nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (580) hide show
  1. nexaai/__init__.py +99 -0
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +4 -0
  4. nexaai/asr.py +68 -0
  5. nexaai/asr_impl/__init__.py +0 -0
  6. nexaai/asr_impl/mlx_asr_impl.py +93 -0
  7. nexaai/asr_impl/pybind_asr_impl.py +127 -0
  8. nexaai/base.py +39 -0
  9. nexaai/binds/__init__.py +7 -0
  10. nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
  11. nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
  12. nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
  13. nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
  14. nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
  15. nexaai/binds/cpu_gpu/libggml.dylib +0 -0
  16. nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
  17. nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
  18. nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
  19. nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
  20. nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
  21. nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
  22. nexaai/binds/libnexa_bridge.dylib +0 -0
  23. nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
  24. nexaai/binds/metal/libnexa_plugin.dylib +0 -0
  25. nexaai/binds/metal/py-lib/ml.py +888 -0
  26. nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
  27. nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
  28. nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
  29. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  30. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  31. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  32. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  33. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  34. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  35. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
  36. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
  37. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
  38. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  39. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  40. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  41. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
  42. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
  43. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
  44. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
  45. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  46. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  47. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  48. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  49. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  50. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  51. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
  52. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
  53. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
  54. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
  55. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
  56. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
  57. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
  58. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
  59. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
  60. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
  61. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
  62. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
  63. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
  64. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  65. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
  66. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
  67. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
  68. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
  69. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
  70. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
  71. nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
  72. nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
  73. nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  74. nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
  75. nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
  76. nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
  77. nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
  78. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  79. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  80. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
  81. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
  82. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  83. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  84. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  85. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  86. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  87. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  88. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  89. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
  90. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
  91. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
  92. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
  93. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  94. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
  95. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
  96. nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
  97. nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
  98. nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
  99. nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
  100. nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
  101. nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
  102. nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
  103. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
  104. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
  105. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
  106. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
  107. nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
  108. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
  109. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
  110. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
  111. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
  112. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
  113. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
  114. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
  115. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  116. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
  117. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  118. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  119. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  120. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  121. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  122. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  123. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
  124. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
  125. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
  126. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  127. nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
  128. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  129. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  130. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  131. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
  132. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  133. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
  134. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
  135. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
  136. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
  137. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  138. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  139. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
  140. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  141. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
  142. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
  143. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
  144. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
  145. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  146. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
  147. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  148. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
  149. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  150. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  151. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  152. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  153. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  154. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  155. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  156. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  157. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  158. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  159. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  160. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  161. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  162. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  163. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  164. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
  165. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  166. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
  167. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  168. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
  169. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
  170. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
  171. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
  172. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
