nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (580) hide show
  1. nexaai/__init__.py +99 -0
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +4 -0
  4. nexaai/asr.py +68 -0
  5. nexaai/asr_impl/__init__.py +0 -0
  6. nexaai/asr_impl/mlx_asr_impl.py +93 -0
  7. nexaai/asr_impl/pybind_asr_impl.py +127 -0
  8. nexaai/base.py +39 -0
  9. nexaai/binds/__init__.py +7 -0
  10. nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
  11. nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
  12. nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
  13. nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
  14. nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
  15. nexaai/binds/cpu_gpu/libggml.dylib +0 -0
  16. nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
  17. nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
  18. nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
  19. nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
  20. nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
  21. nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
  22. nexaai/binds/libnexa_bridge.dylib +0 -0
  23. nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
  24. nexaai/binds/metal/libnexa_plugin.dylib +0 -0
  25. nexaai/binds/metal/py-lib/ml.py +888 -0
  26. nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
  27. nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
  28. nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
  29. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  30. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  31. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  32. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  33. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  34. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  35. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
  36. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
  37. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
  38. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  39. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  40. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  41. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
  42. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
  43. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
  44. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
  45. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  46. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  47. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  48. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  49. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  50. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  51. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
  52. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
  53. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
  54. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
  55. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
  56. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
  57. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
  58. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
  59. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
  60. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
  61. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
  62. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
  63. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
  64. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  65. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
  66. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
  67. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
  68. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
  69. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
  70. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
  71. nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
  72. nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
  73. nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  74. nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
  75. nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
  76. nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
  77. nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
  78. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  79. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  80. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
  81. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
  82. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  83. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  84. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  85. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  86. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  87. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  88. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  89. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
  90. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
  91. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
  92. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
  93. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  94. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
  95. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
  96. nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
  97. nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
  98. nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
  99. nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
  100. nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
  101. nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
  102. nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
  103. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
  104. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
  105. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
  106. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
  107. nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
  108. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
  109. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
  110. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
  111. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
  112. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
  113. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
  114. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
  115. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  116. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
  117. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  118. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  119. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  120. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  121. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  122. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  123. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
  124. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
  125. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
  126. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  127. nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
  128. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  129. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  130. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  131. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
  132. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  133. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
  134. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
  135. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
  136. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
  137. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  138. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  139. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
  140. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  141. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
  142. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
  143. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
  144. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
  145. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  146. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
  147. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  148. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
  149. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  150. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  151. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  152. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  153. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  154. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  155. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  156. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  157. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  158. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  159. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  160. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  161. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  162. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  163. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  164. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
  165. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  166. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
  167. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  168. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
  169. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
  170. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
  171. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
  172. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
  173. nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
  174. nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
  175. nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
  176. nexaai/binds/metal/py-lib/profiling.py +239 -0
  177. nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
  178. nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
  179. nexaai/binds/nexaml/libggml-base.dylib +0 -0
  180. nexaai/binds/nexaml/libggml-cpu.so +0 -0
  181. nexaai/binds/nexaml/libggml-metal.so +0 -0
  182. nexaai/binds/nexaml/libggml.dylib +0 -0
  183. nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
  184. nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
  185. nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
  186. nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
  187. nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
  188. nexaai/binds/nexaml/libnexaproc.dylib +0 -0
  189. nexaai/binds/nexaml/libomp.dylib +0 -0
  190. nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
  191. nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
  192. nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
  193. nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
  194. nexaai/common.py +106 -0
  195. nexaai/cv.py +95 -0
  196. nexaai/cv_impl/__init__.py +0 -0
  197. nexaai/cv_impl/mlx_cv_impl.py +91 -0
  198. nexaai/cv_impl/pybind_cv_impl.py +124 -0
  199. nexaai/diarize.py +80 -0
  200. nexaai/diarize_impl/__init__.py +1 -0
  201. nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
  202. nexaai/embedder.py +73 -0
  203. nexaai/embedder_impl/__init__.py +0 -0
  204. nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
  205. nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
  206. nexaai/image_gen.py +141 -0
  207. nexaai/image_gen_impl/__init__.py +0 -0
  208. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
  209. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
  210. nexaai/llm.py +98 -0
  211. nexaai/llm_impl/__init__.py +0 -0
  212. nexaai/llm_impl/mlx_llm_impl.py +271 -0
  213. nexaai/llm_impl/pybind_llm_impl.py +238 -0
  214. nexaai/log.py +92 -0
  215. nexaai/mlx_backend/asr/__init__.py +12 -0
  216. nexaai/mlx_backend/asr/interface.py +122 -0
  217. nexaai/mlx_backend/common/__init__.py +0 -0
  218. nexaai/mlx_backend/common/utils.py +25 -0
  219. nexaai/mlx_backend/cv/__init__.py +0 -0
  220. nexaai/mlx_backend/cv/generate.py +195 -0
  221. nexaai/mlx_backend/cv/interface.py +162 -0
  222. nexaai/mlx_backend/cv/main.py +81 -0
  223. nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
  224. nexaai/mlx_backend/embedding/__init__.py +0 -0
  225. nexaai/mlx_backend/embedding/generate.py +333 -0
  226. nexaai/mlx_backend/embedding/interface.py +617 -0
  227. nexaai/mlx_backend/embedding/main.py +173 -0
  228. nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
  229. nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
  230. nexaai/mlx_backend/image_gen/__init__.py +1 -0
  231. nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
  232. nexaai/mlx_backend/image_gen/interface.py +82 -0
  233. nexaai/mlx_backend/image_gen/main.py +281 -0
  234. nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
  235. nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
  236. nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
  237. nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
  238. nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
  239. nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
  240. nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
  241. nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
  242. nexaai/mlx_backend/llm/__init__.py +0 -0
  243. nexaai/mlx_backend/llm/generate.py +149 -0
  244. nexaai/mlx_backend/llm/interface.py +764 -0
  245. nexaai/mlx_backend/llm/main.py +68 -0
  246. nexaai/mlx_backend/ml.py +888 -0
  247. nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
  248. nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
  249. nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
  250. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  251. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  252. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  253. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  254. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  255. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  256. nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
  257. nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
  258. nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
  259. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  260. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  261. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  262. nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
  263. nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
  264. nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
  265. nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
  266. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  267. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  268. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  269. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  270. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  271. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  272. nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
  273. nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
  274. nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
  275. nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
  276. nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
  277. nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
  278. nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
  279. nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
  280. nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
  281. nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
  282. nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
  283. nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
  284. nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
  285. nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  286. nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
  287. nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
  288. nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
  289. nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
  290. nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
  291. nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
  292. nexaai/mlx_backend/mlx_audio/server.py +525 -0
  293. nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
  294. nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  295. nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
  296. nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
  297. nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
  298. nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
