nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (580) hide show
  1. nexaai/__init__.py +99 -0
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +4 -0
  4. nexaai/asr.py +68 -0
  5. nexaai/asr_impl/__init__.py +0 -0
  6. nexaai/asr_impl/mlx_asr_impl.py +93 -0
  7. nexaai/asr_impl/pybind_asr_impl.py +127 -0
  8. nexaai/base.py +39 -0
  9. nexaai/binds/__init__.py +7 -0
  10. nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
  11. nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
  12. nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
  13. nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
  14. nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
  15. nexaai/binds/cpu_gpu/libggml.dylib +0 -0
  16. nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
  17. nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
  18. nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
  19. nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
  20. nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
  21. nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
  22. nexaai/binds/libnexa_bridge.dylib +0 -0
  23. nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
  24. nexaai/binds/metal/libnexa_plugin.dylib +0 -0
  25. nexaai/binds/metal/py-lib/ml.py +888 -0
  26. nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
  27. nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
  28. nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
  29. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  30. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  31. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  32. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  33. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  34. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  35. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
  36. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
  37. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
  38. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  39. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  40. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  41. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
  42. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
  43. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
  44. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
  45. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  46. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  47. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  48. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  49. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  50. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  51. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
  52. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
  53. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
  54. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
  55. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
  56. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
  57. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
  58. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
  59. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
  60. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
  61. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
  62. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
  63. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
  64. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  65. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
  66. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
  67. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
  68. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
  69. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
  70. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
  71. nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
  72. nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
  73. nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  74. nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
  75. nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
  76. nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
  77. nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
  78. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  79. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  80. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
  81. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
  82. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  83. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  84. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  85. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  86. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  87. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  88. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  89. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
  90. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
  91. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
  92. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
  93. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  94. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
  95. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
  96. nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
  97. nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
  98. nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
  99. nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
  100. nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
  101. nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
  102. nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
  103. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
  104. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
  105. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
  106. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
  107. nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
  108. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
  109. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
  110. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
  111. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
  112. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
  113. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
  114. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
  115. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  116. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
  117. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  118. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  119. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  120. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  121. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  122. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  123. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