  173. nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
  174. nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
  175. nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
  176. nexaai/binds/metal/py-lib/profiling.py +239 -0
  177. nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
  178. nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
  179. nexaai/binds/nexaml/libggml-base.dylib +0 -0
  180. nexaai/binds/nexaml/libggml-cpu.so +0 -0
  181. nexaai/binds/nexaml/libggml-metal.so +0 -0
  182. nexaai/binds/nexaml/libggml.dylib +0 -0
  183. nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
  184. nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
  185. nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
  186. nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
  187. nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
  188. nexaai/binds/nexaml/libnexaproc.dylib +0 -0
  189. nexaai/binds/nexaml/libomp.dylib +0 -0
  190. nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
  191. nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
  192. nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
  193. nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
  194. nexaai/common.py +106 -0
  195. nexaai/cv.py +95 -0
  196. nexaai/cv_impl/__init__.py +0 -0
  197. nexaai/cv_impl/mlx_cv_impl.py +91 -0
  198. nexaai/cv_impl/pybind_cv_impl.py +124 -0
  199. nexaai/diarize.py +80 -0
  200. nexaai/diarize_impl/__init__.py +1 -0
  201. nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
  202. nexaai/embedder.py +73 -0
  203. nexaai/embedder_impl/__init__.py +0 -0
  204. nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
  205. nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
  206. nexaai/image_gen.py +141 -0
  207. nexaai/image_gen_impl/__init__.py +0 -0
  208. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
  209. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
  210. nexaai/llm.py +98 -0
  211. nexaai/llm_impl/__init__.py +0 -0
  212. nexaai/llm_impl/mlx_llm_impl.py +271 -0
  213. nexaai/llm_impl/pybind_llm_impl.py +238 -0
  214. nexaai/log.py +92 -0
  215. nexaai/mlx_backend/asr/__init__.py +12 -0
  216. nexaai/mlx_backend/asr/interface.py +122 -0
  217. nexaai/mlx_backend/common/__init__.py +0 -0
  218. nexaai/mlx_backend/common/utils.py +25 -0
  219. nexaai/mlx_backend/cv/__init__.py +0 -0
  220. nexaai/mlx_backend/cv/generate.py +195 -0
  221. nexaai/mlx_backend/cv/interface.py +162 -0
  222. nexaai/mlx_backend/cv/main.py +81 -0
  223. nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
  224. nexaai/mlx_backend/embedding/__init__.py +0 -0
  225. nexaai/mlx_backend/embedding/generate.py +333 -0
  226. nexaai/mlx_backend/embedding/interface.py +617 -0
  227. nexaai/mlx_backend/embedding/main.py +173 -0
  228. nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
  229. nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
  230. nexaai/mlx_backend/image_gen/__init__.py +1 -0
  231. nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
  232. nexaai/mlx_backend/image_gen/interface.py +82 -0
  233. nexaai/mlx_backend/image_gen/main.py +281 -0
  234. nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
  235. nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
  236. nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
  237. nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
  238. nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
  239. nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
  240. nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
  241. nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
  242. nexaai/mlx_backend/llm/__init__.py +0 -0
  243. nexaai/mlx_backend/llm/generate.py +149 -0
  244. nexaai/mlx_backend/llm/interface.py +764 -0
  245. nexaai/mlx_backend/llm/main.py +68 -0
  246. nexaai/mlx_backend/ml.py +888 -0
  247. nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
  248. nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
  249. nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
  250. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  251. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  252. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  253. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  254. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  255. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  256. nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
  257. nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
  258. nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
  259. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  260. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  261. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  262. nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
  263. nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
  264. nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
  265. nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
  266. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  267. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  268. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  269. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  270. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  271. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  272. nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
  273. nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
  274. nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
  275. nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
  276. nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
  277. nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
  278. nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
  279. nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
  280. nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
  281. nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
  282. nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
  283. nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
  284. nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
  285. nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  286. nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
  287. nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
  288. nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
  289. nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
  290. nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
  291. nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
  292. nexaai/mlx_backend/mlx_audio/server.py +525 -0
  293. nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
  294. nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  295. nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
  296. nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
  297. nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
  298. nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
  299. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  300. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  301. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
  302. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
  303. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  304. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  305. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  306. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  307. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  308. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  309. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  310. nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
  311. nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
  312. nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
  313. nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
  314. nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  315. nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
  316. nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
  317. nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
  318. nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
  319. nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
  320. nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
  321. nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
  322. nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
  323. nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
  324. nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
  325. nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
  326. nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
  327. nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
  328. nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
  329. nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
  330. nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
  331. nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
  332. nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
  333. nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
  334. nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
  335. nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
  336. nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  337. nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
  338. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  339. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  340. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  341. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  342. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  343. nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  344. nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
  345. nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
  346. nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
  347. nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  348. nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