  299. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  300. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  301. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
  302. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
  303. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  304. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  305. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  306. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  307. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  308. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  309. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  310. nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
  311. nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
  312. nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
  313. nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
  314. nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  315. nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
  316. nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
  317. nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
  318. nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
  319. nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
  320. nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
  321. nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
  322. nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
  323. nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
  324. nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
  325. nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
  326. nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
  327. nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
  328. nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
  329. nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
  330. nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
  331. nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
  332. nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
  333. nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
  334. nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
  335. nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
  336. nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  337. nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
  338. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  339. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  340. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  341. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  342. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  343. nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  344. nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
  345. nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
  346. nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
  347. nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  348. nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
  349. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  350. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  351. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  352. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
  353. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  354. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
  355. nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
  356. nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
  357. nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
  358. nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  359. nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  360. nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
  361. nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
  362. nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  363. nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
  364. nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
  365. nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
  366. nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
  367. nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  368. nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
  369. nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  370. nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
  371. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  372. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  373. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  374. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  375. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  376. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  377. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  378. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  379. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  380. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  381. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  382. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  383. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  384. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  385. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  386. nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
  387. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  388. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
  389. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  390. nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
  391. nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
  392. nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
  393. nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
  394. nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
  395. nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
  396. nexaai/mlx_backend/mlx_audio/utils.py +237 -0
  397. nexaai/mlx_backend/mlx_audio/version.py +1 -0
  398. nexaai/mlx_backend/profiling.py +239 -0
  399. nexaai/mlx_backend/rerank/__init__.py +0 -0
  400. nexaai/mlx_backend/rerank/generate.py +174 -0
  401. nexaai/mlx_backend/rerank/interface.py +287 -0
  402. nexaai/mlx_backend/rerank/main.py +127 -0
  403. nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
  404. nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
  405. nexaai/mlx_backend/sd/__init__.py +1 -0
  406. nexaai/mlx_backend/sd/interface.py +362 -0
  407. nexaai/mlx_backend/sd/main.py +286 -0
  408. nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
  409. nexaai/mlx_backend/sd/modeling/clip.py +116 -0
  410. nexaai/mlx_backend/sd/modeling/config.py +65 -0
  411. nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
  412. nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
  413. nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
  414. nexaai/mlx_backend/sd/modeling/unet.py +460 -0
  415. nexaai/mlx_backend/sd/modeling/vae.py +274 -0
  416. nexaai/mlx_backend/tts/__init__.py +12 -0
  417. nexaai/mlx_backend/tts/interface.py +276 -0
  418. nexaai/mlx_backend/vlm/__init__.py +3 -0
  419. nexaai/mlx_backend/vlm/generate.py +572 -0
  420. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
  421. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
  422. nexaai/mlx_backend/vlm/interface.py +559 -0
  423. nexaai/mlx_backend/vlm/main.py +365 -0
  424. nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
  425. nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
  426. nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
  427. nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
  428. nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  429. nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  430. nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
  431. nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
  432. nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
  433. nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
  434. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  435. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  436. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  437. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  438. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  439. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  440. nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
  441. nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
  442. nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
  443. nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
  444. nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
  445. nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
  446. nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
  447. nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
  448. nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
  449. nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
  450. nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
  451. nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  452. nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
  453. nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
  454. nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
  455. nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
  456. nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
  457. nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
  458. nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
  459. nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
  460. nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
  461. nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
  462. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  463. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  464. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
  465. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
  466. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
  467. nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
  468. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  469. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  470. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
  471. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
  472. nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
  473. nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
  474. nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
  475. nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
  476. nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
  477. nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
  478. nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
  479. nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
  480. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  481. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
  482. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  483. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
  484. nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
  485. nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
  486. nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
  487. nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
  488. nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
  489. nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
  490. nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
  491. nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
  492. nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
  493. nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
  494. nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
  495. nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
  496. nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
  497. nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
  498. nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
  499. nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
  500. nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  501. nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
  502. nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
  503. nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
  504. nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
  505. nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
  506. nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
  507. nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
  508. nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
  509. nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  510. nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  511. nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
  512. nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
  513. nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
  514. nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
  515. nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
  516. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  517. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  518. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  519. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  520. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  521. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  522. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
  523. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
  524. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  525. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  526. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  527. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  528. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  529. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  530. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  531. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  532. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  533. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  534. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
  535. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  536. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  537. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  538. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  539. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  540. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  541. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  542. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  543. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
  544. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  545. nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
  546. nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  547. nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  548. nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
  549. nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
  550. nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
  551. nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
  552. nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
  553. nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
  554. nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
  555. nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
  556. nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
  557. nexaai/rerank.py +57 -0
  558. nexaai/rerank_impl/__init__.py +0 -0
  559. nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
  560. nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
  561. nexaai/runtime.py +68 -0
  562. nexaai/runtime_error.py +24 -0
  563. nexaai/tts.py +75 -0
  564. nexaai/tts_impl/__init__.py +0 -0
  565. nexaai/tts_impl/mlx_tts_impl.py +94 -0
  566. nexaai/tts_impl/pybind_tts_impl.py +43 -0
  567. nexaai/utils/decode.py +18 -0
  568. nexaai/utils/manifest_utils.py +531 -0
  569. nexaai/utils/model_manager.py +1745 -0
  570. nexaai/utils/model_types.py +49 -0
  571. nexaai/utils/progress_tracker.py +389 -0
  572. nexaai/utils/quantization_utils.py +245 -0
  573. nexaai/vlm.py +130 -0
  574. nexaai/vlm_impl/__init__.py +0 -0
  575. nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
  576. nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
  577. nexaai-1.0.29.dist-info/METADATA +35 -0
  578. nexaai-1.0.29.dist-info/RECORD +580 -0
  579. nexaai-1.0.29.dist-info/WHEEL +5 -0
  580. nexaai-1.0.29.dist-info/top_level.txt +1 -0
@@ -0,0 +1,979 @@
1
+ import math
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import mlx.core as mx
5
+ import mlx.nn as nn
6
+ import numpy as np
7
+
8
+ from mlx_audio.utils import istft, stft
9
+
10
+ from ..base import check_array_shape
11
+ from ..interpolate import interpolate
12
+
13
+
14
+ def get_padding(kernel_size: int, dilation: int = 1) -> int:
15
+ return int((kernel_size * dilation - dilation) / 2)
16
+
17
+
18
+ def compute_norm(
19
+ x: mx.array,
20
+ p: int,
21
+ dim: Optional[Union[int, List[int]]] = None,
22
+ keepdim: bool = False,
23
+ ) -> mx.array:
24
+ """
25
+ Compute the p-norm of a tensor along specified dimensions.
