
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
200
+
201
+ def __call__(
202
+ self,
203
+ inputs: mx.array,
204
+ inputs_embeds: Optional[mx.array] = None,
205
+ mask: Optional[mx.array] = None,
206
+ cache=None,
207
+ ):
208
+ out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
209
+ logits = self.lm_head(out)
210
+ return LanguageModelOutput(logits=logits)
211
+
212
+ @staticmethod
213
+ def sanitize(weights):
214
+ # Remove unused precomputed rotary freqs
215
+ return {
216
+ k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
217
+ }
218
+
219
+ @property
220
+ def layers(self):
221
+ return self.model.layers
222
+
223
+ @property
224
+ def head_dim(self):
225
+ return self.config.head_dim
226
+
227
+ @property
228
+ def n_kv_heads(self):
229
+ return self.config.num_key_value_heads
@@ -0,0 +1,161 @@
1
+ import glob
2
+ import inspect
3
+ import json
4
+ from dataclasses import dataclass
5
+ from pathlib import Path
6
+ from typing import List, Optional
7
+
8
+ import mlx.core as mx
9
+ import mlx.nn as nn
10
+ import numpy as np
11
+ from huggingface_hub import snapshot_download
12
+
13
+ from .language import LanguageModel, TextConfig
14
+ from .vision import VisionConfig, VisionModel
15
+
16
+
17
+ @dataclass
18
+ class ModelConfig:
19
+ text_config: TextConfig
20
+ vision_config: VisionConfig
21
+ model_type: str
22
+ ignore_index: int = -100
23
+ image_token_index: int = 10
24
+ vision_feature_select_strategy: str = "full"
25
+ vision_feature_layer: int = -1
26
+ vocab_size: int = 32000
27
+ eos_token_id: Optional[List[int]] = None
28
+
29
+ @classmethod
30
+ def from_dict(cls, params):
31
+ return cls(
32
+ **{
33
+ k: v
34
+ for k, v in params.items()
35
+ if k in inspect.signature(cls).parameters
36
+ }
37
+ )
38
+
39
+
40
+ class LlavaMultiModalProjector(nn.Module):
41
+ def __init__(self, config: ModelConfig):
42
+ super().__init__()
43
+ self.linear_1 = nn.Linear(
44
+ config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
45
+ )
46
+ self.gelu = nn.GELU()
47
+ self.linear_2 = nn.Linear(
48
+ config.text_config.hidden_size, config.text_config.hidden_size, bias=True
49
+ )
50
+
51
+ def __call__(self, x: mx.array) -> mx.array:
52
+ x = self.linear_1(x)
53
+ x = self.gelu(x)
54
+ x = self.linear_2(x)
55
+ return x
56
+
57
+
58
+ class Model(nn.Module):
59
+ def __init__(self, config: ModelConfig):
60
+ super().__init__()
61
+ self.config = config
62
+ self.vision_tower = VisionModel(config.vision_config)
63
+ self.language_model = LanguageModel(config.text_config)
64
+ self.multi_modal_projector = LlavaMultiModalProjector(config)
65
+ self.vision_feature_layer = config.vision_feature_layer
66
+ self.vision_feature_select_strategy = config.vision_feature_select_strategy
67
+
68
+ def get_input_embeddings(
69
+ self,
70
+ input_ids: Optional[mx.array] = None,
71
+ pixel_values: Optional[mx.array] = None,
72
+ **kwargs,
73
+ ):
74
+ if pixel_values is None:
75
+ return self.language_model.model.embed_tokens(input_ids)
76
+
77
+ # Get the input embeddings from the language model
78
+ inputs_embeds = self.language_model.model.embed_tokens(input_ids)
79
+
80
+ # Get the output hidden states from the vision model
81
+ if isinstance(pixel_values, list):
82
+ pixel_values = mx.concatenate(
83
+ [mx.array(pv)[None, ...] for pv in pixel_values], axis=0
84
+ )
85
+ if pixel_values.ndim == 3:
86
+ pixel_values = pixel_values[None, ...]
