nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nexaai/__init__.py +99 -0
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +4 -0
- nexaai/asr.py +68 -0
- nexaai/asr_impl/__init__.py +0 -0
- nexaai/asr_impl/mlx_asr_impl.py +93 -0
- nexaai/asr_impl/pybind_asr_impl.py +127 -0
- nexaai/base.py +39 -0
- nexaai/binds/__init__.py +7 -0
- nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
- nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
- nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
- nexaai/binds/cpu_gpu/libggml.dylib +0 -0
- nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
- nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/metal/libnexa_plugin.dylib +0 -0
- nexaai/binds/metal/py-lib/ml.py +888 -0
- nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
- nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
- nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
- nexaai/binds/metal/py-lib/profiling.py +239 -0
- nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
- nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
- nexaai/binds/nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexaml/libggml.dylib +0 -0
- nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
- nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
- nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
- nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
- nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexaml/libnexaproc.dylib +0 -0
- nexaai/binds/nexaml/libomp.dylib +0 -0
- nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
- nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
- nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
- nexaai/common.py +106 -0
- nexaai/cv.py +95 -0
- nexaai/cv_impl/__init__.py +0 -0
- nexaai/cv_impl/mlx_cv_impl.py +91 -0
- nexaai/cv_impl/pybind_cv_impl.py +124 -0
- nexaai/diarize.py +80 -0
- nexaai/diarize_impl/__init__.py +1 -0
- nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
- nexaai/embedder.py +73 -0
- nexaai/embedder_impl/__init__.py +0 -0
- nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
- nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
- nexaai/image_gen.py +141 -0
- nexaai/image_gen_impl/__init__.py +0 -0
- nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
- nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
- nexaai/llm.py +98 -0
- nexaai/llm_impl/__init__.py +0 -0
- nexaai/llm_impl/mlx_llm_impl.py +271 -0
- nexaai/llm_impl/pybind_llm_impl.py +238 -0
- nexaai/log.py +92 -0
- nexaai/mlx_backend/asr/__init__.py +12 -0
- nexaai/mlx_backend/asr/interface.py +122 -0
- nexaai/mlx_backend/common/__init__.py +0 -0
- nexaai/mlx_backend/common/utils.py +25 -0
- nexaai/mlx_backend/cv/__init__.py +0 -0
- nexaai/mlx_backend/cv/generate.py +195 -0
- nexaai/mlx_backend/cv/interface.py +162 -0
- nexaai/mlx_backend/cv/main.py +81 -0
- nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/mlx_backend/embedding/__init__.py +0 -0
- nexaai/mlx_backend/embedding/generate.py +333 -0
- nexaai/mlx_backend/embedding/interface.py +617 -0
- nexaai/mlx_backend/embedding/main.py +173 -0
- nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
- nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/mlx_backend/image_gen/__init__.py +1 -0
- nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
- nexaai/mlx_backend/image_gen/interface.py +82 -0
- nexaai/mlx_backend/image_gen/main.py +281 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/mlx_backend/llm/__init__.py +0 -0
- nexaai/mlx_backend/llm/generate.py +149 -0
- nexaai/mlx_backend/llm/interface.py +764 -0
- nexaai/mlx_backend/llm/main.py +68 -0
- nexaai/mlx_backend/ml.py +888 -0
- nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/mlx_backend/mlx_audio/server.py +525 -0
- nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
- nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
- nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
- nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
- nexaai/mlx_backend/mlx_audio/utils.py +237 -0