  349. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  350. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  351. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  352. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
  353. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  354. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
  355. nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
  356. nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
  357. nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
  358. nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  359. nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  360. nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
  361. nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
  362. nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  363. nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
  364. nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
  365. nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
  366. nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
  367. nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  368. nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
  369. nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  370. nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
  371. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  372. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  373. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  374. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  375. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  376. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  377. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  378. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  379. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  380. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  381. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  382. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  383. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  384. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  385. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  386. nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
  387. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  388. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
  389. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  390. nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
  391. nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
  392. nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
  393. nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
  394. nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
  395. nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
  396. nexaai/mlx_backend/mlx_audio/utils.py +237 -0
  397. nexaai/mlx_backend/mlx_audio/version.py +1 -0
  398. nexaai/mlx_backend/profiling.py +239 -0
  399. nexaai/mlx_backend/rerank/__init__.py +0 -0
  400. nexaai/mlx_backend/rerank/generate.py +174 -0
  401. nexaai/mlx_backend/rerank/interface.py +287 -0
  402. nexaai/mlx_backend/rerank/main.py +127 -0
  403. nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
  404. nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
  405. nexaai/mlx_backend/sd/__init__.py +1 -0
  406. nexaai/mlx_backend/sd/interface.py +362 -0
  407. nexaai/mlx_backend/sd/main.py +286 -0
  408. nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
  409. nexaai/mlx_backend/sd/modeling/clip.py +116 -0
  410. nexaai/mlx_backend/sd/modeling/config.py +65 -0
  411. nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
  412. nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
  413. nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
  414. nexaai/mlx_backend/sd/modeling/unet.py +460 -0
  415. nexaai/mlx_backend/sd/modeling/vae.py +274 -0
  416. nexaai/mlx_backend/tts/__init__.py +12 -0
  417. nexaai/mlx_backend/tts/interface.py +276 -0
  418. nexaai/mlx_backend/vlm/__init__.py +3 -0
  419. nexaai/mlx_backend/vlm/generate.py +572 -0
  420. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
  421. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
  422. nexaai/mlx_backend/vlm/interface.py +559 -0
  423. nexaai/mlx_backend/vlm/main.py +365 -0
  424. nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
  425. nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
  426. nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
  427. nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
  428. nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  429. nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  430. nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
  431. nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
  432. nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
  433. nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
  434. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  435. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  436. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  437. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  438. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  439. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  440. nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
  441. nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
  442. nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
  443. nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
  444. nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
  445. nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
  446. nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
  447. nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
  448. nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
  449. nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
  450. nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
  451. nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  452. nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
  453. nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
  454. nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
  455. nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
  456. nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
  457. nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
  458. nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
  459. nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
  460. nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
  461. nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
  462. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  463. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  464. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
  465. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
  466. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
  467. nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
  468. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  469. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  470. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
  471. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
  472. nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
  473. nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
  474. nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
  475. nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
  476. nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
  477. nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
  478. nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
  479. nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
  480. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  481. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
  482. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  483. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
  484. nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
  485. nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
  486. nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
  487. nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
  488. nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
  489. nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
  490. nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
  491. nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
  492. nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
  493. nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
  494. nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
  495. nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
  496. nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
  497. nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
  498. nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
  499. nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
  500. nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  501. nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
  502. nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
  503. nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
  504. nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
  505. nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
  506. nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
  507. nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
  508. nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
  509. nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  510. nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  511. nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
  512. nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
  513. nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
  514. nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
  515. nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