87
+
88
+ # Pass pixel_values as list of images, as each image is individually run through conv2d and position encoding
89
+ # Reference code from transformers: https://github.com/huggingface/transformers/blob/main/src/transformers/models/pixtral/modeling_pixtral.py#L479C9-L479C21
90
+ # and mistral_inference: https://github.com/mistralai/mistral-inference/blob/main/src/mistral_inference/vision_encoder.py#L85
91
+ *_, hidden_states = self.vision_tower(
92
+ pixel_values.transpose(0, 2, 3, 1),
93
+ output_hidden_states=True,
94
+ )
95
+ # Select the hidden states from the desired layer
96
+ selected_image_feature = hidden_states[self.vision_feature_layer]
97
+
98
+ # Pass image features through the multi-modal projector
99
+ image_features = self.multi_modal_projector(selected_image_feature)
100
+
101
+ # Insert special image tokens in the input_ids
102
+ final_inputs_embeds = self.merge_input_ids_with_image_features(
103
+ self.config.image_token_index, image_features, inputs_embeds, input_ids
104
+ )
105
+ return final_inputs_embeds
106
+
107
+ @staticmethod
108
+ def merge_input_ids_with_image_features(
109
+ image_token_index, image_features, inputs_embeds, input_ids
110
+ ):
111
+ num_images, num_image_patches, embed_dim = image_features.shape
112
+
113
+ # Positions of <image> tokens in input_ids, assuming batch size is 1
114
+ image_positions = np.where(input_ids == image_token_index)[1].tolist()
115
+
116
+ text_segments = []
117
+ start_idx = 0
118
+
119
+ for position in image_positions:
120
+ text_segments.append(inputs_embeds[:, start_idx:position])
121
+ start_idx = position + 1
122
+
123
+ # Split image features into separate embeddings for each image
124
+ image_embeddings = mx.split(image_features, num_image_patches, axis=1)
125
+ final_embeddings = [v for p in zip(text_segments, image_embeddings) for v in p]
126
+ final_embeddings += [inputs_embeds[:, start_idx:]]
127
+
128
+ # Create a final embedding of shape
129
+ # (1, num_image_patches*num_images + sequence_len, embed_dim)
130
+ return mx.concatenate(final_embeddings, axis=1)
131
+
132
+ @property
133
+ def layers(self):
134
+ return self.language_model.model.layers
135
+
136
+ def __call__(
137
+ self,
138
+ input_ids: mx.array,
139
+ pixel_values: mx.array,
140
+ mask: mx.array,
141
+ cache=None,
142
+ **kwargs,
143
+ ):
144
+ input_embddings = self.get_input_embeddings(input_ids, pixel_values, **kwargs)
145
+ logits = self.language_model(
146
+ input_ids, cache=cache, inputs_embeds=input_embddings
147
+ )
148
+ return logits
149
+
150
+ def sanitize(self, weights):
151
+ def transform_key(key):
152
+ if "vision_tower" in key and "vision_model" not in key:
153
+ if "transformer" in key:
154
+ key = key.replace("vision_tower", "vision_tower.vision_model")
155
+ if "patch_conv" in key:
156
+ key = key.replace("vision_tower", "vision_tower.vision_model")
157
+ if "ln_pre" in key:
158
+ key = key.replace("vision_tower", "vision_tower.vision_model")
159
+ return key
160
+
161
+ return {transform_key(k): v for k, v in weights.items()}
@@ -0,0 +1,320 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import List, Optional
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+
8
+
9
+ @dataclass
10
+ class VisionConfig:
11
+ model_type: str
12
+ num_hidden_layers: int = 24
13
+ hidden_size: int = 1024
14
+ head_dim: int = 64