- nexaai/mlx_backend/mlx_audio/version.py +1 -0
- nexaai/mlx_backend/profiling.py +239 -0
- nexaai/mlx_backend/rerank/__init__.py +0 -0
- nexaai/mlx_backend/rerank/generate.py +174 -0
- nexaai/mlx_backend/rerank/interface.py +287 -0
- nexaai/mlx_backend/rerank/main.py +127 -0
- nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
- nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/mlx_backend/sd/__init__.py +1 -0
- nexaai/mlx_backend/sd/interface.py +362 -0
- nexaai/mlx_backend/sd/main.py +286 -0
- nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
- nexaai/mlx_backend/sd/modeling/clip.py +116 -0
- nexaai/mlx_backend/sd/modeling/config.py +65 -0
- nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
- nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
- nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
- nexaai/mlx_backend/sd/modeling/unet.py +460 -0
- nexaai/mlx_backend/sd/modeling/vae.py +274 -0
- nexaai/mlx_backend/tts/__init__.py +12 -0
- nexaai/mlx_backend/tts/interface.py +276 -0
- nexaai/mlx_backend/vlm/__init__.py +3 -0
- nexaai/mlx_backend/vlm/generate.py +572 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
- nexaai/mlx_backend/vlm/interface.py +559 -0
- nexaai/mlx_backend/vlm/main.py +365 -0
- nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
- nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
- nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
- nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
- nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
- nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
- nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
- nexaai/rerank.py +57 -0
- nexaai/rerank_impl/__init__.py +0 -0
- nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
- nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
- nexaai/runtime.py +68 -0
- nexaai/runtime_error.py +24 -0
- nexaai/tts.py +75 -0
- nexaai/tts_impl/__init__.py +0 -0
- nexaai/tts_impl/mlx_tts_impl.py +94 -0
- nexaai/tts_impl/pybind_tts_impl.py +43 -0
- nexaai/utils/decode.py +18 -0
- nexaai/utils/manifest_utils.py +531 -0
- nexaai/utils/model_manager.py +1745 -0
- nexaai/utils/model_types.py +49 -0
- nexaai/utils/progress_tracker.py +389 -0
- nexaai/utils/quantization_utils.py +245 -0
- nexaai/vlm.py +130 -0
- nexaai/vlm_impl/__init__.py +0 -0
- nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
- nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
- nexaai-1.0.29.dist-info/METADATA +35 -0
- nexaai-1.0.29.dist-info/RECORD +580 -0
- nexaai-1.0.29.dist-info/WHEEL +5 -0
- nexaai-1.0.29.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,633 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import re
|
|
4
|
+
import time
|
|
5
|
+
from dataclasses import dataclass
|
|
6
|
+
from typing import Callable, Dict, List, Optional, Tuple
|
|
7
|
+
|
|
8
|
+
import mlx.core as mx
|
|
9
|
+
import mlx.nn as nn
|
|
10
|
+
import numpy as np
|
|
11
|
+
import soundfile as sf
|
|
12
|
+
from huggingface_hub import hf_hub_download
|
|
13
|
+
from mlx_lm.models.cache import make_prompt_cache
|
|
14
|
+
from mlx_lm.models.llama import LlamaModel
|
|
15
|
+
from mlx_lm.models.llama import ModelArgs as LlamaModelArgs
|
|
16
|
+
from mlx_lm.sample_utils import make_sampler
|
|
17
|
+
from scipy import signal
|
|
18
|
+
from tokenizers.processors import TemplateProcessing
|
|
19
|
+
from tqdm import tqdm
|
|
20
|
+
from transformers import AutoTokenizer
|
|
21
|
+
|
|
22
|
+
from mlx_audio.codec.models.mimi import Mimi, MimiStreamingDecoder
|
|
23
|
+
|
|
24
|
+
from ..base import GenerationResult
|
|
25
|
+
from .attention import Attention
|
|
26
|
+
|
|
27
|
+
try:
|
|
28
|
+
from .watermarking import CSM_1B_GH_WATERMARK, load_watermarker, watermark
|
|
29
|
+
except ImportError:
|
|
30
|
+
print(
|
|
31
|
+
"Watermarking module not found. Please install silentcipher to use watermarking."
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
MIMI_REPO = "kyutai/moshiko-pytorch-bf16"
|
|
35
|
+
TOKENIZER_REPO = "unsloth/Llama-3.2-1B"
