nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nexaai/__init__.py +99 -0
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +4 -0
- nexaai/asr.py +68 -0
- nexaai/asr_impl/__init__.py +0 -0
- nexaai/asr_impl/mlx_asr_impl.py +93 -0
- nexaai/asr_impl/pybind_asr_impl.py +127 -0
- nexaai/base.py +39 -0
- nexaai/binds/__init__.py +7 -0
- nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
- nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
- nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
- nexaai/binds/cpu_gpu/libggml.dylib +0 -0
- nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
- nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/metal/libnexa_plugin.dylib +0 -0
- nexaai/binds/metal/py-lib/ml.py +888 -0
- nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
- nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
- nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
- nexaai/binds/metal/py-lib/profiling.py +239 -0
- nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
- nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
- nexaai/binds/nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexaml/libggml.dylib +0 -0
- nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
- nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
- nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
- nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
- nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexaml/libnexaproc.dylib +0 -0
- nexaai/binds/nexaml/libomp.dylib +0 -0
- nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
- nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
- nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
- nexaai/common.py +106 -0
- nexaai/cv.py +95 -0
- nexaai/cv_impl/__init__.py +0 -0
- nexaai/cv_impl/mlx_cv_impl.py +91 -0
- nexaai/cv_impl/pybind_cv_impl.py +124 -0
- nexaai/diarize.py +80 -0
- nexaai/diarize_impl/__init__.py +1 -0
- nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
- nexaai/embedder.py +73 -0
- nexaai/embedder_impl/__init__.py +0 -0
- nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
- nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
- nexaai/image_gen.py +141 -0
- nexaai/image_gen_impl/__init__.py +0 -0
- nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
- nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
- nexaai/llm.py +98 -0
- nexaai/llm_impl/__init__.py +0 -0
- nexaai/llm_impl/mlx_llm_impl.py +271 -0
- nexaai/llm_impl/pybind_llm_impl.py +238 -0
- nexaai/log.py +92 -0
- nexaai/mlx_backend/asr/__init__.py +12 -0
- nexaai/mlx_backend/asr/interface.py +122 -0
- nexaai/mlx_backend/common/__init__.py +0 -0
- nexaai/mlx_backend/common/utils.py +25 -0
- nexaai/mlx_backend/cv/__init__.py +0 -0
- nexaai/mlx_backend/cv/generate.py +195 -0
- nexaai/mlx_backend/cv/interface.py +162 -0
- nexaai/mlx_backend/cv/main.py +81 -0
- nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/mlx_backend/embedding/__init__.py +0 -0
- nexaai/mlx_backend/embedding/generate.py +333 -0
- nexaai/mlx_backend/embedding/interface.py +617 -0
- nexaai/mlx_backend/embedding/main.py +173 -0
- nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
- nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/mlx_backend/image_gen/__init__.py +1 -0
- nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
- nexaai/mlx_backend/image_gen/interface.py +82 -0
- nexaai/mlx_backend/image_gen/main.py +281 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/mlx_backend/llm/__init__.py +0 -0
- nexaai/mlx_backend/llm/generate.py +149 -0
- nexaai/mlx_backend/llm/interface.py +764 -0
- nexaai/mlx_backend/llm/main.py +68 -0
- nexaai/mlx_backend/ml.py +888 -0
- nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/mlx_backend/mlx_audio/server.py +525 -0
- nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
- nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
- nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
- nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
- nexaai/mlx_backend/mlx_audio/utils.py +237 -0