15
+ intermediate_size: int = 4096
16
+ num_attention_heads: int = 16
17
+ image_size: int = 336
18
+ patch_size: int = 14
19
+ projection_dim: int = 768
20
+ vocab_size: int = 32000
21
+ num_channels: int = 3
22
+ rms_norm_eps: float = 1e-5
23
+ rope_theta: float = 10000.0
24
+
25
+ @classmethod
26
+ def from_dict(cls, params):
27
+ return cls(
28
+ **{
29
+ k: v
30
+ for k, v in params.items()
31
+ if k in inspect.signature(cls).parameters
32
+ }
33
+ )
34
+
35
+
36
+ def check_array_shape(arr):
37
+ shape = arr.shape
38
+
39
+ # Check if the shape has 4 dimensions
40
+ if len(shape) != 4:
41
+ return False
42
+
43
+ out_channels, kH, KW, _ = shape
44
+
45
+ # Check if out_channels is the largest, and kH and KW are the same
46
+ if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
47
+ return True
48
+ else:
49
+ return False
50
+
51
+
52
+ def position_ids_in_meshgrid(patch_embeds_list, max_width):
53
+ positions = []
54
+ for patch in patch_embeds_list:
55
+ height, width = patch.shape[0], patch.shape[1]
56
+ h_grid, v_grid = mx.meshgrid(mx.arange(height), mx.arange(width), indexing="ij")
57
+ h_grid = h_grid.reshape(-1, 1)
58
+ v_grid = v_grid.reshape(-1, 1)
59
+ ids = h_grid * max_width + v_grid
60
+ positions.append(ids.flatten())
61
+ return mx.concatenate(positions)
62
+
63
+
64
+ def generate_block_attention_mask(patch_embeds_list, tensor):
65
+ seq_len = tensor.shape[1]
66
+ d_min = -1e9 # Using a large negative value as MLX doesn't have finfo
67
+
68
+ causal_mask = mx.full((seq_len, seq_len), vals=d_min)
69
+
70
+ block_end_idx = mx.cumsum(mx.array(patch_embeds_list))
71
+ block_start_idx = mx.concatenate([mx.array([0]), mx.array(patch_embeds_list[:-1])])
72
+ block_start_idx = mx.cumsum(block_start_idx)
73
+
74
+ for start, end in zip(block_start_idx, block_end_idx):
75
+ start, end = int(start), int(end) # Convert to integers for indexing
76
+ causal_mask[start:end, start:end] = 0
77
+
78
+ causal_mask = mx.broadcast_to(
79
+ causal_mask[None, None, :, :], (tensor.shape[0], 1, seq_len, seq_len)
80
+ )
81
+ return causal_mask
82
+
83
+
84
+ def rotate_half(x):
85
+ x1 = x[..., : x.shape[-1] // 2]
86
+ x2 = x[..., x.shape[-1] // 2 :]
87
+ return mx.concatenate((-x2, x1), axis=-1)
88
+
89
+
90
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
91
+ cos = mx.expand_dims(cos, axis=unsqueeze_dim)
92
+ sin = mx.expand_dims(sin, axis=unsqueeze_dim)
93
+ q_embed = (q * cos) + (rotate_half(q) * sin)
94
+ k_embed = (k * cos) + (rotate_half(k) * sin)
95
+ return q_embed, k_embed
96
+
97
+
98
+ class Attention(nn.Module):
99
+ def __init__(
100
+ self,
101
+ dims: int,
102
+ num_heads: int,
103
+ query_input_dims: Optional[int] = None,
104
+ key_input_dims: Optional[int] = None,
105
+ value_input_dims: Optional[int] = None,
106
+ value_dims: Optional[int] = None,
107
+ value_output_dims: Optional[int] = None,
108
+ bias: bool = False,
109
+ ):
110
+ super().__init__()
111
+
112
+ if (dims % num_heads) != 0:
113
+ raise ValueError(
114
+ "The input feature dimensions should be divisible by the "
115
+ f"number of heads ({dims} % {num_heads}) != 0"
116
+ )
117
+
118
+ query_input_dims = query_input_dims or dims
119
+ key_input_dims = key_input_dims or dims
120
+ value_input_dims = value_input_dims or key_input_dims
121
+ value_dims = value_dims or dims
122