26
+
27
+ Args:
28
+ x: Input array
29
+ p: Order of the norm (1 or 2)
30
+ dim: Dimension(s) along which to compute the norm
31
+ keepdim: Whether to keep the reduced dimensions
32
+
33
+ Returns:
34
+ MLX array containing the computed norm
35
+ """
36
+ if p not in [1, 2]:
37
+ raise ValueError("Only p-norms with p of 1 or 2 are supported")
38
+
39
+ # Handle dimension input
40
+ if dim is None:
41
+ dim = tuple(range(x.ndim))
42
+ elif isinstance(dim, int):
43
+ dim = (dim,)
44
+
45
+ if p == 1:
46
+ # L1 norm
47
+ return mx.sum(mx.abs(x), axis=dim, keepdims=keepdim)
48
+ else:
49
+ # L2 norm
50
+ return mx.sqrt(mx.sum(x * x, axis=dim, keepdims=keepdim))
51
+
52
+
53
+ def weight_norm(
54
+ weight_v: mx.array, weight_g: mx.array, dim: Optional[int] = None
55
+ ) -> mx.array:
56
+ """
57
+ Applies weight normalization to the input tensor.
58
+
59
+ Weight normalization reparameterizes weight vectors in a neural network
60
+ as a magnitude scalar times a direction vector: w = g * v/||v||
61
+
62
+ Args:
63
+ weight_v: Weight direction tensor (v)
64
+ weight_g: Weight magnitude tensor (g)
65
+ dim: Dimension along which to normalize. If None, normalize over all dims
66
+ except dim=-1
67
+
68
+ Returns:
69
+ Normalized weight tensor
70
+ """
71
+ rank = len(weight_v.shape)
72
+
73
+ if dim is not None:
74
+ # Adjust negative dim
75
+ if dim < -1:
76
+ dim += rank
77
+
78
+ # Create list of axes to normalize over
79
+ axes = list(range(rank))
80
+ if dim != -1:
81
+ axes.remove(dim)
82
+ else:
83
+ # Default behavior: normalize over all dimensions
84
+ axes = list(range(rank))
85
+
86
+ # Compute L2 norm of v along specified axes
87
+ norm_v = compute_norm(weight_v, p=2, dim=axes, keepdim=True)
88
+
89
+ # Normalize and scale by g: w = g * (v / ||v||)
90
+ normalized_weight = weight_v / (
91
+ norm_v + 1e-7
92
+ ) # Add epsilon for numerical stability
93
+ return normalized_weight * weight_g
94
+
95
+
96
+ class ConvWeighted(nn.Module):
97
+ """Conv1d with weight normalization"""
98
+
99
+ def __init__(
100
+ self,
101
+ in_channels: int,
102
+ out_channels: int,
103
+ kernel_size: int,
104
+ stride: int = 1,
105
+ padding: int = 1,
106
+ dilation: int = 1,
107
+ groups: int = 1,
108
+ bias: bool = True,
109
+ encode: bool = False,
110
+ ):
111
+ super().__init__()
112
+
113
+ self.stride = stride
114
+ self.padding = padding
115
+ self.dilation = dilation
116
+ self.groups = groups
117
+
118
+ # Initialize weight magnitude (g) and direction (v) vectors
119
+ self.weight_g = mx.ones(
120
+ (out_channels, 1, 1)
121
+ ) # Scalar magnitude per output channel
122
+ self.weight_v = mx.ones(
123
+ (out_channels, kernel_size, in_channels)
124
+ ) # Direction vectors
125
+
126
+ self.bias = mx.zeros(in_channels if encode else out_channels) if bias else None
127
+
128
+ def __call__(self, x, conv):
129
+
130
+ weight = weight_norm(self.weight_v, self.weight_g, dim=0)
131
+
132
+ if self.bias is not None:
133
+ bias = self.bias.reshape(1, 1, -1)
134
+ else:
135
+ bias = None
136
+
137
+ def apply_conv(x, weight_to_use):
138
+ if self.bias is not None:
139
+ return (
140
+ conv(
141
+ x,
142
+ weight_to_use,
143
+ stride=self.stride,
144
+ padding=self.padding,
145
+ dilation=self.dilation,
146
+ groups=self.groups,
147
+ )
148
+ + bias
149
+ )
150
+ return conv(
151
+ x,
152
+ weight_to_use,
153
+ stride=self.stride,
154
+ padding=self.padding,
155
+ dilation=self.dilation,
156
+ groups=self.groups,
157
+ )
158
+
159
+ try:
160
+ # Check if channels last match or if groups > 1 for ConvTransposed1d
161
+ if x.shape[-1] == weight.shape[-1] or self.groups > 1:
162
+ # Input is channels first, use weight as-is
163
+ return apply_conv(x, weight)
164
+ else:
165
+ # Input is channels last, need to transpose weight
166
+ return apply_conv(x, weight.T)
167
+ except Exception as e:
168
+ print(f"Error: {e}")
169
+ print(f"x.shape: {x.shape}, weight.shape: {weight.shape}")
170
+ raise e
171
+
172
+
173
+ class _InstanceNorm(nn.Module):
174
+ def __init__(
175
+ self,
176
+ num_features: int,
177
+ eps: float = 1e-5,
178
+ momentum: float = 0.1,
179
+ affine: bool = False,
180
+ track_running_stats: bool = False,
181
+ ) -> None:
182
+ super().__init__()
183
+ self.num_features = num_features
184
+ self.eps = eps
185
+ self.momentum = momentum
186
+ self.affine = affine
187
+ self.track_running_stats = track_running_stats
188
+
189
+ # Initialize parameters
190
+ if self.affine:
191
+ self.weight = mx.ones((num_features,))
192
+ self.bias = mx.zeros((num_features,))
193
+ else:
194
+ self.weight = None
195
+ self.bias = None
196
+
197
+ if self.track_running_stats:
198
+ self.running_mean = mx.zeros((num_features,))
199
+ self.running_var = mx.ones((num_features,))
200
+ else:
201
+ self.running_mean = None
202
+ self.running_var = None
203
+
204
+ def _check_input_dim(self, input):
205
+ raise NotImplementedError
206
+
207
+ def _get_no_batch_dim(self):
208
+ raise NotImplementedError