- nexaai/mlx_backend/mlx_audio/version.py +1 -0
- nexaai/mlx_backend/profiling.py +239 -0
- nexaai/mlx_backend/rerank/__init__.py +0 -0
- nexaai/mlx_backend/rerank/generate.py +174 -0
- nexaai/mlx_backend/rerank/interface.py +287 -0
- nexaai/mlx_backend/rerank/main.py +127 -0
- nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
- nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/mlx_backend/sd/__init__.py +1 -0
- nexaai/mlx_backend/sd/interface.py +362 -0
- nexaai/mlx_backend/sd/main.py +286 -0
- nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
- nexaai/mlx_backend/sd/modeling/clip.py +116 -0
- nexaai/mlx_backend/sd/modeling/config.py +65 -0
- nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
- nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
- nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
- nexaai/mlx_backend/sd/modeling/unet.py +460 -0
- nexaai/mlx_backend/sd/modeling/vae.py +274 -0
- nexaai/mlx_backend/tts/__init__.py +12 -0
- nexaai/mlx_backend/tts/interface.py +276 -0
- nexaai/mlx_backend/vlm/__init__.py +3 -0
- nexaai/mlx_backend/vlm/generate.py +572 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
- nexaai/mlx_backend/vlm/interface.py +559 -0
- nexaai/mlx_backend/vlm/main.py +365 -0
- nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
- nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
- nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
- nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
- nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
- nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
- nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
- nexaai/rerank.py +57 -0
- nexaai/rerank_impl/__init__.py +0 -0
- nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
- nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
- nexaai/runtime.py +68 -0
- nexaai/runtime_error.py +24 -0
- nexaai/tts.py +75 -0
- nexaai/tts_impl/__init__.py +0 -0
- nexaai/tts_impl/mlx_tts_impl.py +94 -0
- nexaai/tts_impl/pybind_tts_impl.py +43 -0
- nexaai/utils/decode.py +18 -0
- nexaai/utils/manifest_utils.py +531 -0
- nexaai/utils/model_manager.py +1745 -0
- nexaai/utils/model_types.py +49 -0
- nexaai/utils/progress_tracker.py +389 -0
- nexaai/utils/quantization_utils.py +245 -0
- nexaai/vlm.py +130 -0
- nexaai/vlm_impl/__init__.py +0 -0
- nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
- nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
- nexaai-1.0.29.dist-info/METADATA +35 -0
- nexaai-1.0.29.dist-info/RECORD +580 -0
- nexaai-1.0.29.dist-info/WHEEL +5 -0
- nexaai-1.0.29.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
|
|
6
|
+
from mlx_audio.tts.models.indextts.ecapa_tdnn.tdnn import TDNN
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class Res2Net(nn.Module):
|
|
10
|
+
def __init__(
|
|
11
|
+
self,
|
|
12
|
+
in_channels: int,
|
|
13
|
+
out_channels: int,
|
|
14
|
+
kernel_size: int,
|
|
15
|
+
scale: int,
|
|
16
|
+
dilation: int = 1,
|
|
17
|
+
groups: int = 1,
|
|
18
|
+
bias: bool = True,
|
|
19
|
+
):
|
|
20
|
+
super().__init__()
|
|
21
|
+
# just make sure it's dividable
|
|
22
|
+
assert in_channels % scale == out_channels % scale == 0
|
|
23
|
+
|
|
24
|
+
self.scale = scale
|
|
25
|
+
|
|
26
|
+
self.blocks = [
|
|
27
|
+
TDNN(
|
|
28
|
+
in_channels // scale,
|
|
29
|
+
out_channels // scale,
|
|
30
|
+
kernel_size,
|
|
31
|
+
dilation,
|
|
32
|
+
groups,
|
|
33
|
+
bias,
|
|
34
|
+
)
|
|
35
|
+
for _ in range(scale - 1)
|
|
36
|
+
]
|
|
37
|
+
|
|
38
|
+
def __call__(self, x: mx.array) -> mx.array: # NLC
|
|
39
|
+
segments = mx.split(x, self.scale, axis=-1)
|
|
40
|
+
|
|
41
|
+
y = [segments[0]]
|
|
42
|
+
|
|
43
|
+
for i in range(1, len(segments)):
|
|
44
|
+
prev = y[-1] if i > 1 else 0
|
|
45
|
+
y.append(self.blocks[i - 1](segments[i] + prev))
|
|
46
|
+
|
|
47
|
+
return mx.concat(y, axis=-1)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
class SE(nn.Module):
|
|
51
|
+
def __init__(
|
|
52
|
+
self,
|
|
53
|
+
in_channels: int,
|
|
54
|
+