+ value_output_dims = value_output_dims or dims
123
+
124
+ self.embed_dim = dims
125
+ self.num_heads = num_heads
126
+ self.head_dim = self.embed_dim // self.num_heads
127
+
128
+ self.scale = self.head_dim**-0.5
129
+
130
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
131
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
132
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
133
+ self.o_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
134
+
135
+ def __call__(self, queries, keys, values, position_embeddings, mask=None):
136
+ queries = self.q_proj(queries)
137
+ keys = self.k_proj(keys)
138
+ values = self.v_proj(values)
139
+
140
+ num_heads = self.num_heads
141
+ B, L, D = queries.shape
142
+ _, S, _ = keys.shape
143
+ queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
144
+ keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
145
+ values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
146
+
147
+ cos, sin = position_embeddings
148
+ queries, keys = apply_rotary_pos_emb(queries, keys, cos, sin, unsqueeze_dim=0)
149
+
150
+ attn_weights = mx.matmul(queries, keys.transpose(0, 1, 3, 2)) * self.scale
151
+
152
+ if mask is not None:
153
+ attn_weights = attn_weights + mask
154
+
155
+ attn_weights = mx.softmax(attn_weights, axis=-1)
156
+ output = mx.matmul(attn_weights, values)
157
+
158
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
159
+
160
+ return self.o_proj(output)
161
+
162
+
163
+ class MLP(nn.Module):
164
+ def __init__(self, config: VisionConfig):
165
+ super().__init__()
166
+ dim = config.hidden_size
167
+ hidden_dim = config.intermediate_size
168
+ self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
169
+ self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
170
+ self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
171
+
172
+ def __call__(self, x) -> mx.array:
173
+ return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
174
+
175
+
176
+ class EncoderLayer(nn.Module):
177
+ def __init__(self, config: VisionConfig):
178
+ super().__init__()
179
+ self.embed_dim = config.hidden_size
180
+ self.attention = Attention(
181
+ config.hidden_size, config.num_attention_heads, bias=True
182
+ )
183
+ self.attention_norm = nn.RMSNorm(self.embed_dim, eps=config.rms_norm_eps)
184
+ self.feed_forward = MLP(config)
185
+ self.ffn_norm = nn.RMSNorm(self.embed_dim, eps=config.rms_norm_eps)
186
+
187
+ def __call__(
188
+ self,
189
+ x: mx.array,
190
+ position_embeddings: mx.array,
191
+ mask: Optional[mx.array] = None,
192
+ ) -> mx.array:
193
+ y = self.attention_norm(x)
194
+ y = self.attention(y, y, y, position_embeddings, mask)
195
+ x = x + y
196
+ y = self.ffn_norm(x)
197
+ y = self.feed_forward(y)
198
+ return x + y
199
+
200
+
201
+ class Encoder(nn.Module):
202
+ def __init__(self, config: VisionConfig):
203
+ super().__init__()
204
+ self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
205
+
206
+
207
+ class PixtralRotaryEmbedding:
208
+ def __init__(self, config):
209
+ self.dim = config.head_dim
210
+ self.base = config.rope_theta
211
+ max_patches_per_side = config.image_size // config.patch_size
212
+ freqs = 1.0 / (
213
+ self.base ** (mx.arange(0, self.dim, 2).astype(mx.float32) / self.dim)
214
+ )
215
+
216
+ h = mx.arange(max_patches_per_side)
217
+ w = mx.arange(max_patches_per_side)
218
+
219