209
+
210
+ def _handle_no_batch_input(self, input):
211
+ # Add batch dimension, apply norm, then remove batch dimension
212
+ expanded = mx.expand_dims(input, axis=0)
213
+ result = self._apply_instance_norm(expanded)
214
+ return mx.squeeze(result, axis=0)
215
+
216
+ def _apply_instance_norm(self, input):
217
+ # MLX doesn't have a direct instance_norm function like PyTorch
218
+ # So we need to implement it manually
219
+
220
+ # Get dimensions
221
+ dims = list(range(input.ndim))
222
+ feature_dim = dims[-self._get_no_batch_dim()]
223
+
224
+ # Compute statistics along all dims except batch and feature dims
225
+ reduce_dims = [d for d in dims if d != 0 and d != feature_dim]
226
+
227
+ if self.training or not self.track_running_stats:
228
+ # Compute mean and variance for normalization
229
+ mean = mx.mean(input, axis=reduce_dims, keepdims=True)
230
+ var = mx.var(input, axis=reduce_dims, keepdims=True)
231
+
232
+ # Update running stats if tracking
233
+ if self.track_running_stats and self.training:
234
+ # Compute overall mean and variance (across batch too)
235
+ overall_mean = mx.mean(mean, axis=0)
236
+ overall_var = mx.mean(var, axis=0)
237
+
238
+ # Update running statistics
239
+ self.running_mean = (
240
+ 1 - self.momentum
241
+ ) * self.running_mean + self.momentum * overall_mean
242
+ self.running_var = (
243
+ 1 - self.momentum
244
+ ) * self.running_var + self.momentum * overall_var
245
+ else:
246
+ # Use running statistics
247
+ mean_shape = [1] * input.ndim
248
+ mean_shape[feature_dim] = self.num_features
249
+ var_shape = mean_shape.copy()
250
+
251
+ mean = mx.reshape(self.running_mean, mean_shape)
252
+ var = mx.reshape(self.running_var, var_shape)
253
+
254
+ # Normalize
255
+ x_norm = (input - mean) / mx.sqrt(var + self.eps)
256
+
257
+ # Apply affine transform if needed
258
+ if self.affine:
259
+ weight_shape = [1] * input.ndim
260
+ weight_shape[feature_dim] = self.num_features
261
+ bias_shape = weight_shape.copy()
262
+
263
+ weight = mx.reshape(self.weight, weight_shape)
264
+ bias = mx.reshape(self.bias, bias_shape)
265
+
266
+ return x_norm * weight + bias
267
+ else:
268
+ return x_norm
269
+
270
+ def __call__(self, input):
271
+ self._check_input_dim(input)
272
+
273
+ feature_dim = input.ndim - self._get_no_batch_dim()
274
+ if input.shape[feature_dim] != self.num_features:
275
+ if self.affine:
276
+ raise ValueError(
277
+ f"expected input's size at dim={feature_dim} to match num_features"
278
+ f" ({self.num_features}), but got: {input.shape[feature_dim]}."
279
+ )
280
+ else:
281
+ print(
282
+ f"input's size at dim={feature_dim} does not match num_features. "
283
+ "You can silence this warning by not passing in num_features, "
284
+ "which is not used because affine=False"
285
+ )
286
+
287
+ if input.ndim == self._get_no_batch_dim():
288
+ return self._handle_no_batch_input(input)
289
+
290
+ return self._apply_instance_norm(input)
291
+
292
+
293
+ class InstanceNorm1d(_InstanceNorm):
294
+ """Applies Instance Normalization over a 2D (unbatched) or 3D (batched) input.
295
+
296
+ This implementation follows the algorithm described in the paper
297
+ "Instance Normalization: The Missing Ingredient for Fast Stylization".
298
+
299
+ Args:
300
+ num_features: Number of features or channels (C) of the input
301
+ eps: A value added to the denominator for numerical stability. Default: 1e-5
302
+ momentum: The value used for the running_mean and running_var computation. Default: 0.1
303
+ affine: When True, this module has learnable affine parameters. Default: False
304
+ track_running_stats: When True, this module tracks running statistics. Default: False
305
+
306
+ Shape:
307
+ - Input: (N, C, L) or (C, L)
308
+ - Output: Same shape as input
309
+
310
+ Examples:
311
+ >>> # Without Learnable Parameters
312
+ >>> m = nn.InstanceNorm1d(100)
313
+ >>> # With Learnable Parameters
314
+ >>> m = nn.InstanceNorm1d(100, affine=True)
315
+ >>> input = mx.random.normal((20, 100, 40))
316
+ >>> output = m(input)
317
+ """
318
+
319
+ def _get_no_batch_dim(self):
320
+ return 2
321
+
322
+ def _check_input_dim(self, input):
323
+ if input.ndim not in (2, 3):
324
+ raise ValueError(f"expected 2D or 3D input (got {input.ndim}D input)")
325
+
326
+
327
+ class AdaIN1d(nn.Module):
328
+ def __init__(self, style_dim: int, num_features: int):
329
+ super().__init__()
330
+ self.norm = InstanceNorm1d(num_features, affine=False)
331
+ self.fc = nn.Linear(style_dim, num_features * 2)
332
+
333
+ def __call__(self, x: mx.array, s: mx.array) -> mx.array:
334
+ h = self.fc(s)
335
+ h = mx.expand_dims(h, axis=2) # Equivalent to view(..., 1)
336
+ gamma, beta = mx.split(h, 2, axis=1)
337
+ x = (1 + gamma) * self.norm(x) + beta
338
+ return x
339
+
340
+
341
+ class AdaINResBlock1(nn.Module):
342
+ def __init__(
343
+ self,
344
+ channels: int,
345
+ kernel_size: int = 3,
346
+ dilation: Tuple[int, int, int] = (1, 3, 5),
347
+ style_dim: int = 64,