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def create_causal_mask(seq_len: int) -> mx.array:
|
|
39
|
+
return mx.tril(mx.ones((seq_len, seq_len), dtype=mx.bool_))
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def index_causal_mask(mask: mx.array, input_pos: mx.array) -> mx.array:
|
|
43
|
+
mask_indexed = mx.take(mask, input_pos, axis=0)
|
|
44
|
+
|
|
45
|
+
seq_len = input_pos.shape[1]
|
|
46
|
+
mask_indexed = mask_indexed[:, :, :seq_len]
|
|
47
|
+
|
|
48
|
+
# reshape to (batch_size, 1, seq_len, seq_len) for broadcasting across heads
|
|
49
|
+
return mx.expand_dims(mask_indexed, axis=1)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def resample_audio(audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
|
|
53
|
+
gcd = np.gcd(orig_sr, target_sr)
|
|
54
|
+
up = target_sr // gcd
|
|
55
|
+
down = orig_sr // gcd
|
|
56
|
+
resampled = signal.resample_poly(audio, up, down, padtype="edge")
|
|
57
|
+
return resampled
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
@dataclass
|
|
61
|
+
class SesameModelArgs:
|
|
62
|
+
model_type: str
|
|
63
|
+
backbone_flavor: str
|
|
64
|
+
decoder_flavor: str
|
|
65
|
+
text_vocab_size: int
|
|
66
|
+
audio_vocab_size: int
|
|
67
|
+
audio_num_codebooks: int
|
|
68
|
+
|
|
69
|
+
def __init__(
|
|
70
|
+
self,
|
|
71
|
+
model_type,
|
|
72
|
+
backbone_flavor,
|
|
73
|
+
decoder_flavor,
|
|
74
|
+
text_vocab_size,
|
|
75
|
+
audio_vocab_size,
|
|
76
|
+
audio_num_codebooks,
|
|
77
|
+
**kwargs,
|
|
78
|
+
):
|
|
79
|
+
self.model_type = model_type
|
|
80
|
+
self.backbone_flavor = backbone_flavor
|
|
81
|
+
self.decoder_flavor = decoder_flavor
|
|
82
|
+
self.text_vocab_size = text_vocab_size
|
|
83
|
+
self.audio_vocab_size = audio_vocab_size
|
|
84
|
+
self.audio_num_codebooks = audio_num_codebooks
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def create_llama_model_args(flavor: str) -> LlamaModelArgs:
|
|
88
|
+
if flavor == "llama-1B":
|
|
89
|
+
return LlamaModelArgs(
|
|
90
|
+
model_type="llama",
|
|
91
|
+
num_hidden_layers=16,
|
|
92
|
+
num_attention_heads=32,
|
|
93
|
+
num_key_value_heads=8,
|
|
94
|
+
head_dim=64,
|
|
95
|
+
hidden_size=2048,
|
|
96
|
+
intermediate_size=8192,
|
|
97
|
+
rms_norm_eps=1e-5,
|
|
98
|
+
vocab_size=128_256,
|
|
99
|
+
max_position_embeddings=2048,
|
|
100
|
+
attention_bias=False,
|
|
101
|
+
mlp_bias=False,
|
|
102
|
+
rope_theta=500_000,
|
|
103
|
+
rope_scaling={
|
|
104
|
+
"factor": 32.0,
|
|
105
|
+
"low_freq_factor": 1.0,
|
|
106
|
+
"high_freq_factor": 4.0,
|
|
107
|
+
"original_max_position_embeddings": 8192,
|
|
108
|
+
"rope_type": "llama3",
|
|
109
|
+
},
|
|
110
|
+
)
|
|
111
|
+
elif flavor == "llama-100M":
|
|
112
|
+
return LlamaModelArgs(
|
|
113
|
+
model_type="llama",
|
|
114
|
+
num_hidden_layers=4,
|
|
115
|
+
num_attention_heads=8,
|
|
116
|
+
num_key_value_heads=2,
|
|
117
|
+
head_dim=128,
|
|
118
|
+
hidden_size=1024,
|
|
119
|
+
intermediate_size=8192,
|
|
120
|
+
rms_norm_eps=1e-5,
|
|
121
|
+
vocab_size=128_256,
|
|
122
|
+
max_position_embeddings=2048,
|
|
123
|
+
attention_bias=False,
|
|
124
|
+
mlp_bias=False,
|
|
125
|
+
rope_theta=500_000,
|
|
126
|
+
rope_scaling={
|
|
127
|
+
"factor": 32.0,
|
|
128
|
+
"low_freq_factor": 1.0,
|
|
129
|
+
"high_freq_factor": 4.0,
|
|
130
|
+
"original_max_position_embeddings": 8192,
|
|
131
|
+
"rope_type": "llama3",
|
|
132
|
+
},
|
|
133
|
+
)
|
|
134
|
+
else:
|
|
135
|
+
raise ValueError(f"Unknown flavor: {flavor}")
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
class SesameModel(nn.Module):
|
|
139
|
+
def __init__(self, config):
|
|
140
|
+
super().__init__()
|
|
141
|
+
args = SesameModelArgs(**config)
|
|
142
|
+
self.args = args
|
|
143
|
+
|
|
144
|
+
backbone_args = create_llama_model_args(args.backbone_flavor)
|
|
145
|
+
decoder_args = create_llama_model_args(args.decoder_flavor)
|
|
146
|
+
|
|
147
|
+
self.backbone = LlamaModel(backbone_args)
|
|
148
|
+
self.decoder = LlamaModel(decoder_args)
|
|
149
|
+
|
|
150
|
+
backbone_dim = backbone_args.hidden_size
|
|
151
|
+
decoder_dim = decoder_args.hidden_size
|
|
152
|
+
|
|
153
|
+