  124. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
  125. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
  126. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  127. nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
  128. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  129. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  130. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  131. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
  132. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  133. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
  134. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
  135. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
  136. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
  137. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  138. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  139. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
  140. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  141. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
  142. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
  143. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
  144. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
  145. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  146. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
  147. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  148. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
  149. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  150. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  151. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  152. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  153. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  154. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  155. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  156. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  157. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  158. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  159. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  160. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  161. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  162. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  163. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  164. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
  165. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  166. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
  167. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  168. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
  169. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
  170. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
  171. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
  172. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
  173. nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
  174. nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
  175. nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
  176. nexaai/binds/metal/py-lib/profiling.py +239 -0
  177. nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
  178. nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
  179. nexaai/binds/nexaml/libggml-base.dylib +0 -0
  180. nexaai/binds/nexaml/libggml-cpu.so +0 -0
  181. nexaai/binds/nexaml/libggml-metal.so +0 -0
  182. nexaai/binds/nexaml/libggml.dylib +0 -0
  183. nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
  184. nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
  185. nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
  186. nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
  187. nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
  188. nexaai/binds/nexaml/libnexaproc.dylib +0 -0
  189. nexaai/binds/nexaml/libomp.dylib +0 -0
  190. nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
  191. nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
  192. nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
  193. nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
  194. nexaai/common.py +106 -0
  195. nexaai/cv.py +95 -0
  196. nexaai/cv_impl/__init__.py +0 -0
  197. nexaai/cv_impl/mlx_cv_impl.py +91 -0
  198. nexaai/cv_impl/pybind_cv_impl.py +124 -0
  199. nexaai/diarize.py +80 -0
  200. nexaai/diarize_impl/__init__.py +1 -0
  201. nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
  202. nexaai/embedder.py +73 -0
  203. nexaai/embedder_impl/__init__.py +0 -0
  204. nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
  205. nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
  206. nexaai/image_gen.py +141 -0
  207. nexaai/image_gen_impl/__init__.py +0 -0
  208. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
  209. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
  210. nexaai/llm.py +98 -0
  211. nexaai/llm_impl/__init__.py +0 -0
  212. nexaai/llm_impl/mlx_llm_impl.py +271 -0
  213. nexaai/llm_impl/pybind_llm_impl.py +238 -0
  214. nexaai/log.py +92 -0
  215. nexaai/mlx_backend/asr/__init__.py +12 -0
  216. nexaai/mlx_backend/asr/interface.py +122 -0
  217. nexaai/mlx_backend/common/__init__.py +0 -0
  218. nexaai/mlx_backend/common/utils.py +25 -0
  219. nexaai/mlx_backend/cv/__init__.py +0 -0
  220. nexaai/mlx_backend/cv/generate.py +195 -0
  221. nexaai/mlx_backend/cv/interface.py +162 -0
  222. nexaai/mlx_backend/cv/main.py +81 -0
  223. nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
  224. nexaai/mlx_backend/embedding/__init__.py +0 -0
  225. nexaai/mlx_backend/embedding/generate.py +333 -0
  226. nexaai/mlx_backend/embedding/interface.py +617 -0
  227. nexaai/mlx_backend/embedding/main.py +173 -0
  228. nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
  229. nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
  230. nexaai/mlx_backend/image_gen/__init__.py +1 -0
  231. nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
  232. nexaai/mlx_backend/image_gen/interface.py +82 -0
  233. nexaai/mlx_backend/image_gen/main.py +281 -0
  234. nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
  235. nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
  236. nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
  237. nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
  238. nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
  239. nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
  240. nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
  241. nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
  242. nexaai/mlx_backend/llm/__init__.py +0 -0
  243. nexaai/mlx_backend/llm/generate.py +149 -0
  244. nexaai/mlx_backend/llm/interface.py +764 -0