se_channels: int,
|
|
55
|
+
out_channels: int,
|
|
56
|
+
):
|
|
57
|
+
super().__init__()
|
|
58
|
+
|
|
59
|
+
self.conv1 = nn.Conv1d(in_channels, se_channels, 1)
|
|
60
|
+
self.relu = nn.ReLU()
|
|
61
|
+
self.conv2 = nn.Conv1d(se_channels, out_channels, 1)
|
|
62
|
+
self.sigmoid = nn.Sigmoid()
|
|
63
|
+
|
|
64
|
+
def __call__(
|
|
65
|
+
self, x: mx.array, mask: Optional[mx.array] = None
|
|
66
|
+
) -> mx.array: # NLC, NL
|
|
67
|
+
if mask is not None:
|
|
68
|
+
mask = mask[:, :, None] # NL1
|
|
69
|
+
masked_x = x * mask
|
|
70
|
+
s = masked_x.sum(1, keepdims=True) / mask.sum(1, keepdims=True)
|
|
71
|
+
else:
|
|
72
|
+
s = x.mean(1, keepdims=True)
|
|
73
|
+
|
|
74
|
+
s = self.sigmoid(self.conv2(self.relu(self.conv1(s))))
|
|
75
|
+
|
|
76
|
+
return s * x
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
class SeRes2Net(nn.Module):
|
|
80
|
+
def __init__(
|
|
81
|
+
self,
|
|
82
|
+
in_channels: int,
|
|
83
|
+
out_channels: int,
|
|
84
|
+
scale: int,
|
|
85
|
+
attention_channels: int,
|
|
86
|
+
kernel_size: int = 1,
|
|
87
|
+
dilation: int = 1,
|
|
88
|
+
groups: int = 1,
|
|
89
|
+
bias: bool = True,
|
|
90
|
+
):
|
|
91
|
+
super().__init__()
|
|
92
|
+
|
|
93
|
+
self.out_channels = out_channels
|
|
94
|
+
|
|
95
|
+
self.tdnn1 = TDNN(
|
|
96
|
+
in_channels,
|
|
97
|
+
out_channels,
|
|
98
|
+
kernel_size=1,
|
|
99
|
+
dilation=1,
|
|
100
|
+
groups=groups,
|
|
101
|
+
)
|
|
102
|
+
self.res2net_block = Res2Net(
|
|
103
|
+
out_channels,
|
|
104
|
+
out_channels,
|
|
105
|
+
kernel_size,
|
|
106
|
+
scale,
|
|
107
|
+
dilation=dilation,
|
|
108
|
+
)
|
|
109
|
+
self.tdnn2 = TDNN(
|
|
110
|
+
out_channels,
|
|
111
|
+
out_channels,
|
|
112
|
+
kernel_size=1,
|
|
113
|
+
dilation=1,
|
|
114
|
+
groups=groups,
|
|
115
|
+
)
|
|
116
|
+
self.se_block = SE(out_channels, attention_channels, out_channels)
|
|
117
|
+
self.shortcut = (
|
|
118
|
+
nn.Conv1d(
|
|
119
|
+
in_channels=in_channels,
|
|
120
|
+
out_channels=out_channels,
|
|
121
|
+
kernel_size=1,
|
|
122
|
+
)
|
|
123
|
+
if in_channels != out_channels
|
|
124
|
+
else nn.Identity()
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
128
|
+
x = self.shortcut(x)
|
|
129
|
+
|
|
130
|
+
x += self.se_block(self.tdnn2(self.res2net_block(self.tdnn1(x))), mask)
|
|
131
|
+
|
|
132
|
+
return x
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
import mlx.core as mx
|
|
2
|
+
import mlx.nn as nn
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
# essentially just conv with relu & norm
|
|
6
|
+
class TDNN(nn.Module):
|
|
7
|
+
def __init__(
|
|
8
|
+
self,
|
|
9
|
+
in_channels: int,
|
|
10
|
+
out_channels: int,
|
|
11
|
+
kernel_size: int,
|
|
12
|
+
dilation: int = 1,
|
|
13
|
+
groups: int = 1,
|
|
14
|
+
bias: bool = True,
|
|
15
|
+
):
|
|
16
|
+
super().__init__()
|
|
17
|
+
|
|
18
|
+
self.kernel_size = kernel_size
|
|
19
|
+
self.padding = ((kernel_size - 1) * dilation) // 2
|
|
20
|
+
|
|
21
|
+
self.conv = nn.Conv1d(
|
|
22
|
+
in_channels,
|
|
23
|
+
out_channels,
|
|
24
|
+
kernel_size,
|
|
25
|
+
1,
|
|
26
|
+
0,
|
|
27
|
+
dilation,
|
|
28
|
+
groups,
|
|
29
|
+
bias,
|
|
30
|
+
)
|
|
31
|
+
self.activation = nn.ReLU()
|
|
32
|
+
self.norm = nn.BatchNorm(out_channels)
|
|
33
|
+
|
|
34
|
+
def __call__(self, x: mx.array) -> mx.array: # NLC
|
|
35
|
+
# reflect padding
|
|
36
|
+
top_pad = x[:, 1 : self.padding + 1, :][:, ::-1, :]
|
|
37
|
+
bottom_pad = x[:, -(self.padding + 1) : -1, :][:, ::-1, :]
|
|
38
|
+
x = mx.concat([top_pad, x, bottom_pad], axis=1)
|
|
39
|
+
|
|
40
|
+
res = self.norm(self.activation(self.conv(x)))
|
|
41
|
+
|
|
42
|
+
return res
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
import mlx.core as mx
|
|
2
|
+
import mlx.nn as nn
|
|
3
|
+
from mlx_lm.models.base import create_attention_mask
|
|
4
|
+
from mlx_lm.models.gpt2 import ModelArgs, TransformerBlock
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class GPT2Model(nn.Module):
|
|
8
|
+
def __init__(self, args: ModelArgs):
|
|
9
|
+
super().__init__()
|
|
10
|
+