self.backbone.embed_tokens = nn.Identity()
|
|
154
|
+
self.decoder.embed_tokens = nn.Identity()
|
|
155
|
+
|
|
156
|
+
for layer in self.backbone.layers:
|
|
157
|
+
layer.self_attn = Attention(backbone_args)
|
|
158
|
+
for layer in self.decoder.layers:
|
|
159
|
+
layer.self_attn = Attention(decoder_args)
|
|
160
|
+
|
|
161
|
+
self.text_embeddings = nn.Embedding(args.text_vocab_size, backbone_dim)
|
|
162
|
+
self.audio_embeddings = nn.Embedding(
|
|
163
|
+
args.audio_vocab_size * args.audio_num_codebooks, backbone_dim
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False)
|
|
167
|
+
self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False)
|
|
168
|
+
self.audio_head = mx.zeros(
|
|
169
|
+
(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size)
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
self._backbone_causal_mask = None
|
|
173
|
+
self._decoder_causal_mask = None
|
|
174
|
+
|
|
175
|
+
self.backbone_cache = None
|
|
176
|
+
self.decoder_cache = None
|
|
177
|
+
self.caches_enabled = False
|
|
178
|
+
|
|
179
|
+
def setup_caches(self, max_batch_size: int):
|
|
180
|
+
backbone_args = create_llama_model_args(self.args.backbone_flavor)
|
|
181
|
+
|
|
182
|
+
self._backbone_causal_mask = create_causal_mask(
|
|
183
|
+
backbone_args.max_position_embeddings
|
|
184
|
+
)
|
|
185
|
+
self._decoder_causal_mask = create_causal_mask(self.args.audio_num_codebooks)
|
|
186
|
+
|
|
187
|
+
self.backbone_cache = make_prompt_cache(self.backbone)
|
|
188
|
+
self.decoder_cache = make_prompt_cache(self.decoder)
|
|
189
|
+
self.caches_enabled = True
|
|
190
|
+
|
|
191
|
+
def caches_are_enabled(self):
|
|
192
|
+
return self.caches_enabled
|
|
193
|
+
|
|
194
|
+
def reset_caches(self):
|
|
195
|
+
if self.backbone_cache is not None:
|
|
196
|
+
self.backbone_cache = make_prompt_cache(self.backbone)
|
|
197
|
+
|
|
198
|
+
if self.decoder_cache is not None:
|
|
199
|
+
self.decoder_cache = make_prompt_cache(self.decoder)
|
|
200
|
+
|
|
201
|
+
def generate_frame(
|
|
202
|
+
self,
|
|
203
|
+
tokens: mx.array,
|
|
204
|
+
tokens_mask: mx.array,
|
|
205
|
+
input_pos: mx.array,
|
|
206
|
+
sampler: Callable[..., mx.array],
|
|
207
|
+
) -> mx.array:
|
|
208
|
+
assert self.caches_are_enabled(), "backbone caches are not enabled"
|
|
209
|
+
|
|
210
|
+
curr_backbone_mask = index_causal_mask(self._backbone_causal_mask, input_pos)
|
|
211
|
+
embeds = self._embed_tokens(tokens)
|
|
212
|
+
masked_embeds = embeds * mx.expand_dims(tokens_mask, -1)
|
|
213
|
+
h = mx.sum(masked_embeds, axis=2)
|
|
214
|
+
h = self.backbone(h, mask=curr_backbone_mask, cache=self.backbone_cache)
|
|
215
|
+
|
|
216
|
+
last_h = h[:, -1, :]
|
|
217
|
+
c0_logits = self.codebook0_head(last_h)
|
|
218
|
+
c0_sample = mx.expand_dims(sampler(c0_logits), axis=-1)
|
|
219
|
+
c0_embed = self._embed_audio(0, c0_sample)
|
|
220
|
+
|
|
221
|
+
curr_h = mx.concat([mx.expand_dims(last_h, 1), c0_embed], axis=1)
|
|
222
|
+
curr_sample = c0_sample
|
|
223
|
+
curr_pos = mx.arange(curr_h.shape[1], dtype=mx.int32)
|
|
224
|
+
curr_pos = mx.expand_dims(curr_pos, 0)
|
|
225
|
+
curr_pos = mx.broadcast_to(curr_pos, (curr_h.shape[0], curr_h.shape[1]))
|
|
226
|
+
|
|
227
|
+
# reset decoder cache for new frame
|
|
228
|
+
|
|
229
|
+
self.decoder_cache = make_prompt_cache(self.decoder)
|
|
230
|
+
|
|
231
|
+
for i in range(1, self.args.audio_num_codebooks):
|
|
232
|
+
curr_decoder_mask = index_causal_mask(self._decoder_causal_mask, curr_pos)
|
|
233
|
+
decoder_h = self.decoder(
|
|
234
|
+
self.projection(curr_h),
|
|
235
|
+
mask=curr_decoder_mask,
|
|
236
|
+
cache=self.decoder_cache,
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
ci_logits = mx.matmul(decoder_h[:, -1, :], self.audio_head[i - 1])
|
|
240
|
+
ci_sample = mx.expand_dims(sampler(ci_logits), axis=-1)
|
|
241
|
+
ci_embed = self._embed_audio(i, ci_sample)
|
|
242
|
+
|
|
243
|
+
curr_h = ci_embed
|
|
244
|
+
curr_sample = mx.concat([curr_sample, ci_sample], axis=1)
|
|
245
|
+
curr_pos = curr_pos[:, -1:] + 1
|
|
246
|
+
|
|
247
|
+
return curr_sample