+ freqs_h = mx.outer(h, freqs[::2]).astype(mx.float32)
220
+ freqs_w = mx.outer(w, freqs[1::2]).astype(mx.float32)
221
+ inv_freq = mx.concatenate(
222
+ [
223
+ mx.tile(freqs_h[:, None, :], (1, max_patches_per_side, 1)),
224
+ mx.tile(freqs_w[None, :, :], (max_patches_per_side, 1, 1)),
225
+ ],
226
+ axis=-1,
227
+ ).reshape(-1, self.dim // 2)
228
+
229
+ self.inv_freq = mx.concatenate((inv_freq, inv_freq), axis=-1)
230
+
231
+ def __call__(self, x, position_ids):
232
+ freqs = self.inv_freq[position_ids]
233
+ emb = freqs
234
+ cos = mx.cos(emb)
235
+ sin = mx.sin(emb)
236
+ return cos.astype(x.dtype), sin.astype(x.dtype)
237
+
238
+
239
+ class PixtralVisionModel(nn.Module):
240
+ def __init__(self, config: VisionConfig):
241
+ super().__init__()
242
+ self.config = config
243
+ self.patch_conv = nn.Conv2d(
244
+ in_channels=config.num_channels,
245
+ out_channels=config.hidden_size,
246
+ kernel_size=config.patch_size,
247
+ stride=config.patch_size,
248
+ bias=False,
249
+ )
250
+ self.ln_pre = nn.RMSNorm(config.hidden_size)
251
+ self.transformer = Encoder(config)
252
+ self.patch_positional_embedding = PixtralRotaryEmbedding(config)
253
+
254
+ def __call__(
255
+ self,
256
+ x: List[mx.array],
257
+ output_hidden_states: Optional[bool] = None,
258
+ ) -> mx.array:
259
+ patch_embeds_list = self.patch_conv(x)
260
+ patch_embeds = patch_embeds_list.reshape(1, -1, patch_embeds_list.shape[-1])
261
+
262
+ patch_embeds = self.ln_pre(patch_embeds)
263
+
264
+ position_ids = position_ids_in_meshgrid(
265
+ patch_embeds_list,
266
+ max_width=self.config.image_size // self.config.patch_size,
267
+ )
268
+
269
+ position_embedding = self.patch_positional_embedding(patch_embeds, position_ids)
270
+
271
+ mask = generate_block_attention_mask(
272
+ [p.shape[1] * p.shape[0] for p in patch_embeds_list], patch_embeds
273
+ )
274
+
275
+ encoder_states = (patch_embeds,) if output_hidden_states else None
276
+
277
+ for l in self.transformer.layers:
278
+ patch_embeds = l(
279
+ patch_embeds, mask=mask, position_embeddings=position_embedding
280
+ )
281
+ if output_hidden_states:
282
+ encoder_states = encoder_states + (patch_embeds,)
283
+
284
+ return patch_embeds, encoder_states
285
+
286
+
287
+ class VisionModel(nn.Module):
288
+ def __init__(self, config: VisionConfig):
289
+ super().__init__()
290
+
291
+ self.model_type = config.model_type
292
+ if self.model_type not in ["clip_vision_model", "pixtral"]:
293
+ raise ValueError(f"Unsupported model type: {self.model_type}")
294
+
295
+ self.vision_model = PixtralVisionModel(config)
296
+
297
+ def __call__(
298
+ self, x: List[mx.array], output_hidden_states: Optional[bool] = None
299
+ ) -> mx.array:
300
+ return self.vision_model(x, output_hidden_states)
301
+
302
+ def sanitize(self, weights):
303
+ sanitized_weights = {}
304
+ for k, v in weights.items():
305
+ if "position_ids" in k:
306
+ # Remove unused position_ids
307
+ continue
308
+ elif "patch_conv.weight" in k:
309
+ # PyTorch conv2d weight tensors have shape:
310
+ # [out_channels, in_channels, kH, KW]
311
+ # MLX conv2d expects the weight be of shape:
312
+ # [out_channels, kH, KW, in_channels]
313
+ if check_array_shape(v):
314
+ sanitized_weights[k] = v
315
+ else:
316
+ sanitized_weights[k] = v.transpose(0, 2, 3, 1)
317
+ else:
318
+ sanitized_weights[k] = v
319
+
320
+ return sanitized_weights