self.n_embd = args.n_embd
|
|
11
|
+
self.n_positions = args.n_positions
|
|
12
|
+
self.vocab_size = args.vocab_size
|
|
13
|
+
self.n_layer = args.n_layer
|
|
14
|
+
self.layer_norm_epsilon = args.layer_norm_epsilon
|
|
15
|
+
assert self.vocab_size > 0
|
|
16
|
+
self.wte = nn.Embedding(self.vocab_size, self.n_embd)
|
|
17
|
+
self.wpe = nn.Embedding(self.n_positions, self.n_embd)
|
|
18
|
+
self.h = [TransformerBlock(args=args) for _ in range(self.n_layer)]
|
|
19
|
+
self.ln_f = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon)
|
|
20
|
+
|
|
21
|
+
def __call__(
|
|
22
|
+
self,
|
|
23
|
+
inputs: mx.array,
|
|
24
|
+
mask: mx.array = None, # type: ignore
|
|
25
|
+
cache=None,
|
|
26
|
+
):
|
|
27
|
+
hidden_states = self.wte(inputs)
|
|
28
|
+
|
|
29
|
+
if mask is None:
|
|
30
|
+
mask = create_attention_mask(hidden_states, cache)
|
|
31
|
+
|
|
32
|
+
if cache is None:
|
|
33
|
+
cache = [None] * len(self.h)
|
|
34
|
+
|
|
35
|
+
for layer, c in zip(self.h, cache):
|
|
36
|
+
hidden_states = layer(hidden_states, mask, cache=c)
|
|
37
|
+
|
|
38
|
+
return self.ln_f(hidden_states)
|
|
@@ -0,0 +1,412 @@
|
|
|
1
|
+
import time
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from pathlib import Path
|
|
4
|
+
from typing import Callable, List, Optional
|
|
5
|
+
|
|
6
|
+
import dacite
|
|
7
|
+
import huggingface_hub
|
|
8
|
+
import mlx.core as mx
|
|
9
|
+
import mlx.nn as nn
|
|
10
|
+
import sentencepiece as spm
|
|
11
|
+
import tqdm
|
|
12
|
+
from mlx_lm.models.cache import KVCache
|
|
13
|
+
from mlx_lm.models.gpt2 import ModelArgs as GPT2Args
|
|
14
|
+
from mlx_lm.sample_utils import make_sampler
|
|
15
|
+
|
|
16
|
+
from mlx_audio.tts.models.base import GenerationResult
|
|
17
|
+
from mlx_audio.tts.models.indextts import normalize
|
|
18
|
+
from mlx_audio.tts.models.indextts.attention import LearnedPositionEncoding
|
|
19
|
+
from mlx_audio.tts.models.indextts.bigvgan import (
|
|
20
|
+
BigVGANConditioning,
|
|
21
|
+
BigVGANConditioningConfig,
|
|
22
|
+
)
|
|
23
|
+
from mlx_audio.tts.models.indextts.conformer import Conformer, ConformerArgs
|
|
24
|
+
from mlx_audio.tts.models.indextts.gpt2 import GPT2Model
|
|
25
|
+
from mlx_audio.tts.models.indextts.mel import log_mel_spectrogram
|
|
26
|
+
from mlx_audio.tts.models.indextts.perceiver import PerceiverResampler
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@dataclass
|
|
30
|
+
class GPTConfig:
|
|
31
|
+
model_dim: int
|
|
32
|
+
heads: int
|
|
33
|
+
layers: int
|
|
34
|
+
max_mel_tokens: int
|
|
35
|
+
max_text_tokens: int
|
|
36
|
+
|
|
37
|
+
# special tokens
|
|
38
|
+
number_text_tokens: int
|
|
39
|
+
number_mel_codes: int
|
|
40
|
+
start_mel_token: int
|
|
41
|
+
stop_mel_token: int
|
|
42
|
+
start_text_token: int
|
|
43
|
+
stop_text_token: int
|
|
44
|
+
|
|
45
|
+
# conditioner
|
|
46
|
+
use_mel_codes_as_input: bool
|
|
47
|
+
mel_length_compression: int
|
|
48
|
+
condition_type: str
|
|
49
|
+
condition_module: ConformerArgs
|
|
50
|
+
max_conditioning_inputs: int = 1
|
|
51
|
+
condition_num_latent: int = 32
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
@dataclass
|
|
55
|
+
class ModelArgs:
|
|
56
|
+
bigvgan: BigVGANConditioningConfig
|
|
57
|
+
gpt: GPTConfig
|
|
58
|
+
tokenizer_name: str | Path
|
|
59
|
+
sample_rate: int = 24000
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class Model(nn.Module):
|
|
63
|
+
def __init__(self, args: ModelArgs):
|
|
64
|
+
super().__init__()
|
|
65
|
+
|
|
66
|
+
if isinstance(args, dict):
|
|
67
|
+
args = dacite.from_dict(ModelArgs, args)
|
|
68
|
+
|
|
69
|
+
if not args.gpt.use_mel_codes_as_input:
|
|
70
|
+
raise NotImplementedError(
|
|
71
|
+
"use_mel_codes_as_input=false is not supported. Please open a new issue in mlx-audio to get this model supported."
|
|
72
|
+
)
|
|
73
|
+
if args.gpt.condition_type != "conformer_perceiver":
|
|
74
|
+
raise NotImplementedError(
|
|
75
|
+
f"condition_type={args.gpt.condition_type} is not supported. Please open a new issue in mlx-audio to get this model supported."