|
|
248
|
+
|
|
249
|
+
def _embed_audio(self, codebook: int, tokens: mx.array) -> mx.array:
|
|
250
|
+
return self.audio_embeddings(tokens + codebook * self.args.audio_vocab_size)
|
|
251
|
+
|
|
252
|
+
def _embed_tokens(self, tokens: mx.array) -> mx.array:
|
|
253
|
+
text_embeds = self.text_embeddings(tokens[:, :, -1])
|
|
254
|
+
text_embeds = mx.expand_dims(text_embeds, axis=-2)
|
|
255
|
+
|
|
256
|
+
codebook_indices = mx.arange(self.args.audio_num_codebooks, dtype=mx.int32)
|
|
257
|
+
codebook_offsets = codebook_indices * self.args.audio_vocab_size
|
|
258
|
+
|
|
259
|
+
audio_tokens = tokens[:, :, :-1] + mx.reshape(codebook_offsets, (1, 1, -1))
|
|
260
|
+
audio_embeds_flat = self.audio_embeddings(audio_tokens.flatten())
|
|
261
|
+
|
|
262
|
+
audio_embeds = mx.reshape(
|
|
263
|
+
audio_embeds_flat,
|
|
264
|
+
(tokens.shape[0], tokens.shape[1], self.args.audio_num_codebooks, -1),
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
return mx.concat([audio_embeds, text_embeds], axis=-2)
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
@dataclass
|
|
271
|
+
class Segment:
|
|
272
|
+
speaker: int
|
|
273
|
+
text: str
|
|
274
|
+
# (num_samples,), sample_rate = 24_000
|
|
275
|
+
audio: mx.array
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
def load_llama3_tokenizer(path_or_hf_repo: str):
|
|
279
|
+
tokenizer = AutoTokenizer.from_pretrained(path_or_hf_repo)
|
|
280
|
+
bos = tokenizer.bos_token
|
|
281
|
+
eos = tokenizer.eos_token
|
|
282
|
+
tokenizer._tokenizer.post_processor = TemplateProcessing(
|
|
283
|
+
single=f"{bos}:0 $A:0 {eos}:0",
|
|
284
|
+
pair=f"{bos}:0 $A:0 {eos}:0 {bos}:1 $B:1 {eos}:1",
|
|
285
|
+
special_tokens=[
|
|
286
|
+
(f"{bos}", tokenizer.bos_token_id),
|
|
287
|
+
(f"{eos}", tokenizer.eos_token_id),
|
|
288
|
+
],
|
|
289
|
+
)
|
|
290
|
+
return tokenizer
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
class Model(nn.Module):
|
|
294
|
+
def __init__(
|
|
295
|
+
self,
|
|
296
|
+
config: Dict,
|
|
297
|
+
):
|
|
298
|
+
super().__init__()
|
|
299
|
+
self.model = SesameModel(config)
|
|
300
|
+
self.model.setup_caches(1)
|
|
301
|
+
|
|
302
|
+
self._text_tokenizer = load_llama3_tokenizer(TOKENIZER_REPO)
|
|
303
|
+
mimi = Mimi.from_pretrained(MIMI_REPO)
|
|
304
|
+
self._audio_tokenizer = mimi
|
|
305
|
+
self._streaming_decoder = MimiStreamingDecoder(mimi)
|
|
306
|
+
|
|
307
|
+
try:
|
|
308
|
+
self._watermarker = load_watermarker()
|
|
309
|
+
except Exception:
|
|
310
|
+
self._watermarker = None
|
|
311
|
+
|
|
312
|
+
self._sample_rate = mimi.cfg.sample_rate
|
|
313
|
+
|
|
314
|
+
def model_quant_predicate(self, p, m, config):
|
|
315
|
+
"""
|
|
316
|
+
Model modules to skip during quantization
|
|
317
|
+
"""
|
|
318
|
+
return not p.startswith("_audio_tokenizer")
|
|
319
|
+
|
|
320
|
+
@property
|
|
321
|
+
def layers(self):
|
|
322
|
+
"""Return the backbone layers of the model."""
|
|
323
|
+
return self.model.backbone.layers
|
|
324
|
+
|
|
325
|
+
@property
|
|
326
|
+
def sample_rate(self):
|
|
327
|
+
return self._sample_rate
|
|
328
|
+
|
|
329
|
+
def _tokenize_text_segment(
|
|
330
|
+
self, text: str, speaker: int
|
|
331
|
+
) -> Tuple[mx.array, mx.array]:
|
|
332
|
+
frame_tokens = []
|
|
333
|
+
frame_masks = []
|
|
334
|
+
|
|
335
|
+
text_tokens = self._text_tokenizer.encode(
|
|
336
|
+
f"[{speaker}]{text}", return_tensors="mlx"
|
|
337
|
+
).squeeze(0)
|
|
338
|
+
text_frame = mx.zeros((len(text_tokens), 33)).astype(mx.int32)
|
|
339
|
+
text_frame_mask = mx.zeros((len(text_tokens), 33)).astype(mx.bool_)
|
|
340
|
+
text_frame[:, -1] = text_tokens
|
|
341
|
+
text_frame_mask[:, -1] = True
|
|
342
|
+
|
|
343
|
+
frame_tokens.append(text_frame)
|
|
344
|
+
frame_masks.append(text_frame_mask)
|
|
345
|
+
|
|
346
|
+
return mx.concat(frame_tokens, axis=0), mx.concat(frame_masks, axis=0)
|
|
347
|
+
|
|
348
|
+
def _tokenize_audio(self, audio: mx.array) -> Tuple[mx.array, mx.array]:
|
|
349
|
+
frame_tokens = []
|
|
350
|
+
frame_masks = []
|
|
351
|
+
|
|
352
|
+
# (K, T)
|
|
353
|
+