  516. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  517. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  518. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  519. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  520. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  521. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  522. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
  523. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
  524. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  525. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  526. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  527. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  528. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  529. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  530. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  531. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  532. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  533. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  534. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
  535. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  536. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  537. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  538. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  539. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  540. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  541. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  542. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  543. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
  544. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  545. nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
  546. nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  547. nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  548. nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
  549. nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
  550. nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
  551. nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
  552. nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
  553. nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
  554. nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
  555. nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
  556. nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
  557. nexaai/rerank.py +57 -0
  558. nexaai/rerank_impl/__init__.py +0 -0
  559. nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
  560. nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
  561. nexaai/runtime.py +68 -0
  562. nexaai/runtime_error.py +24 -0
  563. nexaai/tts.py +75 -0
  564. nexaai/tts_impl/__init__.py +0 -0
  565. nexaai/tts_impl/mlx_tts_impl.py +94 -0
  566. nexaai/tts_impl/pybind_tts_impl.py +43 -0
  567. nexaai/utils/decode.py +18 -0
  568. nexaai/utils/manifest_utils.py +531 -0
  569. nexaai/utils/model_manager.py +1745 -0
  570. nexaai/utils/model_types.py +49 -0
  571. nexaai/utils/progress_tracker.py +389 -0
  572. nexaai/utils/quantization_utils.py +245 -0
  573. nexaai/vlm.py +130 -0
  574. nexaai/vlm_impl/__init__.py +0 -0
  575. nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
  576. nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
  577. nexaai-1.0.29.dist-info/METADATA +35 -0
  578. nexaai-1.0.29.dist-info/RECORD +580 -0
  579. nexaai-1.0.29.dist-info/WHEEL +5 -0
  580. nexaai-1.0.29.dist-info/top_level.txt +1 -0
@@ -0,0 +1,465 @@
1
+ import inspect
2
+ from dataclasses import dataclass, field
3
+ from typing import List, Optional, Tuple
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+
8
+
9
+ @dataclass
10
+ class VisionConfig:
11
+ model_type: str = "molmo"
12
+ num_channels: int = 3
13
+ image_default_input_size: Tuple[int, int] = (336, 336)
14
+ image_patch_size: int = 14
15
+ image_pos_patch_size: int = 14
16
+ hidden_size: int = 18944
17
+ image_emb_dim: int = 1024
18
+ image_num_heads: int = 16
19
+ image_num_key_value_heads: int = 16
20
+ image_num_layers: int = 23
21
+ image_head_dim: int = 64
22
+ image_mlp_dim: int = 4096
23
+ image_mlp_activations: str = "gelu"
24
+ image_dropout_rate: float = 0.0
25
+ image_num_pos: int = 577
26
+ image_norm_eps: float = 1e-5
27
+ attention_dropout: float = 0.0
28
+ residual_dropout: float = 0.0
29
+ initializer_range: float = 0.02
30
+ d_model: int = 3584
31
+ image_pooling_h: int = 2
32
+ image_pooling_w: int = 2
33
+ vit_layers: Optional[List[int]] = field(default_factory=lambda: [-2, -9])
34
+ image_pooling_2d: str = "attention-meanq"
35
+ image_padding_embed: str = "pad_and_partial_pad"
36
+ intermediate_size: Optional[int] = None
37
+
38
+ def __post_init__(self):
39
+ if self.intermediate_size is None:
40
+ self.intermediate_size = self.image_patch_size * self.image_patch_size * 3
41
+
42
+ @property
43
+ def image_num_patch(self):
44
+ h, w = self.image_default_input_size
45
+ return h // self.image_patch_size, w // self.image_patch_size
46
+
47
+ @property
48
+ def llm_patches_per_crop(self):
49
+ h, w = self.image_num_patch
50
+ # Round up in case we need to pad the image features for pooling
51
+ h = (h + self.image_pooling_h - 1) // self.image_pooling_h
52
+ w = (w + self.image_pooling_w - 1) // self.image_pooling_w
53
+ return h, w
54
+
55
+ @classmethod
56
+ def from_dict(cls, params):
57
+ return cls(
58
+ **{
59
+ k: v
60
+ for k, v in params.items()
61
+ if k in inspect.signature(cls).parameters
62
+ }
63
+ )
64
+
65
+
66
+ class MLP(nn.Module):
67
+ def __init__(self, config: VisionConfig, input_dim: int):
68
+ super().__init__()
69
+ self.config = config
70
+ self.hidden_size = config.hidden_size
71
+ self.w1 = nn.Linear(
72
+ input_dim,
73
+ self.hidden_size,
74
+ bias=False,
75
+ )
76
+ self.w2 = nn.Linear(
77
+ self.hidden_size,
78
+ config.d_model,
79
+ bias=False,
80
+ )
81
+ self.w3 = nn.Linear(
82
+ input_dim,
83
+ self.hidden_size,
84
+ bias=False,
85
+ )
86
+
87
+ def __call__(self, x: mx.array) -> mx.array:
88
+ x = self.w2(nn.silu(self.w1(x)) * self.w3(x))
89
+ return x
90
+
91
+
92
+ class ViTMLP(nn.Module):
93
+ def __init__(self, config: VisionConfig):
94
+ super().__init__()
95
+ self.config = config
96
+ self.w1 = nn.Linear(config.image_emb_dim, config.image_mlp_dim, bias=True)
97
+ self.w2 = nn.Linear(config.image_mlp_dim, config.image_emb_dim, bias=True)
98
+ self.act = nn.GELU(approx="fast")
99
+
100
+ def __call__(self, x: mx.array) -> mx.array:
101
+ x = self.w1(x)
102
+ x = self.act(x)
103
+ x = self.w2(x)
104
+ return x
105
+
106
+
107
+ class MultiHeadDotProductAttention(nn.Module):
108
+ def __init__(self, config: VisionConfig, is_vit_layer: Optional[bool] = True):
109
+ super().__init__()
110
+ self.config = config
111
+ self.embed_dim = config.image_emb_dim
112
+ self.num_heads = config.image_num_heads
113
+ self.head_dim = config.image_head_dim
114
+ self.num_key_value_heads = config.image_num_key_value_heads
115
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
116
+ self.scale = self.head_dim**-0.5
117
+ self.is_vit_layer = is_vit_layer
118
+
119
+ n_layers = (
120
+ 1 if (is_vit_layer or config.vit_layers is None) else len(config.vit_layers)
121
+ )
122
+
123
+ self.wq = nn.Linear(
124
+ n_layers * self.embed_dim, self.num_heads * self.head_dim, bias=True
125
+ )
126
+ self.wk = nn.Linear(
127
+ n_layers * self.embed_dim,
128
+ self.num_key_value_heads * self.head_dim,
129
+ bias=True,
130
+ )
131
+ self.wv = nn.Linear(
132
+ n_layers * self.embed_dim,
133
+ self.num_key_value_heads * self.head_dim,
134
+ bias=True,
135
+ )
136
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=True)
137
+
138
+ def _split_heads(self, hidden_states, num_heads) -> mx.array:
139
+ return hidden_states.reshape(
140
+ hidden_states.shape[:2] + (num_heads, self.head_dim)
141
+ )
142
+
143
+ def _merge_heads(self, hidden_states) -> mx.array:
144
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
145
+
146
+ def __call__(self, x: mx.array, kv: mx.array = None) -> mx.array:
147
+ batch_size, seq_len, _ = x.shape
148
+
149
+ if kv is None:
150
+ k = x
151
+ v = x
152
+ else:
153
+ k = kv
154
+ v = kv
155
+ q = self._split_heads(self.wq(x), self.num_heads).transpose(0, 2, 1, 3)
156
+
157
+ k = self._split_heads(self.wk(k), self.num_key_value_heads).transpose(
158
+ 0, 2, 1, 3
159
+ )
160
+ v = self._split_heads(self.wv(v), self.num_key_value_heads).transpose(
161
+ 0, 2, 1, 3
162
+ )
163
+
164
+ attn = mx.fast.scaled_dot_product_attention(q, k, v, scale=self.scale)
165
+ out = attn.transpose(0, 2, 1, 3)
166
+ out = self._merge_heads(out)
167
+ out = self.wo(out)
168
+ return out
169
+
170
+
171
+ class ResidualAttentionBlock(nn.Module):
172
+ def __init__(self, config: VisionConfig):
173
+ super().__init__()
174
+ self.config = config
175
+ self.attention = MultiHeadDotProductAttention(config)
176
+ self.feed_forward = ViTMLP(config)
177
+ self.attention_norm = nn.LayerNorm(
178
+ config.image_emb_dim, eps=config.image_norm_eps
179
+ )
180
+ self.ffn_norm = nn.LayerNorm(config.image_emb_dim, eps=config.image_norm_eps)
181
+
182
+ def __call__(self, x: mx.array) -> mx.array:
183
+ x = x + self.attention(self.attention_norm(x))
184
+ x = x + self.feed_forward(self.ffn_norm(x))
185
+ return x
186
+
187
+
188
+ class ResidualAttentionBlocks(nn.Module):
189
+ def __init__(self, config: VisionConfig):
190
+ super().__init__()
191
+ self.resblocks = [
192
+ ResidualAttentionBlock(config) for _ in range(config.image_num_layers)
193
+ ]
194
+
195
+ def __call__(self, x: mx.array) -> mx.array:
196
+ h = []
197
+ for block in self.resblocks:
198
+ x = block(x)
199
+ h.append(x)
200
+ return h
201
+
202
+
203
+ def _expand_token(token, batch_size: int):
204
+ return mx.broadcast_to(
205
+ mx.reshape(token, (1, 1, -1)), (batch_size, 1, token.shape[-1])
206
+ )
207
+
208
+
209
+ def pad_to_multiple(x, target_size, pad_mode="edge", pad_value=0):
210
+ """
211
+ Pad the last dimension of input tensor to match target size.