  245. nexaai/mlx_backend/llm/main.py +68 -0
  246. nexaai/mlx_backend/ml.py +888 -0
  247. nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
  248. nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
  249. nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
  250. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  251. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  252. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  253. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  254. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  255. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  256. nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
  257. nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
  258. nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
  259. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  260. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  261. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  262. nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
  263. nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
  264. nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
  265. nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
  266. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  267. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  268. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  269. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  270. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  271. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  272. nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
  273. nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
  274. nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
  275. nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
  276. nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
  277. nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
  278. nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
  279. nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
  280. nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
  281. nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
  282. nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
  283. nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
  284. nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
  285. nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  286. nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
  287. nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
  288. nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
  289. nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
  290. nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
  291. nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
  292. nexaai/mlx_backend/mlx_audio/server.py +525 -0
  293. nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
  294. nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  295. nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
  296. nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
  297. nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
  298. nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
  299. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  300. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  301. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
  302. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
  303. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  304. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  305. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  306. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  307. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  308. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  309. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  310. nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
  311. nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
  312. nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
  313. nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
  314. nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  315. nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
  316. nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
  317. nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
  318. nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
  319. nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
  320. nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
  321. nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
  322. nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
  323. nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
  324. nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
  325. nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
  326. nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
  327. nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
  328. nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
  329. nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
  330. nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
  331. nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
  332. nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
  333. nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
  334. nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
  335. nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
  336. nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  337. nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
  338. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  339. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  340. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  341. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  342. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  343. nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  344. nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
  345. nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
  346. nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
  347. nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  348. nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
  349. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  350. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  351. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  352. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
  353. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  354. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
  355. nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
  356. nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
  357. nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