audio_tokens = self._audio_tokenizer.encode(
|
|
354
|
+
mx.expand_dims(mx.expand_dims(audio, 0), 0)
|
|
355
|
+
)[0]
|
|
356
|
+
|
|
357
|
+
# add EOS frame
|
|
358
|
+
eos_frame = mx.zeros((audio_tokens.shape[0], 1))
|
|
359
|
+
audio_tokens = mx.concat([audio_tokens, eos_frame], axis=1)
|
|
360
|
+
|
|
361
|
+
audio_frame = mx.zeros((audio_tokens.shape[1], 33)).astype(mx.int32)
|
|
362
|
+
audio_frame_mask = mx.zeros((audio_tokens.shape[1], 33)).astype(mx.bool_)
|
|
363
|
+
audio_frame[:, :-1] = audio_tokens.swapaxes(0, 1)
|
|
364
|
+
audio_frame_mask[:, :-1] = True
|
|
365
|
+
|
|
366
|
+
frame_tokens.append(audio_frame)
|
|
367
|
+
frame_masks.append(audio_frame_mask)
|
|
368
|
+
|
|
369
|
+
return mx.concat(frame_tokens, axis=0), mx.concat(frame_masks, axis=0)
|
|
370
|
+
|
|
371
|
+
def _tokenize_segment(self, segment: Segment) -> Tuple[mx.array, mx.array]:
|
|
372
|
+
"""
|
|
373
|
+
Returns:
|
|
374
|
+
(seq_len, 33), (seq_len, 33)
|
|
375
|
+
"""
|
|
376
|
+
text_tokens, text_masks = self._tokenize_text_segment(
|
|
377
|
+
segment.text, segment.speaker
|
|
378
|
+
)
|
|
379
|
+
audio_tokens, audio_masks = self._tokenize_audio(segment.audio)
|
|
380
|
+
|
|
381
|
+
return mx.concat([text_tokens, audio_tokens], axis=0), mx.concat(
|
|
382
|
+
[text_masks, audio_masks], axis=0
|
|
383
|
+
)
|
|
384
|
+
|
|
385
|
+
def sanitize(self, weights):
|
|
386
|
+
sanitized_weights = {}
|
|
387
|
+
|
|
388
|
+
for k, v in weights.items():
|
|
389
|
+
if not k.startswith("model."):
|
|
390
|
+
k = "model." + k
|
|
391
|
+
|
|
392
|
+
if "attn" in k and not "self_attn" in k:
|
|
393
|
+
k = k.replace("attn", "self_attn")
|
|
394
|
+
k = k.replace("output_proj", "o_proj")
|
|
395
|
+
|
|
396
|
+
if "mlp" in k:
|
|
397
|
+
k = k.replace("w1", "gate_proj")
|
|
398
|
+
k = k.replace("w2", "down_proj")
|
|
399
|
+
k = k.replace("w3", "up_proj")
|
|
400
|
+
|
|
401
|
+
if "sa_norm" in k or "mlp_norm" in k:
|
|
402
|
+
k = k.replace("sa_norm", "input_layernorm").replace("scale", "weight")
|
|
403
|
+
k = k.replace("mlp_norm", "post_attention_layernorm").replace(
|
|
404
|
+
"scale", "weight"
|
|
405
|
+
)
|
|
406
|
+
|
|
407
|
+
if "decoder.norm" in k or "backbone.norm" in k:
|
|
408
|
+
k = k.replace("scale", "weight")
|
|
409
|
+
|
|
410
|
+
sanitized_weights[k] = v
|
|
411
|
+
|
|
412
|
+
return sanitized_weights
|
|
413
|
+
|
|
414
|
+
def prepare_prompt(
|
|
415
|
+
self, text: str, speaker: int, audio_path: str, sample_rate: int
|
|
416
|
+
) -> Segment:
|
|
417
|
+
audio, sr = sf.read(audio_path)
|
|
418
|
+
if sr != sample_rate:
|
|
419
|
+
audio = resample_audio(audio, sr, sample_rate)
|
|
420
|
+
return Segment(text=text, speaker=speaker, audio=mx.array(audio))
|
|
421
|
+
|
|
422
|
+
def default_speaker_prompt(self, voice: str) -> List[Segment]:
|
|
423
|
+
SPEAKER_PROMPTS = {
|
|
424
|
+
"conversational_a": {
|
|
425
|
+
"text": (
|
|
426
|
+
"like revising for an exam I'd have to try and like keep up the momentum because I'd "
|
|
427
|
+
"start really early I'd be like okay I'm gonna start revising now and then like "
|
|
428
|
+
"you're revising for ages and then I just like start losing steam I didn't do that "
|
|
429
|
+
"for the exam we had recently to be fair that was a more of a last minute scenario "
|
|
430
|
+
"but like yeah I'm trying to like yeah I noticed this yesterday that like Mondays I "
|
|
431
|
+
"sort of start the day with this not like a panic but like a"
|
|
432
|
+
),
|
|
433
|
+
},
|
|
434
|
+
"conversational_b": {
|
|
435
|
+
"text": (
|
|
436
|
+
"like a super Mario level. Like it's very like high detail. And like, once you get "
|
|
437
|
+
"into the park, it just like, everything looks like a computer game and they have all "
|
|
438
|
+
"these, like, you know, if, if there's like a, you know, like in a Mario game, they "
|
|
439
|
+
"will have like a question block. And if you like, you know, punch it, a coin will "
|
|
440
|
+
"come out. So like everyone, when they come into the park, they get like this little "
|
|
441
|
+
"bracelet and then you can go punching question blocks around."