348
+ ):
349
+ super(AdaINResBlock1, self).__init__()
350
+ self.convs1 = [
351
+ ConvWeighted(
352
+ channels,
353
+ channels,
354
+ kernel_size,
355
+ stride=1,
356
+ padding=get_padding(kernel_size, dilation[i]),
357
+ dilation=dilation[i],
358
+ )
359
+ for i in range(3)
360
+ ]
361
+ self.convs2 = [
362
+ ConvWeighted(
363
+ channels,
364
+ channels,
365
+ kernel_size,
366
+ stride=1,
367
+ padding=get_padding(kernel_size, 1),
368
+ dilation=1,
369
+ )
370
+ for _ in range(3)
371
+ ]
372
+ self.adain1 = [AdaIN1d(style_dim, channels) for _ in range(3)]
373
+ self.adain2 = [AdaIN1d(style_dim, channels) for _ in range(3)]
374
+ self.alpha1 = [mx.ones((1, channels, 1)) for _ in range(len(self.convs1))]
375
+ self.alpha2 = [mx.ones((1, channels, 1)) for _ in range(len(self.convs2))]
376
+
377
+ def __call__(self, x: mx.array, s: mx.array) -> mx.array:
378
+ for c1, c2, n1, n2, a1, a2 in zip(
379
+ self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2
380
+ ):
381
+ xt = n1(x, s)
382
+ xt = xt + (1 / a1) * (mx.sin(a1 * xt) ** 2) # Snake1D
383
+
384
+ xt = xt.swapaxes(2, 1)
385
+ xt = c1(xt, mx.conv1d)
386
+ xt = xt.swapaxes(2, 1)
387
+
388
+ xt = n2(xt, s)
389
+ xt = xt + (1 / a2) * (mx.sin(a2 * xt) ** 2) # Snake1D
390
+
391
+ xt = xt.swapaxes(2, 1)
392
+ xt = c2(xt, mx.conv1d)
393
+ xt = xt.swapaxes(2, 1)
394
+
395
+ x = xt + x
396
+ return x
397
+
398
+
399
+ def mlx_angle(z, deg=False):
400
+ z = mx.array(z)
401
+
402
+ if z.dtype == mx.complex64:
403
+ zimag = mx.imag(z)
404
+ zreal = mx.real(z)
405
+ else:
406
+ zimag = mx.zeros_like(z)
407
+ zreal = z
408
+
409
+ a = mx.arctan2(zimag, zreal)
410
+
411
+ if deg:
412
+ a = a * (180.0 / math.pi)
413
+
414
+ return a
415
+
416
+
417
+ def mlx_unwrap(p, discont=None, axis=-1, period=2 * math.pi):
418
+ if discont is None:
419
+ discont = period / 2
420
+
421
+ discont = max(discont, period / 2)
422
+
423
+ slice_indices = [slice(None)] * p.ndim
424
+
425
+ slice_indices[axis] = slice(1, None)
426
+ after_slice = tuple(slice_indices)
427
+
428
+ slice_indices[axis] = slice(None, -1)
429
+ before_slice = tuple(slice_indices)
430
+
431
+ dd = p[after_slice] - p[before_slice]
432
+
433
+ interval_high = period / 2
434
+ interval_low = -interval_high
435
+
436
+ ddmod = dd - period * mx.floor((dd - interval_low) / period)
437
+ ddmod = mx.where(
438
+ (mx.abs(dd - interval_high) < 1e-10) & (dd > 0), interval_high, ddmod
439
+ )
440
+
441
+ ph_correct = ddmod - dd
442
+ ph_correct = mx.where(mx.abs(dd) < discont, 0, ph_correct)
443
+
444
+ padding_shape = list(ph_correct.shape)
445
+ padding_shape[axis] = 1
446
+ zero_padding = mx.zeros(padding_shape)
447
+ padded_corrections = mx.concatenate([zero_padding, ph_correct], axis=axis)
448
+ cumulative_corrections = mx.cumsum(padded_corrections, axis=axis)
449
+
450
+ return p + cumulative_corrections
451
+
452
+
453
+ class MLXSTFT:
454
+ def __init__(
455
+ self, filter_length=800, hop_length=200, win_length=800, window="hann"
456
+ ):
457
+ self.filter_length = filter_length
458
+ self.hop_length = hop_length
459
+ self.win_length = win_length
460
+
461
+ self.window = window
462
+
463
+ def transform(self, input_data):
464
+ # Ensure 2D
465
+ if input_data.ndim == 1:
466
+ input_data = input_data[None, :]
467
+
468
+ magnitudes = []
469
+ phases = []
470
+
471
+ for batch_idx in range(input_data.shape[0]):
472
+ # Compute STFT
473
+ x_stft = stft(
474
+ input_data[batch_idx],
475
+ n_fft=self.filter_length,
476
+ hop_length=self.hop_length,
477
+ win_length=self.win_length,
478
+ window=self.window,
479
+ center=True,
480
+ pad_mode="reflect",
481
+ ).transpose(1, 0)
482
+
483
+ # Get magnitude
484
+ magnitude = mx.abs(x_stft)
485
+
486
+ # Get phase
487
+ phase = mlx_angle(x_stft)
488
+
489
+ magnitudes.append(magnitude)
490
+ phases.append(phase)
491
+
492
+ magnitudes = mx.stack(magnitudes, axis=0)
493
+ phases = mx.stack(phases, axis=0)
494
+
495
+ return magnitudes, phases
496
+
497
+ def inverse(self, magnitude, phase):
498
+ reconstructed = []
499
+
500
+ for batch_idx in range(magnitude.shape[0]):
501
+ # Unwrap phases for reconstruction
502
+ phase_cont = mlx_unwrap(phase[batch_idx], axis=1)
503
+
504
+ # Combine magnitude and phase
505
+ real_part = magnitude[batch_idx] * mx.cos(phase_cont)
506
+ imag_part = magnitude[batch_idx] * mx.sin(phase_cont)
507
+ x_stft = real_part + 1j * imag_part
508
+
509
+ # Inverse STFT
510
+ audio = istft(
511
+ x_stft,
512
+ hop_length=self.hop_length,
513
+ win_length=self.win_length,
514
+ window=self.window,
515
+ center=True,
516
+ length=None,
517
+ )
518
+
519
+ reconstructed.append(audio)
520
+
521
+ reconstructed = mx.stack(reconstructed, axis=0)[:, None, :]
522
+
523
+ return reconstructed
524
+
525
+ def __call__(self, input_data: mx.array) -> mx.array:
526
+ self.magnitude, self.phase = self.transform(input_data)
527
+ reconstruction = self.inverse(self.magnitude, self.phase)
528