212
+
213
+ Args:
214
+ x: Input tensor with shape [..., D]
215
+ target_size: Desired size for the last dimension
216
+ pad_mode: Padding mode ('constant', 'reflect', etc.)
217
+ pad_value: Value to use for constant padding
218
+
219
+ Returns:
220
+ Padded tensor with shape [..., target_size]
221
+ """
222
+ current_size = x.shape[-1]
223
+
224
+ # Return early if no padding needed
225
+ if current_size == target_size:
226
+ return x
227
+
228
+ # Ensure target size is larger
229
+ if current_size > target_size:
230
+ raise ValueError(
231
+ f"Current size {current_size} is larger than target size {target_size}"
232
+ )
233
+
234
+ # Calculate padding needed
235
+ pad_size = target_size - current_size
236
+
237
+ # Create padding configuration
238
+ # No padding for batch and channel dimensions (0,0), only pad the last dim
239
+ pad_config = [(0, 0)] * (len(x.shape) - 1) + [(0, pad_size)]
240
+
241
+ return mx.pad(x, pad_width=pad_config, mode=pad_mode, constant_values=pad_value)
242
+
243
+
244
+ class VisionTransformer(nn.Module):
245
+ def __init__(self, config: VisionConfig):
246
+ super().__init__()
247
+ self.config = config
248
+ self.class_embedding = mx.zeros((config.image_emb_dim,))
249
+ self.positional_embedding = mx.zeros(
250
+ (config.image_num_pos, config.image_emb_dim)
251
+ )
252
+ self.patch_embedding = nn.Linear(
253
+ config.intermediate_size,
254
+ config.image_emb_dim,
255
+ bias=False,
256
+ )
257
+ self.pre_ln = nn.LayerNorm(config.image_emb_dim, eps=config.image_norm_eps)
258
+ self.transformer = ResidualAttentionBlocks(config)
259
+
260
+ def add_pos_emb(self, x: mx.array, patch_num: int) -> mx.array:
261
+ cls_emb = self.positional_embedding[0:1]
262
+ pos_emb = self.positional_embedding[1:]
263
+
264
+ # Reshape into 2D grid
265
+ pos_emb_size = int(pos_emb.shape[0] ** 0.5)
266
+ pos_emb = mx.reshape(pos_emb, (pos_emb_size, pos_emb_size, pos_emb.shape[1]))
267
+
268
+ (patch_num_0, patch_num_1) = patch_num
269
+
270
+ if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
271
+ # Reshape for upsampling (add batch and channel dims)
272
+ pos_emb = mx.expand_dims(pos_emb, 0)
273
+ pos_emb = mx.transpose(pos_emb, (0, 3, 1, 2))
274
+
275
+ # Create and apply upsampler
276
+ upsampler = nn.Upsample(
277
+ scale_factor=(
278
+ patch_num_0 / pos_emb.shape[2],
279
+ patch_num_1 / pos_emb.shape[3],
280
+ ),
281
+ mode="linear", # MLX doesn't have bicubic, using linear as closest alternative
282
+ align_corners=False,
283
+ )
284
+ pos_emb = upsampler(pos_emb)
285
+
286
+ # Restore original dimensions
287
+ pos_emb = mx.transpose(pos_emb, (0, 2, 3, 1))
288
+ pos_emb = mx.squeeze(pos_emb, 0)
289
+
290
+ pos_emb = mx.reshape(pos_emb, (-1, pos_emb.shape[-1]))
291
+
292
+ # Expand cls_emb and pos_emb
293
+ expanded_cls = cls_emb[None, :, :]
294
+ expanded_pos = pos_emb[None, :, :]
295
+
296
+ # Concatenate and add to x
297
+ pos_embedding = mx.concatenate([expanded_cls, expanded_pos], axis=1)
298
+ x = x + pos_embedding
299
+ return x
300
+
301
+ def __call__(self, x: mx.array, patch_num: int = None) -> List[mx.array]:
302
+ """
303
+ : param x: (batch_size, num_patch, n_pixels)
304
+ """
305
+ if patch_num is None:
306
+ patch_num = self.config.image_num_patch
307
+ B, N, D = x.shape
308
+
309
+ # (Optional) Due to quantization, pad around the image to match intermediate_size
310
+ x = pad_to_multiple(x, self.config.intermediate_size)
311
+
312
+ x = self.patch_embedding(x)
313
+
314
+ # class embeddings and positional embeddings
315
+ expanded_class_emb = _expand_token(self.class_embedding, x.shape[0])
316
+ expanded_class_emb = expanded_class_emb
317
+
318
+ x = mx.concatenate([expanded_class_emb, x], axis=1)
319
+ x = self.add_pos_emb(x, patch_num)
320
+
321
+ x = self.pre_ln(x)
322
+
323
+ hidden_states = self.transformer(x)
324
+ return hidden_states
325
+
326
+
327
+ class VisionModel(nn.Module):
328
+ def __init__(self, config):
329