|
|
442
|
+
),
|
|
443
|
+
},
|
|
444
|
+
}
|
|
445
|
+
|
|
446
|
+
prompt_path = hf_hub_download(
|
|
447
|
+
repo_id="sesame/csm-1b", filename=f"prompts/{voice}.wav"
|
|
448
|
+
)
|
|
449
|
+
prompt = self.prepare_prompt(
|
|
450
|
+
SPEAKER_PROMPTS[voice]["text"], 0, prompt_path, 24_000
|
|
451
|
+
)
|
|
452
|
+
return [prompt]
|
|
453
|
+
|
|
454
|
+
def generate_result(
|
|
455
|
+
self, samples, start_time: float, stream: bool = False
|
|
456
|
+
) -> GenerationResult:
|
|
457
|
+
token_count = len(samples)
|
|
458
|
+
transposed = mx.transpose(mx.stack(samples), axes=[1, 2, 0])
|
|
459
|
+
if stream:
|
|
460
|
+
audio = (
|
|
461
|
+
self._streaming_decoder.decode_frames(transposed).squeeze(0).squeeze(0)
|
|
462
|
+
)
|
|
463
|
+
else:
|
|
464
|
+
audio = self._audio_tokenizer.decode(transposed).squeeze(0).squeeze(0)
|
|
465
|
+
|
|
466
|
+
# This applies an imperceptible watermark to identify audio as AI-generated.
|
|
467
|
+
# Watermarking ensures transparency, dissuades misuse, and enables traceability.
|
|
468
|
+
# Please be a responsible AI citizen and keep the watermarking in place.
|
|
469
|
+
# If using CSM 1B in another application, use your own private key and keep it secret.
|
|
470
|
+
if self._watermarker is not None:
|
|
471
|
+
audio = watermark(
|
|
472
|
+
self._watermarker,
|
|
473
|
+
audio,
|
|
474
|
+
self._sample_rate,
|
|
475
|
+
CSM_1B_GH_WATERMARK,
|
|
476
|
+
)
|
|
477
|
+
audio = mx.array(audio, dtype=mx.float32)
|
|
478
|
+
|
|
479
|
+
mx.eval(audio)
|
|
480
|
+
|
|
481
|
+
segment_time = time.perf_counter() - start_time
|
|
482
|
+
|
|
483
|
+
samples = audio.shape[0] if audio is not None else 0
|
|
484
|
+
assert samples > 0, "No audio generated"
|
|
485
|
+
|
|
486
|
+
# Calculate audio duration in seconds
|
|
487
|
+
sample_rate = 24000
|
|
488
|
+
audio_duration_seconds = samples / sample_rate
|
|
489
|
+
|
|
490
|
+
# Calculate real-time factor (RTF)
|
|
491
|
+
rtf = segment_time / audio_duration_seconds if audio_duration_seconds > 0 else 0
|
|
492
|
+
|
|
493
|
+
# Format duration as HH:MM:SS.mmm
|
|
494
|
+
duration_mins = int(audio_duration_seconds // 60)
|
|
495
|
+
duration_secs = int(audio_duration_seconds % 60)
|
|
496
|
+
duration_ms = int((audio_duration_seconds % 1) * 1000)
|
|
497
|
+
duration_hours = int(audio_duration_seconds // 3600)
|
|
498
|
+
duration_str = f"{duration_hours:02d}:{duration_mins:02d}:{duration_secs:02d}.{duration_ms:03d}"
|
|
499
|
+
|
|
500
|
+
return GenerationResult(
|
|
501
|
+
audio=audio,
|
|
502
|
+
samples=samples,
|
|
503
|
+
sample_rate=sample_rate,
|
|
504
|
+
segment_idx=0,
|
|
505
|
+
token_count=token_count,
|
|
506
|
+
audio_duration=duration_str,
|
|
507
|
+
real_time_factor=round(rtf, 2),
|
|
508
|
+
prompt={
|
|
509
|
+
"tokens": token_count,
|
|
510
|
+
"tokens-per-sec": (
|
|
511
|
+
round(token_count / segment_time, 2) if segment_time > 0 else 0
|
|
512
|
+
),
|
|
513
|
+
},
|
|
514
|
+
audio_samples={
|
|
515
|
+
"samples": samples,
|
|
516
|
+
"samples-per-sec": (
|
|
517
|
+
round(samples / segment_time, 2) if segment_time > 0 else 0
|
|
518
|
+
),
|
|
519
|
+
},
|
|
520
|
+
processing_time_seconds=segment_time,
|
|
521
|
+
peak_memory_usage=mx.get_peak_memory() / 1e9,
|
|
522
|
+
)
|
|
523
|
+
|
|
524
|
+
def generate(
|
|
525
|
+
self,
|
|
526
|
+
text: List[str] | str,
|
|
527
|
+
voice: Optional[str] = None,
|
|
528
|
+
speaker: int = 0,
|
|
529
|
+
context: List[Segment] = [],
|
|
530
|
+
split_pattern: Optional[str] = r"\n+",
|
|
531
|
+
sampler: Callable[..., mx.array] = None,
|
|
532
|
+
max_audio_length_ms: float = 90_000,
|
|
533
|
+
ref_audio: mx.array = None,
|
|
534
|
+
ref_text: str = None,
|
|
535
|
+
stream: bool = False,
|
|
536
|
+
streaming_interval: float = 2.0,
|
|
537
|
+
**kwargs,
|
|