+ return mx.expand_dims(reconstruction, axis=-2)
529
+
530
+
531
+ class SineGen:
532
+ def __init__(
533
+ self,
534
+ samp_rate: int,
535
+ upsample_scale: int,
536
+ harmonic_num: int = 0,
537
+ sine_amp: float = 0.1,
538
+ noise_std: float = 0.003,
539
+ voiced_threshold: float = 0,
540
+ flag_for_pulse: bool = False,
541
+ ):
542
+ super().__init__()
543
+ self.sine_amp = sine_amp
544
+ self.noise_std = noise_std
545
+ self.harmonic_num = harmonic_num
546
+ self.dim = self.harmonic_num + 1
547
+ self.sampling_rate = samp_rate
548
+ self.voiced_threshold = voiced_threshold
549
+ self.flag_for_pulse = flag_for_pulse
550
+ self.upsample_scale = upsample_scale
551
+
552
+ def _f02uv(self, f0: mx.array) -> mx.array:
553
+ return mx.array(f0 > self.voiced_threshold, dtype=mx.float32)
554
+
555
+ def _f02sine(self, f0_values: mx.array) -> mx.array:
556
+ """f0_values: (batchsize, length, dim)
557
+ where dim indicates fundamental tone and overtones
558
+ """
559
+ # convert to F0 in rad. The interger part n can be ignored
560
+ # because 2 * np.pi * n doesn't affect phase
561
+ rad_values = (f0_values / self.sampling_rate) % 1
562
+ # initial phase noise (no noise for fundamental component)
563
+ rand_ini = mx.random.normal((f0_values.shape[0], f0_values.shape[2]))
564
+ rand_ini[:, 0] = 0
565
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
566
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
567
+ if not self.flag_for_pulse:
568
+ rad_values = interpolate(
569
+ rad_values.transpose(0, 2, 1),
570
+ scale_factor=1 / self.upsample_scale,
571
+ mode="linear",
572
+ ).transpose(0, 2, 1)
573
+ phase = mx.cumsum(rad_values, axis=1) * 2 * mx.pi
574
+ phase = interpolate(
575
+ phase.transpose(0, 2, 1) * self.upsample_scale,
576
+ scale_factor=self.upsample_scale,
577
+ mode="linear",
578
+ ).transpose(0, 2, 1)
579
+ sines = mx.sin(phase)
580
+ else:
581
+ # If necessary, make sure that the first time step of every
582
+ # voiced segments is sin(pi) or cos(0)
583
+ # This is used for pulse-train generation
584
+ # identify the last time step in unvoiced segments
585
+ uv = self._f02uv(f0_values)
586
+ uv_1 = mx.roll(uv, shifts=-1, axis=1)
587
+ uv_1[:, -1, :] = 1
588
+ u_loc = (uv < 1) * (uv_1 > 0)
589
+ # get the instantanouse phase
590
+ tmp_cumsum = mx.cumsum(rad_values, axis=1)
591
+ # different batch needs to be processed differently
592
+ for idx in range(f0_values.shape[0]):
593
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
594
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
595
+ # stores the accumulation of i.phase within
596
+ # each voiced segments
597
+ tmp_cumsum[idx, :, :] = 0
598
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
599
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
600
+ # within the previous voiced segment.
601
+ i_phase = mx.cumsum(rad_values - tmp_cumsum, axis=1)
602
+ # get the sines
603
+ sines = mx.cos(i_phase * 2 * mx.pi)
604
+ return sines
605
+
606
+ def __call__(self, f0: mx.array) -> Tuple[mx.array, mx.array, mx.array]:
607
+ f0_buf = mx.zeros((f0.shape[0], f0.shape[1], self.dim))
608
+
609
+ # Fundamental component
610
+ fn = f0 * mx.arange(1, self.harmonic_num + 2)[None, None, :]
611
+
612
+ # Generate sine waveforms
613
+ sine_waves = self._f02sine(fn) * self.sine_amp
614
+
615
+ # Generate UV signal
616
+ uv = self._f02uv(f0)
617
+
618
+ # Generate noise
619
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
620
+ noise = noise_amp * mx.random.normal(sine_waves.shape)
621
+
622
+ sine_waves = sine_waves * uv + noise
623
+ return sine_waves, uv, noise
624
+
625
+
626
+ class SourceModuleHnNSF(nn.Module):
627
+ """SourceModule for hn-nsf
628
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
629
+ add_noise_std=0.003, voiced_threshod=0)
630
+ sampling_rate: sampling_rate in Hz
631
+ harmonic_num: number of harmonic above F0 (default: 0)
632
+ sine_amp: amplitude of sine source signal (default: 0.1)
633
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
634
+ note that amplitude of noise in unvoiced is decided
635
+ by sine_amp
636
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
637
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
638
+ F0_sampled (batchsize, length, 1)
639
+ Sine_source (batchsize, length, 1)
640
+ noise_source (batchsize, length 1)
641
+ uv (batchsize, length, 1)
642
+ """
643
+
644
+ def __init__(
645
+ self,
646
+ sampling_rate,
647
+ upsample_scale,
648
+ harmonic_num=0,
649
+ sine_amp=0.1,
650
+ add_noise_std=0.003,
651
+ voiced_threshod=0,
652
+ ):
653
+ super(SourceModuleHnNSF, self).__init__()
654
+ self.sine_amp = sine_amp
655
+ self.noise_std = add_noise_std
656
+ # to produce sine waveforms
657
+ self.l_sin_gen = SineGen(
658
+ sampling_rate,
659
+ upsample_scale,
660
+ harmonic_num,
661
+ sine_amp,
662
+ add_noise_std,
663
+ voiced_threshod,
664
+ )
665
+ # to merge source harmonics into a single excitation
666
+ self.l_linear = nn.Linear(harmonic_num + 1, 1)
667
+