+ super().__init__()
330
+ self.config = config
331
+ self.model_type = config.model_type
332
+ if self.model_type != "molmo":
333
+ raise ValueError(
334
+ f"Model type {self.model_type} not supported. Currently only 'molmo' is supported"
335
+ )
336
+ self.image_vit = VisionTransformer(config)
337
+ self.num_prefix_tokens = 1
338
+
339
+ self.image_pooling_2d = MultiHeadDotProductAttention(config, is_vit_layer=False)
340
+ self.image_projector = MLP(config, config.image_emb_dim)
341
+ self.pad_embed = mx.zeros((2, config.image_emb_dim * 2))
342
+
343
+ def encode_image(self, images: mx.array) -> mx.array:
344
+ """
345
+ : param images: (batch_size, num_crops, num_patch, n_pixels)
346
+ """
347
+ cfg = self.config
348
+ B, T, N, D = images.shape
349
+
350
+ # Check for -1 values across dimensions 1 and 2
351
+ reshaped_images = mx.reshape(images, (B * T, N, D))
352
+ mask = ~mx.all(reshaped_images == -1, axis=(1, 2), keepdims=True)
353
+
354
+ # Output all hidden states
355
+ images = reshaped_images
356
+ image_features = self.image_vit(images)
357
+
358
+ if cfg.vit_layers is not None:
359
+ features = []
360
+ for layer in cfg.vit_layers:
361
+ features.append(image_features[layer])
362
+ image_features = mx.concatenate(features, axis=-1)
363
+ else:
364
+ image_features = image_features[-1]
365
+
366
+ cls_embed = None
367
+ if self.num_prefix_tokens > 0:
368
+ cls_embed = image_features[:, 0]
369
+ image_features = image_features[:, 1:]
370
+
371
+ image_features = image_features * mask
372
+ image_features = mx.reshape(image_features, (B, T, N, -1))
373
+
374
+ cls_embed = mx.reshape(cls_embed, (B, T, -1)) if cls_embed is not None else None
375
+
376
+ return image_features, cls_embed
377
+
378
+ def __call__(
379
+ self, images: mx.array, image_masks: mx.array
380
+ ) -> Tuple[mx.array, Optional[mx.array]]:
381
+ cfg = self.config
382
+
383
+ batch_size, num_image = images.shape[:2]
384
+ image_features, cls_embed = self.encode_image(images)
385
+
386
+ if cfg.image_padding_embed:
387
+ assert image_masks is not None
388
+ if cfg.image_padding_embed == "pad_embed":
389
+ all_pad = image_masks == 0
390
+ pad_embed = mx.reshape(self.pad_embed, (1, 1, 1, -1))
391
+ image_features = image_features + pad_embed * mx.expand_dims(
392
+ all_pad, -1
393
+ )
394
+ elif cfg.image_padding_embed == "regress":
395
+ pad_embed = mx.reshape(self.pad_embed, (1, 1, 1, -1))
396
+ image_features = image_features + pad_embed * mx.expand_dims(
397
+ mx.maximum(image_masks, mx.zeros_like(image_masks)), -1
398
+ )
399
+ elif cfg.image_padding_embed == "pad_and_partial_pad":
400
+ pad_embed = mx.reshape(self.pad_embed, (2, 1, 1, 1, -1))
401
+ all_pad = image_masks == 0
402
+ partial_pad = mx.logical_and(image_masks < 1, mx.logical_not(all_pad))
403
+ partial_pad = partial_pad
404
+ all_pad = all_pad
405
+ image_features = image_features + pad_embed[0] * mx.expand_dims(
406
+ all_pad, -1
407
+ )
408
+ image_features = image_features + pad_embed[1] * mx.expand_dims(
409
+ partial_pad, -1
410
+ )
411
+ else:
412
+ raise ValueError(cfg.image_padding_embed)
413
+
414
+ image_features = mx.reshape(
415
+ image_features, (batch_size, num_image) + cfg.image_num_patch + (-1,)
416
+ )
417
+
418
+ if cfg.image_num_patch[0] % cfg.image_pooling_h == 1:
419
+ # Pad so we can still pool 2x2 patches
420
+ image_features = mx.pad(
421
+ image_features, [(0, 0), (0, 0), (0, 1), (0, 1), (0, 0)]
422
+ )
423
+
424
+ # image pooling
425
+ # MLX equivalent of einops rearrange
426
+ h_blocks = image_features.shape[2] // cfg.image_pooling_h
427
+ w_blocks = image_features.shape[3] // cfg.image_pooling_w
428
+ image_features = mx.reshape(
429
+ mx.transpose(
430
+ mx.reshape(
431
+ image_features,
432
+ (
433
+ batch_size,
434
+ num_image,
435
+ h_blocks,
436
+ cfg.image_pooling_h,
437
+ w_blocks,
438
+ cfg.image_pooling_w,
439
+ -1,
440
+ ),
441
+ ),
442
+ (0, 1, 2, 4, 3, 5, 6),
443
+ ),
444
+ (
445