  358. nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  359. nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  360. nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
  361. nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
  362. nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  363. nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
  364. nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
  365. nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
  366. nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
  367. nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  368. nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
  369. nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  370. nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
  371. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  372. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  373. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  374. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  375. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  376. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  377. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  378. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  379. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  380. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  381. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  382. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  383. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  384. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  385. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  386. nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
  387. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  388. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
  389. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  390. nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
  391. nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
  392. nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
  393. nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
  394. nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
  395. nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
  396. nexaai/mlx_backend/mlx_audio/utils.py +237 -0
  397. nexaai/mlx_backend/mlx_audio/version.py +1 -0
  398. nexaai/mlx_backend/profiling.py +239 -0
  399. nexaai/mlx_backend/rerank/__init__.py +0 -0
  400. nexaai/mlx_backend/rerank/generate.py +174 -0
  401. nexaai/mlx_backend/rerank/interface.py +287 -0
  402. nexaai/mlx_backend/rerank/main.py +127 -0
  403. nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
  404. nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
  405. nexaai/mlx_backend/sd/__init__.py +1 -0
  406. nexaai/mlx_backend/sd/interface.py +362 -0
  407. nexaai/mlx_backend/sd/main.py +286 -0
  408. nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
  409. nexaai/mlx_backend/sd/modeling/clip.py +116 -0
  410. nexaai/mlx_backend/sd/modeling/config.py +65 -0
  411. nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
  412. nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
  413. nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
  414. nexaai/mlx_backend/sd/modeling/unet.py +460 -0
  415. nexaai/mlx_backend/sd/modeling/vae.py +274 -0
  416. nexaai/mlx_backend/tts/__init__.py +12 -0
  417. nexaai/mlx_backend/tts/interface.py +276 -0
  418. nexaai/mlx_backend/vlm/__init__.py +3 -0
  419. nexaai/mlx_backend/vlm/generate.py +572 -0
  420. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
  421. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
  422. nexaai/mlx_backend/vlm/interface.py +559 -0
  423. nexaai/mlx_backend/vlm/main.py +365 -0
  424. nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
  425. nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
  426. nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
  427. nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
  428. nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  429. nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  430. nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
  431. nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
  432. nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
  433. nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
  434. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  435. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  436. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  437. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  438. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  439. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  440. nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
  441. nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
  442. nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
  443. nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
  444. nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
  445. nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
  446. nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
  447. nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
  448. nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
  449. nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
  450. nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
  451. nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  452. nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
  453. nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
  454. nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
  455. nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
  456. nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
  457. nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
  458. nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
  459. nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
  460. nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
  461. nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
  462. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  463. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  464. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
  465. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
  466. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
  467. nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
  468. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  469. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  470. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
  471. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
  472. nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
  473. nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
  474. nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
  475. nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