668
+ def __call__(self, x):
669
+ """
670
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
671
+ F0_sampled (batchsize, length, 1)
672
+ Sine_source (batchsize, length, 1)
673
+ noise_source (batchsize, length 1)
674
+ """
675
+ # source for harmonic branch
676
+ sine_wavs, uv, _ = self.l_sin_gen(x)
677
+ sine_merge = mx.tanh(self.l_linear(sine_wavs))
678
+ # source for noise branch, in the same shape as uv
679
+ noise = mx.random.normal(uv.shape) * self.sine_amp / 3
680
+ return sine_merge, noise, uv
681
+
682
+
683
+ class ReflectionPad1d(nn.Module):
684
+ def __init__(self, padding):
685
+ super().__init__()
686
+ self.padding = padding
687
+
688
+ def __call__(self, x):
689
+ return mx.pad(x, ((0, 0), (0, 0), (self.padding[0], self.padding[1])))
690
+
691
+
692
+ def leaky_relu(x, negative_slope=0.01):
693
+ return mx.where(x > 0, x, x * negative_slope)
694
+
695
+
696
+ class Generator(nn.Module):
697
+ def __init__(
698
+ self,
699
+ style_dim,
700
+ resblock_kernel_sizes,
701
+ upsample_rates,
702
+ upsample_initial_channel,
703
+ resblock_dilation_sizes,
704
+ upsample_kernel_sizes,
705
+ gen_istft_n_fft,
706
+ gen_istft_hop_size,
707
+ ):
708
+ super(Generator, self).__init__()
709
+ self.num_kernels = len(resblock_kernel_sizes)
710
+ self.num_upsamples = len(upsample_rates)
711
+ upsample_rates = mx.array(upsample_rates)
712
+ self.m_source = SourceModuleHnNSF(
713
+ sampling_rate=24000,
714
+ upsample_scale=mx.prod(upsample_rates) * gen_istft_hop_size,
715
+ harmonic_num=8,
716
+ voiced_threshod=10,
717
+ )
718
+ self.f0_upsamp = nn.Upsample(
719
+ scale_factor=mx.prod(upsample_rates) * gen_istft_hop_size
720
+ )
721
+ self.noise_convs = []
722
+ self.noise_res = []
723
+ self.ups = []
724
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
725
+ self.ups.append(
726
+ ConvWeighted(
727
+ upsample_initial_channel // (2 ** (i + 1)),
728
+ upsample_initial_channel // (2**i),
729
+ int(k),
730
+ int(u),
731
+ padding=int((k - u) // 2),
732
+ encode=True,
733
+ )
734
+ )
735
+ self.resblocks = []
736
+ for i in range(len(self.ups)):
737
+ ch = upsample_initial_channel // (2 ** (i + 1))
738
+ for j, (k, d) in enumerate(
739
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
740
+ ):
741
+ self.resblocks.append(AdaINResBlock1(ch, k, d, style_dim))
742
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
743
+ if i + 1 < len(upsample_rates):
744
+ stride_f0 = int(mx.prod(upsample_rates[i + 1 :]))
745
+ self.noise_convs.append(
746
+ nn.Conv1d(
747
+ gen_istft_n_fft + 2,
748
+ c_cur,
749
+ kernel_size=stride_f0 * 2,
750
+ stride=stride_f0,
751
+ padding=(stride_f0 + 1) // 2,
752
+ )
753
+ )
754
+ self.noise_res.append(AdaINResBlock1(c_cur, 7, [1, 3, 5], style_dim))
755
+ else:
756
+ self.noise_convs.append(
757
+ nn.Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1)
758
+ )
759
+ self.noise_res.append(AdaINResBlock1(c_cur, 11, [1, 3, 5], style_dim))
760
+ self.post_n_fft = gen_istft_n_fft
761
+ self.conv_post = ConvWeighted(ch, self.post_n_fft + 2, 7, 1, padding=3)
762
+ self.reflection_pad = ReflectionPad1d((1, 0))
763
+ self.stft = MLXSTFT(
764
+ filter_length=gen_istft_n_fft,
765
+ hop_length=gen_istft_hop_size,
766
+ win_length=gen_istft_n_fft,
767
+ )
768
+
769
+ def __call__(self, x, s, f0):
770
+ f0 = self.f0_upsamp(f0[:, None].transpose(0, 2, 1)) # bs,n,t
771
+ har_source, noi_source, uv = self.m_source(f0)
772
+ har_source = mx.squeeze(har_source.transpose(0, 2, 1), axis=1)
773
+ har_spec, har_phase = self.stft.transform(har_source)
774
+ har = mx.concatenate([har_spec, har_phase], axis=1)
775
+ har = har.swapaxes(2, 1)
776
+ for i in range(self.num_upsamples):
777
+ x = leaky_relu(x, negative_slope=0.1)
778
+ x_source = self.noise_convs[i](har)
779
+ x_source = x_source.swapaxes(2, 1)
780
+ x_source = self.noise_res[i](x_source, s)
781
+
782
+ x = x.swapaxes(2, 1)
783
+ x = self.ups[i](x, mx.conv_transpose1d)
784
+ x = x.swapaxes(2, 1)
785
+
786
+ if i == self.num_upsamples - 1:
787
+ x = self.reflection_pad(x)
788
+ x = x + x_source
789
+
790
+ xs = None
791
+ for j in range(self.num_kernels):
792
+ if xs is None:
793
+ xs = self.resblocks[i * self.num_kernels + j](x, s)
794
+ else:
795
+ xs += self.resblocks[i * self.num_kernels + j](x, s)
796
+ x = xs / self.num_kernels
797
+
798
+ x = leaky_relu(x, negative_slope=0.01)
799
+
800
+ x = x.swapaxes(2, 1)
801
+ x = self.conv_post(x, mx.conv1d)
802
+ x = x.swapaxes(2, 1)
803
+
804
+ spec = mx.exp(x[:, : self.post_n_fft // 2 + 1, :])
805
+ phase = mx.sin(x[:, self.post_n_fft // 2 + 1 :, :])
806
+ result = self.stft.inverse(spec, phase)
807
+ return result
808
+
809
+
810
+ class UpSample1d(nn.Module):
811
+ def __init__(self, layer_type):
812
+ super().__init__()
813
+ self.layer_type = layer_type
814
+ self.interpolate = nn.Upsample(
815
+ scale_factor=2, mode="nearest", align_corners=True
816
+ )
817
+
818
+ def __call__(self, x):
819
+ if self.layer_type == "none":
820
+ return x