+ batch_size * num_image * h_blocks * w_blocks,
446
+ cfg.image_pooling_h * cfg.image_pooling_w,
447
+ -1,
448
+ ),
449
+ )
450
+
451
+ if cfg.image_pooling_2d == "attention-meanq":
452
+ query = mx.mean(image_features, axis=-2, keepdims=True)
453
+ image_features = self.image_pooling_2d(query, image_features)
454
+ elif cfg.image_pooling_2d not in {"none", "stack"}:
455
+ image_features = self.image_pooling_2d(
456
+ image_features[:, :1, :], image_features
457
+ )
458
+
459
+ h, w = cfg.llm_patches_per_crop
460
+ image_features = mx.reshape(image_features, (batch_size, num_image, h * w, -1))
461
+
462
+ # # MLP layer to map the feature
463
+ image_features = self.image_projector(image_features)
464
+
465
+ return image_features, cls_embed
@@ -0,0 +1,10 @@
1
+ from .multi_modality import (
2
+ ImageProcessor,
3
+ LanguageModel,
4
+ Model,
5
+ ModelConfig,
6
+ ProjectorConfig,
7
+ TextConfig,
8
+ VisionConfig,
9
+ VisionModel,
10
+ )
@@ -0,0 +1,230 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import Dict, Optional, Tuple, Union
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+
8
+ from ..base import (
9
+ LanguageModelOutput,
10
+ create_attention_mask,
11
+ scaled_dot_product_attention,
12
+ )
13
+ from ..cache import KVCache
14
+
15
+
16
+ @dataclass
17
+ class TextConfig:
18
+ model_type: str
19
+ hidden_size: int = 4096
20
+ num_hidden_layers: int = 32
21
+ intermediate_size: int = 11008
22
+ num_attention_heads: int = 32
23
+ rms_norm_eps: float = 1e-6
24
+ vocab_size: int = 102400
25
+ num_key_value_heads: int = None
26
+ rope_theta: float = 10000
27
+ rope_traditional: bool = False
28
+ rope_scaling: Optional[Dict[str, Union[float, str]]] = None
29
+ max_position_embeddings: int = 4096
30
+
31
+ @classmethod
32
+ def from_dict(cls, params):
33
+ return cls(
34
+ **{
35
+ k: v
36
+ for k, v in params.items()
37
+ if k in inspect.signature(cls).parameters
38
+ }
39
+ )
40
+
41
+ def __post_init__(self):
42
+ if self.num_key_value_heads is None:
43
+ self.num_key_value_heads = self.num_attention_heads
44
+
45
+ if self.rope_scaling:
46
+ required_keys = {"factor", "type"}
47
+ if not all(key in self.rope_scaling for key in required_keys):
48
+ raise ValueError(f"rope_scaling must contain keys {required_keys}")
49
+
50
+ if self.rope_scaling["type"] != "linear":
51
+ raise ValueError("rope_scaling 'type' currently only supports 'linear'")
52
+
53
+
54
+ class Attention(nn.Module):
55
+ def __init__(self, config: TextConfig):
56
+ super().__init__()
57
+
58
+ dim = config.hidden_size
59
+ self.n_heads = n_heads = config.num_attention_heads
60
+ self.n_kv_heads = n_kv_heads = config.num_key_value_heads
61
+
62
+ self.repeats = n_heads // n_kv_heads
63
+
64
+ head_dim = config.hidden_size // n_heads
65
+ self.scale = head_dim**-0.5
66
+
67
+ self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
68
+ self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
69
+ self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
70
+ self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
71
+
72
+ rope_scale = (
73
+ 1 / config.rope_scaling["factor"]
74
+ if config.rope_scaling is not None
75
+ and config.rope_scaling["type"] == "linear"
76
+ else 1
77
+ )
78
+ self.rope = nn.RoPE(
79
+ head_dim,
80
+ traditional=config.rope_traditional,
81
+ base=config.rope_theta,
82
+ scale=rope_scale,
83
+ )
84
+
85
+ def __call__(
86
+ self,
87
+ x: mx.array,
88
+ mask: Optional[mx.array] = None,
89
+ cache: Optional[KVCache] = None,
90
+ ) -> mx.array:
91
+ B, L, D = x.shape
92
+
93
+ queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
94
+
95
+ # Prepare the queries, keys and values for the attention computation
96
+ queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
97
+ keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
98
+ values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
99
+
100
+ if cache is not None:
101
+ queries = self.rope(queries, offset=cache.offset)