  476. nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
  477. nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
  478. nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
  479. nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
  480. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  481. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
  482. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  483. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
  484. nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
  485. nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
  486. nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
  487. nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
  488. nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
  489. nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
  490. nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
  491. nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
  492. nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
  493. nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
  494. nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
  495. nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
  496. nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
  497. nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
  498. nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
  499. nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
  500. nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  501. nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
  502. nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
  503. nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
  504. nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
  505. nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
  506. nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
  507. nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
  508. nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
  509. nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  510. nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  511. nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
  512. nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
  513. nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
  514. nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
  515. nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
  516. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  517. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  518. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  519. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  520. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  521. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  522. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
  523. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
  524. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  525. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  526. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  527. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  528. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  529. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  530. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  531. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  532. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  533. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  534. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
  535. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  536. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  537. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  538. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  539. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  540. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  541. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  542. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  543. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
  544. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  545. nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
  546. nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  547. nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  548. nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
  549. nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
  550. nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
  551. nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
  552. nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
  553. nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
  554. nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
  555. nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
  556. nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
  557. nexaai/rerank.py +57 -0
  558. nexaai/rerank_impl/__init__.py +0 -0
  559. nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
  560. nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
  561. nexaai/runtime.py +68 -0
  562. nexaai/runtime_error.py +24 -0
  563. nexaai/tts.py +75 -0
  564. nexaai/tts_impl/__init__.py +0 -0
  565. nexaai/tts_impl/mlx_tts_impl.py +94 -0
  566. nexaai/tts_impl/pybind_tts_impl.py +43 -0
  567. nexaai/utils/decode.py +18 -0
  568. nexaai/utils/manifest_utils.py +531 -0
  569. nexaai/utils/model_manager.py +1745 -0
  570. nexaai/utils/model_types.py +49 -0
  571. nexaai/utils/progress_tracker.py +389 -0
  572. nexaai/utils/quantization_utils.py +245 -0
  573. nexaai/vlm.py +130 -0
  574. nexaai/vlm_impl/__init__.py +0 -0
  575. nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
  576. nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
  577. nexaai-1.0.29.dist-info/METADATA +35 -0
  578. nexaai-1.0.29.dist-info/RECORD +580 -0
  579. nexaai-1.0.29.dist-info/WHEEL +5 -0
  580. nexaai-1.0.29.dist-info/top_level.txt +1 -0
@@ -0,0 +1,282 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import Optional, Tuple
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+
8
+ from ..base import (
9
+ LanguageModelOutput,
10
+ create_attention_mask,
11
+ scaled_dot_product_attention,
12
+ )
13
+ from ..cache import KVCache
14
+
15
+
16
+ @dataclass
17
+ class TextConfig:
18
+ model_type: str
19
+ hidden_size: int
20
+ num_hidden_layers: int
21
+ intermediate_size: int
22
+ num_attention_heads: int
23
+ num_key_value_heads: int
24
+ vocab_size: int
25
+ head_dim: int = 256
26
+ rms_norm_eps: float = 1e-6
27
+ rope_theta: float = 10000
28
+ rope_traditional: bool = False
29
+ attn_logit_softcapping: Optional[float] = None
30
+ final_logit_softcapping: Optional[float] = None
31
+ query_pre_attn_scalar: Optional[float] = None
32
+ max_position_embeddings: int = 4096
33
+
34
+ @classmethod
35
+ def from_dict(cls, params):