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
self.args = args
|
|
79
|
+
self.sample_rate = args.sample_rate
|
|
80
|
+
|
|
81
|
+
try:
|
|
82
|
+
self.tokenizer = spm.SentencePieceProcessor(
|
|
83
|
+
model_file=huggingface_hub.hf_hub_download( # type: ignore
|
|
84
|
+
str(args.tokenizer_name), "tokenizer.model"
|
|
85
|
+
)
|
|
86
|
+
)
|
|
87
|
+
except Exception:
|
|
88
|
+
self.tokenizer = spm.SentencePieceProcessor(
|
|
89
|
+
model_file=str( # type: ignore
|
|
90
|
+
(Path(args.tokenizer_name) / "tokenizer.model").resolve()
|
|
91
|
+
)
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
self.bigvgan = BigVGANConditioning(args.bigvgan)
|
|
95
|
+
|
|
96
|
+
self.text_embedding = nn.Embedding(
|
|
97
|
+
args.gpt.number_text_tokens + 1, args.gpt.model_dim
|
|
98
|
+
)
|
|
99
|
+
self.mel_embedding = nn.Embedding(args.gpt.number_mel_codes, args.gpt.model_dim)
|
|
100
|
+
self.mel_pos_embedding = LearnedPositionEncoding(
|
|
101
|
+
args.gpt.max_mel_tokens + 2 + args.gpt.max_conditioning_inputs,
|
|
102
|
+
args.gpt.model_dim,
|
|
103
|
+
)
|
|
104
|
+
self.text_pos_embedding = LearnedPositionEncoding(
|
|
105
|
+
args.gpt.max_text_tokens + 2, args.gpt.model_dim
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
self.text_head = nn.Linear(args.gpt.model_dim, args.gpt.number_text_tokens + 1)
|
|
109
|
+
self.mel_head = nn.Linear(args.gpt.model_dim, args.gpt.number_mel_codes)
|
|
110
|
+
|
|
111
|
+
self.conditioning_encoder = Conformer(args.gpt.condition_module)
|
|
112
|
+
self.perceiver_encoder = PerceiverResampler(
|
|
113
|
+
args.gpt.model_dim,
|
|
114
|
+
n_dim_context=args.gpt.condition_module.output_size,
|
|
115
|
+
n_ff_mult=args.gpt.condition_module.perceiver_mult,
|
|
116
|
+
n_heads=args.gpt.condition_module.attention_heads,
|
|
117
|
+
n_latents=args.gpt.condition_num_latent,
|
|
118
|
+
)
|
|
119
|
+
self.gpt = GPT2Model(
|
|
120
|
+
GPT2Args(
|
|
121
|
+
"gpt2",
|
|
122
|
+
1,
|
|
123
|
+
args.gpt.model_dim,
|
|
124
|
+
args.gpt.heads,
|
|
125
|
+
args.gpt.layers,
|
|
126
|
+
1,
|
|
127
|
+
1e-5,
|
|
128
|
+
1,
|
|
129
|
+
)
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
self.final_norm = nn.LayerNorm(args.gpt.model_dim)
|
|
133
|
+
|
|
134
|
+
# patching
|
|
135
|
+
self.gpt.wpe = nn.Identity() # type: ignore
|
|
136
|
+
self.gpt.wte = nn.Identity() # type: ignore
|
|
137
|
+
|
|
138
|
+
def sanitize(self, weights: dict[str, mx.array]):
|
|
139
|
+
already_sanitized = all(
|
|
140
|
+
("num_batches_tracked" not in key) for key in weights.keys()
|
|
141
|
+
)
|
|
142
|
+
if already_sanitized:
|
|
143
|
+
return weights
|
|
144
|
+
|
|
145
|
+
bigvgan_prefixes = [
|
|
146
|
+
"ups.",
|
|
147
|
+
"speaker_encoder.",
|
|
148
|
+
"resblocks.",
|
|
149
|
+
"conv_pre.",
|
|
150
|
+
"conv_post.",
|
|
151
|
+
"conds.",
|
|
152
|
+
"cond_layer.",
|
|
153
|
+
"activation_post.",
|
|
154
|
+
]
|
|
155
|
+
|
|
156
|
+
gpt_weights = {
|
|
157
|
+
k: v
|
|
158
|
+
for k, v in weights.items()
|
|
159
|
+
if not any(k.startswith(prefix) for prefix in bigvgan_prefixes)
|
|
160
|
+
}
|
|
161
|
+
bigvgan_weights = {
|
|
162
|
+
k: v
|
|
163
|
+
for k, v in weights.items()
|
|
164
|
+
if any(k.startswith(prefix) for prefix in bigvgan_prefixes)
|
|
165
|
+
}
|
|
166
|
+
|
|
167
|
+
new_gpt_weights = {}
|
|
168
|
+
|
|
169
|
+
for key, value in gpt_weights.items():
|
|
170
|
+
if "pos_enc" in key:
|
|
171
|
+
continue # it should calculate self
|
|
172
|
+
|
|
173
|
+
if "conv" in key:
|
|
174
|
+
if value.ndim == 3:
|
|
175
|
+
value = value.transpose(0, 2, 1)
|
|
176
|
+
elif value.ndim == 4:
|
|
177
|
+
value = value.transpose(0, 2, 3, 1)
|
|
178
|
+
|
|
179
|
+
if "perceiver_encoder.norm.gamma" in key:
