nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nexaai/__init__.py +99 -0
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +4 -0
- nexaai/asr.py +68 -0
- nexaai/asr_impl/__init__.py +0 -0
- nexaai/asr_impl/mlx_asr_impl.py +93 -0
- nexaai/asr_impl/pybind_asr_impl.py +127 -0
- nexaai/base.py +39 -0
- nexaai/binds/__init__.py +7 -0
- nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
- nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
- nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
- nexaai/binds/cpu_gpu/libggml.dylib +0 -0
- nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
- nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/metal/libnexa_plugin.dylib +0 -0
- nexaai/binds/metal/py-lib/ml.py +888 -0
- nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
- nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
- nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
- nexaai/binds/metal/py-lib/profiling.py +239 -0
- nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
- nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
- nexaai/binds/nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexaml/libggml.dylib +0 -0
- nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
- nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
- nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
- nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
- nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexaml/libnexaproc.dylib +0 -0
- nexaai/binds/nexaml/libomp.dylib +0 -0
- nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
- nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
- nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
- nexaai/common.py +106 -0
- nexaai/cv.py +95 -0
- nexaai/cv_impl/__init__.py +0 -0
- nexaai/cv_impl/mlx_cv_impl.py +91 -0
- nexaai/cv_impl/pybind_cv_impl.py +124 -0
- nexaai/diarize.py +80 -0
- nexaai/diarize_impl/__init__.py +1 -0
- nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
- nexaai/embedder.py +73 -0
- nexaai/embedder_impl/__init__.py +0 -0
- nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
- nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
- nexaai/image_gen.py +141 -0
- nexaai/image_gen_impl/__init__.py +0 -0
- nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
- nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
- nexaai/llm.py +98 -0
- nexaai/llm_impl/__init__.py +0 -0
- nexaai/llm_impl/mlx_llm_impl.py +271 -0
- nexaai/llm_impl/pybind_llm_impl.py +238 -0
- nexaai/log.py +92 -0
- nexaai/mlx_backend/asr/__init__.py +12 -0
- nexaai/mlx_backend/asr/interface.py +122 -0
- nexaai/mlx_backend/common/__init__.py +0 -0
- nexaai/mlx_backend/common/utils.py +25 -0
- nexaai/mlx_backend/cv/__init__.py +0 -0
- nexaai/mlx_backend/cv/generate.py +195 -0
- nexaai/mlx_backend/cv/interface.py +162 -0
- nexaai/mlx_backend/cv/main.py +81 -0
- nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/mlx_backend/embedding/__init__.py +0 -0
- nexaai/mlx_backend/embedding/generate.py +333 -0
- nexaai/mlx_backend/embedding/interface.py +617 -0
- nexaai/mlx_backend/embedding/main.py +173 -0
- nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
- nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/mlx_backend/image_gen/__init__.py +1 -0
- nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
- nexaai/mlx_backend/image_gen/interface.py +82 -0
- nexaai/mlx_backend/image_gen/main.py +281 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/mlx_backend/llm/__init__.py +0 -0
- nexaai/mlx_backend/llm/generate.py +149 -0
- nexaai/mlx_backend/llm/interface.py +764 -0
- nexaai/mlx_backend/llm/main.py +68 -0
- nexaai/mlx_backend/ml.py +888 -0
- nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/mlx_backend/mlx_audio/server.py +525 -0
- nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
- nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
- nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
- nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
- nexaai/mlx_backend/mlx_audio/utils.py +237 -0
- nexaai/mlx_backend/mlx_audio/version.py +1 -0
- nexaai/mlx_backend/profiling.py +239 -0
- nexaai/mlx_backend/rerank/__init__.py +0 -0