36
+ return cls(
37
+ **{
38
+ k: v
39
+ for k, v in params.items()
40
+ if k in inspect.signature(cls).parameters
41
+ }
42
+ )
43
+
44
+
45
+ class RMSNorm(nn.Module):
46
+ def __init__(self, dims: int, eps: float = 1e-6):
47
+ super().__init__()
48
+ self.weight = mx.ones((dims,))
49
+ self.eps = eps
50
+
51
+ def __call__(self, x):
52
+ return mx.fast.rms_norm(x, 1.0 + self.weight, self.eps)
53
+
54
+
55
+ class Attention(nn.Module):
56
+ def __init__(self, config: TextConfig):
57
+ super().__init__()
58
+
59
+ dim = config.hidden_size
60
+ self.n_heads = n_heads = config.num_attention_heads
61
+ self.n_kv_heads = n_kv_heads = config.num_key_value_heads
62
+ self.model_type = config.model_type
63
+ self.attn_logit_softcapping = config.attn_logit_softcapping
64
+ self.repeats = n_heads // n_kv_heads
65
+ self.head_dim = head_dim = (
66
+ config.hidden_size // n_heads
67
+ if self.model_type == "gemma"
68
+ else config.head_dim
69
+ )
70
+ self.scale = (
71
+ head_dim**-0.5
72
+ if self.model_type == "gemma"
73
+ else 1.0 / (config.query_pre_attn_scalar**0.5)
74
+ )
75
+
76
+ self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
77
+ self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
78
+ self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
79
+ self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
80
+
81
+ self.rope = nn.RoPE(
82
+ head_dim,
83
+ traditional=config.rope_traditional,
84
+ base=config.rope_theta,
85
+ )
86
+
87
+ def __call__(
88
+ self,
89
+ x: mx.array,
90
+ mask: Optional[mx.array] = None,
91
+ cache: Optional[KVCache] = None,
92
+ ) -> mx.array:
93
+ B, L, D = x.shape
94
+
95
+ queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
96
+
97
+ # Prepare the queries, keys and values for the attention computation
98
+ queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
99
+ keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
100
+ values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
101
+
102
+ if cache is not None:
103
+ queries = self.rope(queries, offset=cache.offset)
104
+ keys = self.rope(keys, offset=cache.offset)
105
+ keys, values = cache.update_and_fetch(keys, values)
106
+ else:
107
+ queries = self.rope(queries)
108
+ keys = self.rope(keys)
109
+
110
+ if self.model_type == "gemma":
111
+ output = scaled_dot_product_attention(
112
+ queries, keys, values, cache, scale=self.scale, mask=mask
113
+ )
114
+ else:
115
+ queries = queries * self.scale
116
+
117
+ if self.repeats > 1:
118
+ queries = queries.reshape(
119
+ B, self.n_kv_heads, self.repeats, L, self.head_dim
120
+ )
121
+ keys = mx.expand_dims(keys, 2)
122
+ values = mx.expand_dims(values, 2)
123
+
124
+ scores = queries @ keys.swapaxes(-1, -2)
125
+ scores = mx.tanh(scores / self.attn_logit_softcapping)
126
+ scores *= self.attn_logit_softcapping
127
+
128
+ if mask is not None and isinstance(mask, mx.array):
129
+ scores = scores + mask
130
+ scores = mx.softmax(scores, precise=True, axis=-1)
131
+ output = scores @ values
132
+ if self.repeats > 1:
133
+ output = output.reshape(B, self.n_heads, L, self.head_dim)
134
+
135
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
136
+ return self.o_proj(output)
137
+
138
+
139
+ class MLP(nn.Module):
140
+ def __init__(self, dim, hidden_dim, model_type):
141
+ super().__init__()
142
+ self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
143
+ self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
144
+ self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
145
+ self.gelu = nn.GELU() if model_type == "gemma" else nn.GELU(approx="precise")
146
+
147
+ def __call__(self, x) -> mx.array:
148
+ return self.down_proj(self.gelu(self.gate_proj(x)) * self.up_proj(x))
149
+
150
+
151
+ class TransformerBlock(nn.Module):
152
+ def __init__(self, config: TextConfig):
153
+ super().__init__()
154
+ self.model_type = config.model_type
155
+ self.num_attention_heads = config.num_attention_heads
156
+ self.hidden_size = config.hidden_size
157
+ self.self_attn = Attention(config)
158
+ self.mlp = MLP(config.hidden_size, config.intermediate_size, config.model_type)
159
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
160
+ self.post_attention_layernorm = RMSNorm(
161
+ config.hidden_size, eps=config.rms_norm_eps
162
+ )
163
+ self.config = config
164
+
165
+ if config.model_type == "gemma2":
166
+ self.pre_feedforward_layernorm = RMSNorm(
167
+ config.hidden_size, eps=config.rms_norm_eps
168
+ )
169
+ self.post_feedforward_layernorm = RMSNorm(
170
+ config.hidden_size, eps=config.rms_norm_eps
171
+ )
172
+
173
+ def __call__(
174
+ self,
175
+ x: mx.array,
176
+ mask: Optional[mx.array] = None,
177
+ cache: Optional[KVCache] = None,
178
+ ) -> mx.array:
179
+ # Self attention block
180
+ r = self.self_attn(self.input_layernorm(x), mask, cache)
181
+
182
+ if self.model_type == "gemma":
183
+ # Gemma: Post-attention residual connection then MLP
184
+ h = x + r
185
+ r = self.mlp(self.post_attention_layernorm(h))
186
+ out = h + r
187
+ else:
188
+ # Gemma2: Normalized residual connections with pre/post norms
189
+ h = x + self.post_attention_layernorm(r)
190
+ r = self.mlp(self.pre_feedforward_layernorm(h))
191
+ out = h + self.post_feedforward_layernorm(r)
192
+ return out
193
+
194
+
195
+ class GemmaModel(nn.Module):
196
+ def __init__(self, config: TextConfig):
197
+ super().__init__()
198
+ self.config = config
199
+ self.vocab_size = config.vocab_size
200
+ self.num_hidden_layers = config.num_hidden_layers
201
+ assert self.vocab_size > 0
202
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
203
+ self.layers = [
204
+ TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
205
+ ]
206
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
207
+
208
+ def __call__(
209
+ self,
210
+ inputs: mx.array,
211
+ inputs_embeds: Optional[mx.array] = None,
212
+ mask: Optional[mx.array] = None,
213
+ cache=None,
214
+ ):
215
+ # for passing merged input embeddings
216
+ if inputs_embeds is None:
217
+ h = self.embed_tokens(inputs)
218
+ else:
219
+ h = inputs_embeds
220
+
221
+ h *= self.config.hidden_size**0.5
222
+
223
+ if cache is None:
224
+ cache = [None] * len(self.layers)
225
+
226
+ if mask is None or cache[0].offset > 0:
227
+ mask = create_attention_mask(h, cache, return_array=True)
228
+
229
+ for layer, c in zip(self.layers, cache):
230
+ h = layer(h, mask, c)
231
+
232
+ return self.norm(h)
233
+
234
+
235
+ class LanguageModel(nn.Module):
236
+ def __init__(self, config: TextConfig):
237
+ super().__init__()
238
+ self.config = config
239
+ self.final_logit_softcapping = config.final_logit_softcapping
240
+ self.model_type = config.model_type
241
+ self.model = GemmaModel(config)
242
+
243
+ if self.model_type not in ["gemma", "gemma2"]:
244
+ raise ValueError(
245
+ f"Model type {self.model_type} not supported. Currently only 'gemma' is supported"
246
+ )
247
+
248
+ def __call__(