|
|
180
|
+
key = "perceiver_encoder.norm.weight"
|
|
181
|
+
|
|
182
|
+
new_gpt_weights[key] = value
|
|
183
|
+
|
|
184
|
+
for i in range(self.args.gpt.layers):
|
|
185
|
+
if f"gpt.h.{i}.attn.bias" in new_gpt_weights:
|
|
186
|
+
del new_gpt_weights[f"gpt.h.{i}.attn.bias"]
|
|
187
|
+
if f"gpt.h.{i}.attn.c_attn.weight" in new_gpt_weights:
|
|
188
|
+
new_gpt_weights[f"gpt.h.{i}.attn.c_attn.weight"] = new_gpt_weights[
|
|
189
|
+
f"gpt.h.{i}.attn.c_attn.weight"
|
|
190
|
+
].transpose(1, 0)
|
|
191
|
+
if f"gpt.h.{i}.attn.c_proj.weight" in new_gpt_weights:
|
|
192
|
+
new_gpt_weights[f"gpt.h.{i}.attn.c_proj.weight"] = new_gpt_weights[
|
|
193
|
+
f"gpt.h.{i}.attn.c_proj.weight"
|
|
194
|
+
].transpose(1, 0)
|
|
195
|
+
if f"gpt.h.{i}.mlp.c_fc.weight" in new_gpt_weights:
|
|
196
|
+
new_gpt_weights[f"gpt.h.{i}.mlp.c_fc.weight"] = new_gpt_weights[
|
|
197
|
+
f"gpt.h.{i}.mlp.c_fc.weight"
|
|
198
|
+
].transpose(1, 0)
|
|
199
|
+
if f"gpt.h.{i}.mlp.c_proj.weight" in new_gpt_weights:
|
|
200
|
+
new_gpt_weights[f"gpt.h.{i}.mlp.c_proj.weight"] = new_gpt_weights[
|
|
201
|
+
f"gpt.h.{i}.mlp.c_proj.weight"
|
|
202
|
+
].transpose(1, 0)
|
|
203
|
+
|
|
204
|
+
for i in range(2): # hard coded in original impl
|
|
205
|
+
if f"perceiver_encoder.layers.{i}.0.to_q.weight" in new_gpt_weights:
|
|
206
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.0.linear_q.weight"] = (
|
|
207
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.0.to_q.weight"]
|
|
208
|
+
)
|
|
209
|
+
del new_gpt_weights[f"perceiver_encoder.layers.{i}.0.to_q.weight"]
|
|
210
|
+
if f"perceiver_encoder.layers.{i}.0.to_kv.weight" in new_gpt_weights:
|
|
211
|
+
(
|
|
212
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.0.linear_k.weight"],
|
|
213
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.0.linear_v.weight"],
|
|
214
|
+
) = mx.split(
|
|
215
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.0.to_kv.weight"],
|
|
216
|
+
2,
|
|
217
|
+
axis=0,
|
|
218
|
+
)
|
|
219
|
+
del new_gpt_weights[f"perceiver_encoder.layers.{i}.0.to_kv.weight"]
|
|
220
|
+
if f"perceiver_encoder.layers.{i}.0.to_out.weight" in new_gpt_weights:
|
|
221
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.0.linear_out.weight"] = (
|
|
222
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.0.to_out.weight"]
|
|
223
|
+
)
|
|
224
|
+
del new_gpt_weights[f"perceiver_encoder.layers.{i}.0.to_out.weight"]
|
|
225
|
+
|
|
226
|
+
if f"perceiver_encoder.layers.{i}.1.0.weight" in new_gpt_weights:
|
|
227
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.1.w_1.weight"] = (
|
|
228
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.1.0.weight"]
|
|
229
|
+
)
|
|
230
|
+
del new_gpt_weights[f"perceiver_encoder.layers.{i}.1.0.weight"]
|
|
231
|
+
if f"perceiver_encoder.layers.{i}.1.2.weight" in new_gpt_weights:
|
|
232
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.1.w_2.weight"] = (
|
|
233
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.1.2.weight"]
|
|
234
|
+
)
|
|
235
|
+
del new_gpt_weights[f"perceiver_encoder.layers.{i}.1.2.weight"]
|
|
236
|
+
if f"perceiver_encoder.layers.{i}.1.0.bias" in new_gpt_weights:
|
|
237
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.1.w_1.bias"] = (
|
|
238
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.1.0.bias"]
|
|
239
|
+
)
|
|
240
|
+
del new_gpt_weights[f"perceiver_encoder.layers.{i}.1.0.bias"]
|
|
241
|
+
if f"perceiver_encoder.layers.{i}.1.2.bias" in new_gpt_weights:
|
|
242
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.1.w_2.bias"] = (
|
|
243
|
+
new_gpt_weights[f"perceiver_encoder.layers.{i}.1.2.bias"]
|
|
244
|
+
)
|
|
245
|
+