102
+ keys = self.rope(keys, offset=cache.offset)
103
+ keys, values = cache.update_and_fetch(keys, values)
104
+ else:
105
+ queries = self.rope(queries)
106
+ keys = self.rope(keys)
107
+
108
+ output = scaled_dot_product_attention(
109
+ queries, keys, values, cache, scale=self.scale, mask=mask
110
+ )
111
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
112
+ return self.o_proj(output)
113
+
114
+
115
+ class MLP(nn.Module):
116
+ def __init__(self, dim, hidden_dim):
117
+ super().__init__()
118
+ self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
119
+ self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
120
+ self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
121
+
122
+ def __call__(self, x) -> mx.array:
123
+ return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
124
+
125
+
126
+ class TransformerBlock(nn.Module):
127
+ def __init__(self, config: TextConfig):
128
+ super().__init__()
129
+ self.num_attention_heads = config.num_attention_heads
130
+ self.hidden_size = config.hidden_size
131
+ self.self_attn = Attention(config)
132
+ self.mlp = MLP(config.hidden_size, config.intermediate_size)
133
+ self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
134
+ self.post_attention_layernorm = nn.RMSNorm(
135
+ config.hidden_size, eps=config.rms_norm_eps
136
+ )
137
+ self.config = config
138
+
139
+ def __call__(
140
+ self,
141
+ x: mx.array,
142
+ mask: Optional[mx.array] = None,
143
+ cache: Optional[KVCache] = None,
144
+ ) -> mx.array:
145
+ r = self.self_attn(self.input_layernorm(x), mask, cache)
146
+ h = x + r
147
+ r = self.mlp(self.post_attention_layernorm(h))
148
+ out = h + r
149
+ return out
150
+
151
+
152
+ class Llama(nn.Module):
153
+ def __init__(self, config: TextConfig):
154
+ super().__init__()
155
+ self.config = config
156
+ self.vocab_size = config.vocab_size
157
+ self.num_hidden_layers = config.num_hidden_layers
158
+ assert self.vocab_size > 0
159
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
160
+ self.layers = [
161
+ TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
162
+ ]
163
+ self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
164
+
165
+ def __call__(
166
+ self,
167
+ inputs: mx.array,
168
+ inputs_embeds: Optional[mx.array] = None,
169
+ mask: Optional[mx.array] = None,
170
+ cache=None,
171
+ ):
172
+ # for passing merged input embeddings
173
+ if inputs_embeds is None:
174
+ h = self.embed_tokens(inputs)
175
+ else:
176
+ h = inputs_embeds
177
+
178
+ if cache is None:
179
+ cache = [None] * len(self.layers)
180
+
181
+ if mask is None:
182
+ mask = create_attention_mask(h, cache)
183
+
184
+ for layer, c in zip(self.layers, cache):
185
+ h = layer(h, mask, c)
186
+
187
+ return self.norm(h)
188
+
189
+
190
+ class LanguageModel(nn.Module):
191
+ def __init__(self, config: TextConfig):
192
+ super().__init__()
193
+ self.config = config
194
+ self.model_type = config.model_type
195
+ if self.model_type != "llama":
196
+ raise ValueError(
197
+ f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
198
+ )
199
+ self.model = Llama(config)
200
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
201
+
202
+ def __call__(
203
+ self,
204
+ inputs: mx.array,
205
+ inputs_embeds: Optional[mx.array] = None,
206
+ mask: Optional[mx.array] = None,
207
+ cache=None,
208
+ ):
209
+ out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
210
+ logits = self.lm_head(out)
211
+ return LanguageModelOutput(logits=logits)
212
+
213
+ @staticmethod
214
+ def sanitize(weights):
215
+ # Remove unused precomputed rotary freqs
216
+ return {
217
+ k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
218
+ }
219
+
220
+ @property
221
+ def layers(self):
222
+ return self.model.layers
223
+
224
+ @property
225
+ def head_dim(self):
226
+ return self.config.hidden_size // self.config.num_attention_heads
227
+
228
+ @property
229
+ def n_kv_heads(self):
230
+ return self.config.num_key_value_heads