249
+ self,
250
+ inputs: mx.array,
251
+ inputs_embeds: Optional[mx.array] = None,
252
+ mask: Optional[mx.array] = None,
253
+ cache=None,
254
+ ):
255
+ out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
256
+ out = self.model.embed_tokens.as_linear(out)
257
+
258
+ if self.model_type == "gemma2":
259
+ out = mx.tanh(out / self.final_logit_softcapping)
260
+ out = out * self.final_logit_softcapping
261
+ return LanguageModelOutput(logits=out)
262
+
263
+ def sanitize(self, weights):
264
+ return {
265
+ k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
266
+ }
267
+
268
+ @property
269
+ def layers(self):
270
+ return self.model.layers
271
+
272
+ @property
273
+ def head_dim(self):
274
+ return (
275
+ self.config.hidden_size // self.config.num_attention_heads
276
+ if self.model_type == "gemma"
277
+ else self.config.head_dim
278
+ )
279
+
280
+ @property
281
+ def n_kv_heads(self):
282
+ return self.config.num_key_value_heads
@@ -0,0 +1,160 @@
1
+ import glob
2
+ import inspect
3
+ import json
4
+ from dataclasses import dataclass
5
+ from pathlib import Path
6
+ from typing import List, Optional
7
+
8
+ import mlx.core as mx
9
+ import mlx.nn as nn
10
+ from huggingface_hub import snapshot_download
11
+
12
+ from .language import LanguageModel, TextConfig
13
+ from .vision import VisionConfig, VisionModel
14
+
15
+
16
+ @dataclass
17
+ class ModelConfig:
18
+ text_config: TextConfig
19
+ vision_config: VisionConfig
20
+ model_type: str
21
+ vocab_size: int = 257152
22
+ ignore_index: int = -100
23
+ image_token_index: int = 257152
24
+ hidden_size: int = 2048
25
+ pad_token_id: int = 0
26
+ eos_token_id: Optional[List[int]] = None
27
+
28
+ @classmethod
29
+ def from_dict(cls, params):
30
+ return cls(
31
+ **{
32
+ k: v
33
+ for k, v in params.items()
34
+ if k in inspect.signature(cls).parameters
35
+ }
36
+ )
37
+
38
+
39
+ class PaliGemmaMultiModalProjector(nn.Module):
40
+ def __init__(self, config: ModelConfig):
41
+ super().__init__()
42
+ self.linear = nn.Linear(
43
+ config.vision_config.hidden_size,
44
+ config.vision_config.projection_dim,
45
+ bias=True,
46
+ )
47
+
48
+ def __call__(self, x: mx.array) -> mx.array:
49
+ output = self.linear(x)
50
+ return output
51
+
52
+
53
+ class Model(nn.Module):
54
+ def __init__(self, config: ModelConfig):
55
+ super().__init__()
56
+ self.model_type = config.model_type
57
+ self.config = config
58
+
59
+ self.vision_tower = VisionModel(config.vision_config)
60
+ self.language_model = LanguageModel(config.text_config)
61
+ self.multi_modal_projector = PaliGemmaMultiModalProjector(config)
62
+
63
+ def get_input_embeddings(
64
+ self,
65
+ input_ids: Optional[mx.array] = None,
66
+ pixel_values: Optional[mx.array] = None,
67
+ mask: Optional[mx.array] = None,
68
+ ):
69
+ if pixel_values is None:
70
+ return self.language_model.model.embed_tokens(input_ids), None
71
+
72
+ inputs_embeds = self.language_model.model.embed_tokens(input_ids)
73
+
74
+ hidden_state, _, _ = self.vision_tower(
75
+ pixel_values.transpose(0, 2, 3, 1).astype(inputs_embeds.dtype),
76
+ output_hidden_states=True,
77
+ )
78
+
79
+ image_features = hidden_state[None, :].astype(pixel_values.dtype)
80
+ image_features = self.multi_modal_projector(image_features)
81
+
82
+ final_inputs_embeds, final_attention_mask_4d = (
83
+ self._prepare_inputs_for_multimodal(
84
+ image_features, inputs_embeds, input_ids, mask
85
+ )
86
+ )
87
+ return final_inputs_embeds, final_attention_mask_4d
88
+
89
+ def _prepare_inputs_for_multimodal(
90
+ self, image_features, inputs_embeds, input_ids, attention_mask
91
+ ):
92
+ _, _, embed_dim = image_features.shape
93
+
94
+ batch_size, sequence_length = input_ids.shape
95
+ scaled_image_features = image_features / (self.config.hidden_size**0.5)
96
+ final_embedding = mx.zeros((batch_size, sequence_length, embed_dim))
97
+
98
+ text_mask = (input_ids != self.config.image_token_index) & (
99
+ input_ids != self.config.pad_token_id
100
+ )
101
+ image_mask = input_ids == self.config.image_token_index
102
+ pad_mask = input_ids == self.config.pad_token_id
103
+
104
+ # expand masks to match embedding dimension
105
+ text_mask_expanded = mx.expand_dims(text_mask, -1)
106
+ text_mask_expanded = mx.repeat(text_mask_expanded, embed_dim, axis=-1)
107
+ pad_mask_expanded = mx.expand_dims(pad_mask, -1)
108
+ pad_mask_expanded = mx.repeat(pad_mask_expanded, embed_dim, axis=-1)
109
+
110
+ # insert padding and text token embeddings
111
+ final_embedding = mx.where(text_mask_expanded, inputs_embeds, final_embedding)
112
+ final_embedding = mx.where(
113
+ pad_mask_expanded, mx.zeros_like(final_embedding), final_embedding
114
+ )
115
+ pad_size = final_embedding.shape[1] - scaled_image_features.shape[1]
116
+ scaled_image_features = mx.pad(
117
+ scaled_image_features, ((0, 0), (0, pad_size), (0, 0))
118
+ )
119
+ # insert image embeddings - the image mask is always less or equal to the sentence in length
120
+ image_mask_expanded = mx.expand_dims(image_mask, -1)
121
+ image_mask_expanded = mx.repeat(image_mask_expanded, embed_dim, axis=-1)
122
+ final_embedding = mx.where(
123
+ image_mask_expanded, scaled_image_features, final_embedding
124
+ )
125
+
126
+ final_embedding = mx.where(
127
+ pad_mask_expanded, mx.zeros_like(final_embedding), final_embedding
128
+ )
129
+
130
+ attention_mask_expanded_1 = mx.expand_dims(attention_mask, 1)
131
+ attention_mask_expanded_2 = mx.expand_dims(attention_mask, 2)
132
+ final_attention_mask_4d = attention_mask_expanded_1 * attention_mask_expanded_2
133
+ final_attention_mask_4d = final_attention_mask_4d
134
+ final_attention_mask_4d = mx.expand_dims(final_attention_mask_4d, 1)
135
+ final_embedding = mx.array(final_embedding)
136
+ return final_embedding, final_attention_mask_4d
137
+
138
+ @property
139
+ def layers(self):
140
+ return self.language_model.model.layers
141
+
142
+ def __call__(
143
+ self,
144
+ input_ids: mx.array,
145
+ pixel_values: mx.array,
146
+ mask: Optional[mx.array] = None,
147
+ cache: Optional[mx.array] = None,
148
+ **kwargs,
149
+ ):
150
+ input_embeddings, final_attention_mask_4d = self.get_input_embeddings(
151
+ input_ids, pixel_values, mask
152
+ )
153
+
154
+ logits = self.language_model(
155
+ inputs=input_ids,
156
+ cache=cache,
157
+ inputs_embeds=input_embeddings,
158
+ mask=final_attention_mask_4d,
159
+ )
160
+ return logits
@@ -0,0 +1,242 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import Optional
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+ import numpy as np
8
+
9
+
10
+ @dataclass
11
+ class VisionConfig:
12
+ model_type: str
13
+ num_hidden_layers: int
14
+ hidden_size: int
15
+ intermediate_size: int
16
+ num_attention_heads: int
17
+ patch_size: int
18
+ projection_dim: int
19
+ image_size: int = 224
20
+ num_channels: int = 3
21
+ layer_norm_eps: float = 1e-6
22
+
23
+ @classmethod
24
+ def from_dict(cls, params):
25