del new_gpt_weights[f"perceiver_encoder.layers.{i}.1.2.bias"]
|
|
246
|
+
|
|
247
|
+
new_bigvgan_weight = {
|
|
248
|
+
"bigvgan." + k: v for k, v in self.bigvgan.sanitize(bigvgan_weights).items()
|
|
249
|
+
}
|
|
250
|
+
|
|
251
|
+
return {**new_gpt_weights, **new_bigvgan_weight}
|
|
252
|
+
|
|
253
|
+
def get_conditioning(self, mel: mx.array) -> mx.array: # (b, c, t)
|
|
254
|
+
latent = self.conditioning_encoder(mel)
|
|
255
|
+
return self.perceiver_encoder(latent)
|
|
256
|
+
|
|
257
|
+
def prepare_input_embedding(
|
|
258
|
+
self,
|
|
259
|
+
prompts: List[str],
|
|
260
|
+
ref_audio: Optional[mx.array],
|
|
261
|
+
ref_mel: Optional[mx.array] = None,
|
|
262
|
+
) -> mx.array:
|
|
263
|
+
if ref_audio is not None:
|
|
264
|
+
ref_mel = log_mel_spectrogram(ref_audio)
|
|
265
|
+
|
|
266
|
+
if ref_mel is None:
|
|
267
|
+
raise ValueError("Must provide one of ref_audio or ref_mel")
|
|
268
|
+
|
|
269
|
+
conditioning = self.get_conditioning(ref_mel)
|
|
270
|
+
# for case with multiple batch, and single ref_audio
|
|
271
|
+
conditioning = mx.repeat(conditioning, len(prompts), axis=0)
|
|
272
|
+
|
|
273
|
+
tokenized = [
|
|
274
|
+
self.tokenizer.encode(
|
|
275
|
+
normalize.tokenize_by_CJK_char(normalize.normalize(prompt))
|
|
276
|
+
)
|
|
277
|
+
for prompt in prompts
|
|
278
|
+
] # type: ignore
|
|
279
|
+
|
|
280
|
+
longest = max((len(tokens) for tokens in tokenized)) + 3
|
|
281
|
+
|
|
282
|
+
embedding = mx.zeros(
|
|
283
|
+
(len(tokenized), longest + conditioning.shape[1], self.args.gpt.model_dim)
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
for idx, tokens in enumerate(tokenized):
|
|
287
|
+
# append tokens
|
|
288
|
+
tokens.insert(0, self.args.gpt.start_text_token)
|
|
289
|
+
tokens.append(self.args.gpt.stop_text_token)
|
|
290
|
+
tokens.append(self.args.gpt.start_mel_token)
|
|
291
|
+
length = len(tokens)
|
|
292
|
+
|
|
293
|
+
tokens = mx.array(tokens)[None, :]
|
|
294
|
+
|
|
295
|
+
text_embedding = self.text_embedding(tokens) + self.text_pos_embedding(
|
|
296
|
+
tokens
|
|
297
|
+
)
|
|
298
|
+
embedding[idx : idx + 1, longest - length :, :] = mx.concat(
|
|
299
|
+
[conditioning, text_embedding], axis=1
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
return embedding
|
|
303
|
+
|
|
304
|
+
def generate_result(
|
|
305
|
+
self,
|
|
306
|
+
audio: mx.array,
|
|
307
|
+
start_time: float,
|
|
308
|
+
token_count: int,
|
|
309
|
+
**kwargs,
|
|
310
|
+
) -> GenerationResult:
|
|
311
|
+
audio = audio.squeeze(0).squeeze(0)
|
|
312
|
+
|
|
313
|
+
samples = audio.shape[0] if audio is not None else 0
|
|
314
|
+
assert samples > 0, "No audio generated"
|
|
315
|
+
|
|
316
|
+
sample_rate = self.sample_rate
|
|
317
|
+
audio_duration_seconds = samples / sample_rate
|
|
318
|
+
|
|
319
|
+
elapsed_time = time.perf_counter() - start_time
|
|
320
|
+
rtf = audio_duration_seconds / elapsed_time
|
|
321
|
+
|
|
322
|
+
duration_mins = int(audio_duration_seconds // 60)
|
|
323
|
+
duration_secs = int(audio_duration_seconds % 60)
|
|
324
|
+
duration_ms = int((audio_duration_seconds % 1) * 1000)
|
|
325
|
+
duration_hours = int(audio_duration_seconds // 3600)
|
|
326
|
+
duration_str = f"{duration_hours:02d}:{duration_mins:02d}:{duration_secs:02d}.{duration_ms:03d}"
|
|
327
|
+
|
|
328
|
+
return GenerationResult(
|
|
329
|
+
audio=audio,
|
|
330
|
+
samples=samples,
|
|
331
|
+
sample_rate=sample_rate,
|
|
332
|
+
segment_idx=0,
|
|
333
|
+
token_count=token_count,
|
|
334
|
+
audio_duration=duration_str,
|
|
335
|
+
real_time_factor=rtf,
|
|
336
|
+
prompt={
|
|
337
|
+
"tokens": token_count,
|
|
338
|
+
"tokens-per-sec": (
|
|
339
|
+
round(token_count / elapsed_time, 2) if elapsed_time > 0 else 0