538
|
+
):
|
|
539
|
+
# if reference audio is provided, use it as the first segment
|
|
540
|
+
if len(context) == 0 and ref_audio is not None and ref_text is not None:
|
|
541
|
+
context = [Segment(speaker=speaker, text=ref_text, audio=ref_audio)]
|
|
542
|
+
elif ref_audio is None:
|
|
543
|
+
# otherwise, use the provided or default voice
|
|
544
|
+
if voice is None:
|
|
545
|
+
voice = "conversational_a"
|
|
546
|
+
context = self.default_speaker_prompt(voice)
|
|
547
|
+
|
|
548
|
+
sampler = sampler or make_sampler(temp=0.9, top_k=50)
|
|
549
|
+
max_audio_frames = int(max_audio_length_ms / 80)
|
|
550
|
+
streaming_interval_tokens = int(streaming_interval * 12.5)
|
|
551
|
+
|
|
552
|
+
if isinstance(text, str):
|
|
553
|
+
text = re.split(split_pattern, text.strip()) if split_pattern else [text]
|
|
554
|
+
|
|
555
|
+
for prompt in text:
|
|
556
|
+
start_time = time.perf_counter()
|
|
557
|
+
|
|
558
|
+
self.model.reset_caches()
|
|
559
|
+
if stream:
|
|
560
|
+
self._streaming_decoder.reset()
|
|
561
|
+
|
|
562
|
+
tokens, tokens_mask = [], []
|
|
563
|
+
for segment in context:
|
|
564
|
+
segment_tokens, segment_tokens_mask = self._tokenize_segment(segment)
|
|
565
|
+
tokens.append(segment_tokens)
|
|
566
|
+
tokens_mask.append(segment_tokens_mask)
|
|
567
|
+
|
|
568
|
+
gen_segment_tokens, gen_segment_tokens_mask = self._tokenize_text_segment(
|
|
569
|
+
prompt, speaker
|
|
570
|
+
)
|
|
571
|
+
tokens.append(gen_segment_tokens)
|
|
572
|
+
tokens_mask.append(gen_segment_tokens_mask)
|
|
573
|
+
|
|
574
|
+
prompt_tokens = mx.concat(tokens, axis=0).astype(mx.int32)
|
|
575
|
+
prompt_tokens_mask = mx.concat(tokens_mask, axis=0).astype(mx.bool_)
|
|
576
|
+
|
|
577
|
+
samples = []
|
|
578
|
+
curr_tokens = mx.expand_dims(prompt_tokens, axis=0)
|
|
579
|
+
curr_tokens_mask = mx.expand_dims(prompt_tokens_mask, axis=0)
|
|
580
|
+
curr_pos = mx.expand_dims(
|
|
581
|
+
mx.arange(0, prompt_tokens.shape[0]), axis=0
|
|
582
|
+
).astype(mx.int32)
|
|
583
|
+
generated_frame_count = 0
|
|
584
|
+
yielded_frame_count = 0
|
|
585
|
+
|
|
586
|
+
max_seq_len = 2048 - max_audio_frames
|
|
587
|
+
if curr_tokens.shape[1] >= max_seq_len:
|
|
588
|
+
raise ValueError(
|
|
589
|
+
f"Inputs too long, must be below max_seq_len - max_audio_frames: {max_seq_len}"
|
|
590
|
+
)
|
|
591
|
+
|
|
592
|
+
for _ in tqdm(range(max_audio_frames)):
|
|
593
|
+
sample = self.model.generate_frame(
|
|
594
|
+
curr_tokens, curr_tokens_mask, curr_pos, sampler
|
|
595
|
+
)
|
|
596
|
+
if mx.all(sample == 0):
|
|
597
|
+
break # eos
|
|
598
|
+
|
|
599
|
+
samples.append(sample)
|
|
600
|
+
|
|
601
|
+
curr_tokens = mx.expand_dims(
|
|
602
|
+
mx.concat([sample, mx.zeros((1, 1)).astype(mx.int32)], axis=1),
|
|
603
|
+
axis=1,
|
|
604
|
+
)
|
|
605
|
+
curr_tokens_mask = mx.expand_dims(
|
|
606
|
+
mx.concat(
|
|
607
|
+
[
|
|
608
|
+
mx.ones_like(sample).astype(mx.bool_),
|
|
609
|
+
mx.zeros((1, 1)).astype(mx.bool_),
|
|
610
|
+
],
|
|
611
|
+
axis=1,
|
|
612
|
+
),
|
|
613
|
+
axis=1,
|
|
614
|
+
)
|
|
615
|
+
curr_pos = curr_pos[:, -1:] + 1
|
|
616
|
+
generated_frame_count += 1
|
|
617
|
+
|
|
618
|
+
# send a partial result in streaming mode
|
|
619
|
+
if (
|
|
620
|
+
stream
|
|
621
|
+
and (generated_frame_count - yielded_frame_count)
|
|
622
|
+
>= streaming_interval_tokens
|
|
623
|
+
):
|
|
624
|
+
yielded_frame_count = generated_frame_count
|
|
625
|
+
yield self.generate_result(samples, start_time, stream=True)
|
|
626
|
+
samples = []
|
|
627
|
+
start_time = time.perf_counter()
|
|
628
|
+
|
|
629
|
+
if len(samples) > 0:
|
|
630
|
+
yield self.generate_result(samples, start_time, stream=stream)
|
|
631
|
+
|
|
632
|
+
# Clear cache after each segment to avoid memory leaks
|
|
633
|
+
mx.clear_cache()
|