821
+ else:
822
+ return self.interpolate(x)
823
+
824
+
825
+ class AdainResBlk1d(nn.Module):
826
+ def __init__(
827
+ self,
828
+ dim_in,
829
+ dim_out,
830
+ style_dim=64,
831
+ actv=nn.LeakyReLU(0.2),
832
+ upsample="none",
833
+ dropout_p=0.0,
834
+ bias=False,
835
+ conv_type=None,
836
+ ):
837
+ super().__init__()
838
+ self.actv = actv
839
+ self.dim_in = dim_in
840
+ self.conv_type = conv_type
841
+ self.upsample_type = upsample
842
+ self.upsample = UpSample1d(upsample)
843
+ self.learned_sc = dim_in != dim_out
844
+ self._build_weights(dim_in, dim_out, style_dim)
845
+ self.dropout = nn.Dropout(dropout_p)
846
+ if upsample == "none":
847
+ self.pool = nn.Identity()
848
+ else:
849
+ self.pool = ConvWeighted(
850
+ 1, dim_in, kernel_size=3, stride=2, padding=1, groups=dim_in
851
+ )
852
+
853
+ def _build_weights(self, dim_in, dim_out, style_dim):
854
+ self.conv1 = ConvWeighted(dim_in, dim_out, kernel_size=3, stride=1, padding=1)
855
+ self.conv2 = ConvWeighted(dim_out, dim_out, kernel_size=3, stride=1, padding=1)
856
+ self.norm1 = AdaIN1d(style_dim, dim_in)
857
+ self.norm2 = AdaIN1d(style_dim, dim_out)
858
+ if self.learned_sc:
859
+ self.conv1x1 = ConvWeighted(
860
+ dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False
861
+ )
862
+
863
+ def _shortcut(self, x):
864
+ x = x.swapaxes(2, 1)
865
+ x = self.upsample(x)
866
+ x = x.swapaxes(2, 1)
867
+
868
+ if self.learned_sc:
869
+ x = x.swapaxes(2, 1)
870
+ x = self.conv1x1(x, mx.conv1d)
871
+ x = x.swapaxes(2, 1)
872
+ return x
873
+
874
+ def _residual(self, x, s):
875
+ x = self.norm1(x, s)
876
+ x = self.actv(x)
877
+
878
+ # Manually implement grouped ConvTranspose1d since MLX doesn't support groups
879
+ x = x.swapaxes(2, 1)
880
+ x = self.pool(x, mx.conv_transpose1d) if self.upsample_type != "none" else x
881
+ x = mx.pad(x, ((0, 0), (1, 0), (0, 0))) if self.upsample_type != "none" else x
882
+ x = x.swapaxes(2, 1)
883
+
884
+ x = x.swapaxes(2, 1)
885
+ x = self.conv1(self.dropout(x), mx.conv1d)
886
+ x = x.swapaxes(2, 1)
887
+
888
+ x = self.norm2(x, s)
889
+ x = self.actv(x)
890
+
891
+ x = x.swapaxes(2, 1)
892
+ x = self.conv2(x, mx.conv1d)
893
+ x = x.swapaxes(2, 1)
894
+ return x
895
+
896
+ def __call__(self, x, s):
897
+ out = self._residual(x, s)
898
+ out = (out + self._shortcut(x)) / mx.sqrt(2)
899
+ return out
900
+
901
+
902
+ class Decoder(nn.Module):
903
+ def __init__(
904
+ self,
905
+ dim_in,
906
+ style_dim,
907
+ dim_out,
908
+ resblock_kernel_sizes,
909
+ upsample_rates,
910
+ upsample_initial_channel,
911
+ resblock_dilation_sizes,
912
+ upsample_kernel_sizes,
913
+ gen_istft_n_fft,
914
+ gen_istft_hop_size,
915
+ ):
916
+ super().__init__()
917
+ self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim, conv_type=mx.conv1d)
918
+ self.decode = []
919
+ self.decode.append(
920
+ AdainResBlk1d(1024 + 2 + 64, 1024, style_dim, conv_type=mx.conv1d)
921
+ )
922
+ self.decode.append(
923
+ AdainResBlk1d(1024 + 2 + 64, 1024, style_dim, conv_type=mx.conv1d)
924
+ )
925
+ self.decode.append(
926
+ AdainResBlk1d(1024 + 2 + 64, 1024, style_dim, conv_type=mx.conv1d)
927
+ )
928
+ self.decode.append(
929
+ AdainResBlk1d(
930
+ 1024 + 2 + 64, 512, style_dim, upsample=True, conv_type=mx.conv1d
931
+ )
932
+ )
933
+ self.F0_conv = ConvWeighted(1, 1, kernel_size=3, stride=2, padding=1, groups=1)
934
+ self.N_conv = ConvWeighted(1, 1, kernel_size=3, stride=2, padding=1, groups=1)
935
+ self.asr_res = [ConvWeighted(512, 64, kernel_size=1, padding=0)]
936
+ self.generator = Generator(
937
+ style_dim,
938
+ resblock_kernel_sizes,
939
+ upsample_rates,
940
+ upsample_initial_channel,
941
+ resblock_dilation_sizes,
942
+ upsample_kernel_sizes,
943
+ gen_istft_n_fft,
944
+ gen_istft_hop_size,
945
+ )
946
+
947
+ def __call__(self, asr, F0_curve, N, s):
948
+ s = mx.array(s)
949
+ F0 = self.F0_conv(F0_curve[:, None, :].swapaxes(2, 1), mx.conv1d).swapaxes(2, 1)
950
+ N = self.N_conv(N[:, None, :].swapaxes(2, 1), mx.conv1d).swapaxes(2, 1)
951
+ x = mx.concatenate([asr, F0, N], axis=1)
952
+ x = self.encode(x, s)
953
+ asr_res = self.asr_res[0](asr.swapaxes(2, 1), mx.conv1d).swapaxes(2, 1)
954
+ res = True
955
+ for block in self.decode: # Working in MLX
956
+ if res:
957
+ x = mx.concatenate([x, asr_res, F0, N], axis=1)
958
+ x = block(x, s)
959
+ # Check if this block has upsampling
960
+ if hasattr(block, "upsample_type") and block.upsample_type != "none":
961
+ res = False
962
+ x = self.generator(x, s, F0_curve) # Working in MLX
963
+ return x
964
+
965
+ def sanitize(self, key, weights):
966
+ sanitized_weights = None
967
+ if "noise_convs" in key and key.endswith(".weight"):
968
+ sanitized_weights = weights.transpose(0, 2, 1)
969
+
970
+ elif "weight_v" in key:
971
+ if check_array_shape(weights):
972
+ sanitized_weights = weights
973
+ else:
974
+ sanitized_weights = weights.transpose(0, 2, 1)
975
+
976
+ else:
977
+ sanitized_weights = weights
978
+
979
+ return sanitized_weights