|
|
340
|
+
),
|
|
341
|
+
},
|
|
342
|
+
audio_samples={
|
|
343
|
+
"samples": samples,
|
|
344
|
+
"samples-per-sec": (
|
|
345
|
+
round(samples / elapsed_time, 2) if elapsed_time > 0 else 0
|
|
346
|
+
),
|
|
347
|
+
}, # type: ignore
|
|
348
|
+
processing_time_seconds=elapsed_time,
|
|
349
|
+
peak_memory_usage=mx.get_peak_memory() / 1e9,
|
|
350
|
+
)
|
|
351
|
+
|
|
352
|
+
def generate(
|
|
353
|
+
self,
|
|
354
|
+
text: str,
|
|
355
|
+
ref_audio: Optional[mx.array],
|
|
356
|
+
ref_mel: Optional[mx.array] = None,
|
|
357
|
+
verbose: bool = False,
|
|
358
|
+
max_tokens: int = 5000,
|
|
359
|
+
sampler: Optional[Callable[..., mx.array]] = None,
|
|
360
|
+
**kwargs,
|
|
361
|
+
):
|
|
362
|
+
if ref_audio is not None:
|
|
363
|
+
ref_mel = log_mel_spectrogram(ref_audio)
|
|
364
|
+
|
|
365
|
+
if ref_mel is None:
|
|
366
|
+
raise ValueError("Must provide one of ref_audio or ref_mel")
|
|
367
|
+
|
|
368
|
+
time_start = time.perf_counter()
|
|
369
|
+
|
|
370
|
+
embedding = self.prepare_input_embedding([text], None, ref_mel)
|
|
371
|
+
|
|
372
|
+
cache = [KVCache() for _ in range(self.args.gpt.layers)]
|
|
373
|
+
sampler = sampler or make_sampler(temp=0.8, top_k=30)
|
|
374
|
+
|
|
375
|
+
inputs = embedding
|
|
376
|
+
generated_tokens = []
|
|
377
|
+
latent_states = []
|
|
378
|
+
|
|
379
|
+
mel_position = 0
|
|
380
|
+
|
|
381
|
+
for _ in range(max_tokens) if not verbose else tqdm.trange(max_tokens):
|
|
382
|
+
hidden_states = self.gpt(inputs, cache=cache)
|
|
383
|
+
|
|
384
|
+
hidden_states = self.final_norm(hidden_states)
|
|
385
|
+
|
|
386
|
+
latent_states.append(hidden_states[:, -1:, :])
|
|
387
|
+
mel_logits = self.mel_head(hidden_states[:, -1:, :])
|
|
388
|
+
|
|
389
|
+
next_token = sampler(mel_logits)
|
|
390
|
+
|
|
391
|
+
if next_token.item() == self.args.gpt.stop_mel_token:
|
|
392
|
+
break
|
|
393
|
+
|
|
394
|
+
generated_tokens.append(next_token.item())
|
|
395
|
+
|
|
396
|
+
mel_emb = self.mel_embedding(next_token) + self.mel_pos_embedding(
|
|
397
|
+
next_token, embedding.shape[1] + mel_position
|
|
398
|
+
)
|
|
399
|
+
|
|
400
|
+
inputs = mel_emb
|
|
401
|
+
mel_position += 1
|
|
402
|
+
|
|
403
|
+
latent_states = mx.concat(latent_states, axis=-2)
|
|
404
|
+
|
|
405
|
+
audio = self.bigvgan(
|
|
406
|
+
latent_states.transpose(0, 2, 1),
|
|
407
|
+
ref_mel.transpose(0, 2, 1),
|
|
408
|
+
)
|
|
409
|
+
|
|
410
|
+
yield self.generate_result(audio, time_start, latent_states.shape[1])
|
|
411
|
+
|
|
412
|
+
mx.clear_cache()
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
import mlx.core as mx
|
|
2
|
+
|
|
3
|
+
from mlx_audio.utils import mel_filters, stft
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def log_mel_spectrogram(
|
|
7
|
+
audio: mx.array,
|
|
8
|
+
sample_rate: int = 24_000,
|
|
9
|
+
n_mels: int = 100,
|
|
10
|
+
n_fft: int = 1024,
|
|
11
|
+
hop_length: int = 256,
|
|
12
|
+
padding: int = 0,
|
|
13
|
+
):
|
|
14
|
+
if not isinstance(audio, mx.array):
|
|
15
|
+
audio = mx.array(audio)
|
|
16
|
+
|
|
17
|
+
if padding > 0:
|
|
18
|
+
audio = mx.pad(audio, (0, padding))
|
|
19
|
+
|
|
20
|
+
freqs = stft(
|
|
21
|
+
audio,
|
|
22
|
+
window="hann",
|
|
23
|
+
n_fft=n_fft,
|
|
24
|
+
hop_length=hop_length,
|
|
25
|
+
win_length=n_fft,
|
|
26
|
+
)
|
|
27
|
+
magnitudes = freqs.abs()
|
|
28
|
+
filters = mel_filters(
|
|
29
|
+
sample_rate=sample_rate,
|
|
30
|
+
n_fft=n_fft,
|
|
31
|
+
n_mels=n_mels,
|
|
32
|
+
norm=None,
|
|
33
|
+
mel_scale="htk",
|
|
34
|
+
)
|
|
35
|
+
mel_spec = magnitudes @ filters.T
|
|
36
|
+
log_spec = mx.maximum(mel_spec, 1e-5).log()
|
|
37
|
+
return mx.expand_dims(log_spec, axis=0)
|