+ return cls(
26
+ **{
27
+ k: v
28
+ for k, v in params.items()
29
+ if k in inspect.signature(cls).parameters
30
+ }
31
+ )
32
+
33
+
34
+ def check_array_shape(arr):
35
+ shape = arr.shape
36
+
37
+ # Check if the shape has 4 dimensions
38
+ if len(shape) != 4:
39
+ return False
40
+
41
+ out_channels, kH, KW, _ = shape
42
+
43
+ # Check if out_channels is the largest, and kH and KW are the same
44
+ if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
45
+ return True
46
+ else:
47
+ return False
48
+
49
+
50
+ class Attention(nn.Module):
51
+ def __init__(
52
+ self,
53
+ dims: int,
54
+ num_heads: int,
55
+ query_input_dims: Optional[int] = None,
56
+ key_input_dims: Optional[int] = None,
57
+ value_input_dims: Optional[int] = None,
58
+ value_dims: Optional[int] = None,
59
+ value_output_dims: Optional[int] = None,
60
+ bias: bool = True,
61
+ ):
62
+ super().__init__()
63
+
64
+ if (dims % num_heads) != 0:
65
+ raise ValueError(
66
+ "The input feature dimensions should be divisible by the "
67
+ f"number of heads ({dims} % {num_heads}) != 0"
68
+ )
69
+
70
+ query_input_dims = query_input_dims or dims
71
+ key_input_dims = key_input_dims or dims
72
+ value_input_dims = value_input_dims or key_input_dims
73
+ value_dims = value_dims or dims
74
+ value_output_dims = value_output_dims or dims
75
+
76
+ self.num_heads = num_heads
77
+ head_dim = dims // num_heads
78
+ self.scale = head_dim**-0.5
79
+
80
+ self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
81
+ self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
82
+ self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
83
+ self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
84
+
85
+ def __call__(self, x, mask=None):
86
+ queries = self.q_proj(x)
87
+ keys = self.k_proj(x)
88
+ values = self.v_proj(x)
89
+
90
+ num_heads = self.num_heads
91
+ B, L, D = queries.shape
92
+ _, S, _ = keys.shape
93
+ queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
94
+ keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
95
+ values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
96
+
97
+ output = mx.fast.scaled_dot_product_attention(
98
+ queries, keys, values, scale=self.scale, mask=mask
99
+ )
100
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
101
+ return self.out_proj(output)
102
+
103
+
104
+ class MLP(nn.Module):
105
+ def __init__(self, config: VisionConfig):
106
+ super().__init__()
107
+ self.activation_fn = nn.GELU(approx="precise")
108
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
109
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
110
+
111
+ def __call__(self, x: mx.array) -> mx.array:
112
+ x = self.fc1(x)
113
+ x = self.activation_fn(x)
114
+ x = self.fc2(x)
115
+ return x
116
+
117
+
118
+ class EncoderLayer(nn.Module):
119
+ def __init__(self, config: VisionConfig):
120
+ super().__init__()
121
+ self.embed_dim = config.hidden_size
122
+ self.self_attn = Attention(
123
+ config.hidden_size, config.num_attention_heads, bias=True
124
+ )
125
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
126
+ self.mlp = MLP(config)
127
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
128
+
129
+ def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
130
+ r = self.self_attn(self.layer_norm1(x), mask)
131
+ h = x + r
132
+ r = self.mlp(self.layer_norm2(h))
133
+ return h + r
134
+
135
+
136
+ class Encoder(nn.Module):
137
+ def __init__(self, config: VisionConfig):
138
+ super().__init__()
139
+ self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
140
+
141
+ def __call__(
142
+ self,
143
+ x: mx.array,
144
+ output_hidden_states: Optional[bool] = None,
145
+ mask: Optional[mx.array] = None,
146
+ ) -> mx.array:
147
+ encoder_states = (x,) if output_hidden_states else None
148
+ h = x
149
+ for l in self.layers:
150
+ x = l(x, mask=mask)
151
+ if output_hidden_states:
152
+ encoder_states = encoder_states + (x,)
153
+
154
+ h = x[0]
155
+
156
+ return (h, encoder_states)
157
+
158
+
159
+ class VisionEmbeddings(nn.Module):
160
+ def __init__(self, config: VisionConfig):
161
+ super().__init__()
162
+ self.config = config
163
+ self.embed_dim = config.hidden_size
164
+ self.image_size = config.image_size
165
+ self.patch_size = config.patch_size
166
+
167
+ self.patch_embedding = nn.Conv2d(
168
+ in_channels=config.num_channels,
169
+ out_channels=self.embed_dim,
170
+ kernel_size=self.patch_size,
171
+ stride=self.patch_size,
172
+ )
173
+
174
+ self.num_patches = (self.image_size // self.patch_size) ** 2
175
+ self.num_positions = self.num_patches
176
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
177
+
178
+ def __call__(self, x: mx.array) -> mx.array:
179
+ patch_embeddings = self.patch_embedding(x)
180
+ patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
181
+ position_ids = mx.array(np.arange(self.num_positions)[None, :])
182
+ embeddings = patch_embeddings
183
+ embeddings += self.position_embedding(position_ids)
184
+ return embeddings
185
+
186
+
187
+ class SigLipVisionModel(nn.Module):
188
+ def __init__(self, config: VisionConfig):
189
+ super().__init__()
190
+ self.embeddings = VisionEmbeddings(config)
191
+ self.encoder = Encoder(config)
192
+ self.post_layernorm = nn.LayerNorm(config.hidden_size)
193
+
194
+ def __call__(
195
+ self,
196
+ x: mx.array,
197
+ output_hidden_states: Optional[bool] = None,
198
+ ) -> mx.array:
199
+ x = self.embeddings(x)
200
+
201
+ encoder_outputs = self.encoder(
202
+ x=x, output_hidden_states=output_hidden_states, mask=None
203
+ )
204
+
205
+ pooler_output = self.post_layernorm(encoder_outputs[0])
206
+
207
+ return pooler_output, x, encoder_outputs[-1]
208
+
209
+
210
+ class VisionModel(nn.Module):
211
+ def __init__(self, config: VisionConfig):
212
+ super().__init__()
213
+ self.model_type = config.model_type
214
+ if self.model_type != "siglip_vision_model":
215
+ raise ValueError(f"Unsupported model type: {self.model_type}")
216
+
217
+ self.vision_model = SigLipVisionModel(config)
218
+
219
+ def __call__(
220
+ self, x: mx.array, output_hidden_states: Optional[bool] = None
221
+ ) -> mx.array:
222
+ return self.vision_model(x, output_hidden_states)
223
+
224
+ def sanitize(self, weights):
225
+ sanitized_weights = {}
226
+ for k, v in weights.items():
227
+ if "position_ids" in k:
228
+ # Remove unused position_ids
229
+ continue
230
+ elif "patch_embedding.weight" in k:
231
+ # PyTorch conv2d weight tensors have shape:
232
+ # [out_channels, in_channels, kH, KW]
233
+ # MLX conv2d expects the weight be of shape:
234
+ # [out_channels, kH, KW, in_channels]
235
+ if check_array_shape(v):
236
+ sanitized_weights[k] = v
237
+ else:
238
+ sanitized_weights[k] = v.transpose(0, 2, 3, 1)
239
+ else:
240
+ sanitized_weights[k] = v
241
+
242
+ return sanitized_weights
@@ -0,0 +1,8 @@
1
+ from .phi3_v import (
2
+ LanguageModel,
3
+ Model,
4
+ ModelConfig,
5
+ TextConfig,
6
+ VisionConfig,
7
+ VisionModel,
8
+ )