- nexaai/mlx_backend/rerank/generate.py +174 -0
- nexaai/mlx_backend/rerank/interface.py +287 -0
- nexaai/mlx_backend/rerank/main.py +127 -0
- nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
- nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/mlx_backend/sd/__init__.py +1 -0
- nexaai/mlx_backend/sd/interface.py +362 -0
- nexaai/mlx_backend/sd/main.py +286 -0
- nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
- nexaai/mlx_backend/sd/modeling/clip.py +116 -0
- nexaai/mlx_backend/sd/modeling/config.py +65 -0
- nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
- nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
- nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
- nexaai/mlx_backend/sd/modeling/unet.py +460 -0
- nexaai/mlx_backend/sd/modeling/vae.py +274 -0
- nexaai/mlx_backend/tts/__init__.py +12 -0
- nexaai/mlx_backend/tts/interface.py +276 -0
- nexaai/mlx_backend/vlm/__init__.py +3 -0
- nexaai/mlx_backend/vlm/generate.py +572 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
- nexaai/mlx_backend/vlm/interface.py +559 -0
- nexaai/mlx_backend/vlm/main.py +365 -0
- nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
- nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
- nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
- nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
- nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
- nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
- nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
- nexaai/rerank.py +57 -0
- nexaai/rerank_impl/__init__.py +0 -0
- nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
- nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
- nexaai/runtime.py +68 -0
- nexaai/runtime_error.py +24 -0
- nexaai/tts.py +75 -0
- nexaai/tts_impl/__init__.py +0 -0
- nexaai/tts_impl/mlx_tts_impl.py +94 -0
- nexaai/tts_impl/pybind_tts_impl.py +43 -0
- nexaai/utils/decode.py +18 -0
- nexaai/utils/manifest_utils.py +531 -0
- nexaai/utils/model_manager.py +1745 -0
- nexaai/utils/model_types.py +49 -0
- nexaai/utils/progress_tracker.py +389 -0
- nexaai/utils/quantization_utils.py +245 -0
- nexaai/vlm.py +130 -0
- nexaai/vlm_impl/__init__.py +0 -0
- nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
- nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
- nexaai-1.0.29.dist-info/METADATA +35 -0
- nexaai-1.0.29.dist-info/RECORD +580 -0
- nexaai-1.0.29.dist-info/WHEEL +5 -0
- nexaai-1.0.29.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1022 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
from collections.abc import Sequence
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from math import sqrt
|
|
5
|
+
from typing import Dict, List, Optional, Tuple, Type
|
|
6
|
+
|
|
7
|
+
import mlx.core as mx
|
|
8
|
+
import mlx.nn as nn
|
|
9
|
+
|
|
10
|
+
from .config import VisionConfig
|
|
11
|
+
|
|
12
|
+
from ..base import check_array_shape
|
|
13
|
+
from ..kernels import bicubic_interpolate, nearest_interpolate
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/mobilenetv5.py#L24
|
|
17
|
+
class MobileNetV5MultiScaleFusionAdapter(nn.Module):
|
|
18
|
+
"""Multi-layer fusion token adapter.
|
|
19
|
+
Attributes:
|
|
20
|
+
out_filters: The number of output filters.
|
|
21
|
+
output_resolution: The output resolution.
|
|
22
|
+
activation: The activation function.
|
|
23
|
+
expansion_ratio: The expansion ratio.
|
|
24
|
+
upsampling_interpolation: The upsampling interpolation.
|
|
25
|
+
use_layer_scale: Whether to use layer scale.
|
|
26
|
+
layer_scale_init_value: The initial value of the layer scale.
|
|
27
|
+
skip_projection: Whether to skip the projection.
|
|
28
|
+
name: The name of the module.
|
|
29
|
+
upsize: The upsampling fn.
|
|
30
|
+
downsize: The downsampling fn.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
def __init__(
|
|
34
|
+
self,
|
|
35
|
+
in_chs: List[int],
|
|
36
|
+
out_chs: int,
|
|
37
|
+
output_resolution: int,
|
|
38
|
+
expansion_ratio: float = 2.0,
|
|
39
|
+
interpolation_mode: str = "nearest",
|
|
40
|
+
use_layer_scale: bool = False,
|
|
41
|
+
layer_scale_init_value: float = 1e-5,
|
|
42
|
+
noskip: bool = True,
|
|
43
|
+
):
|
|
44
|
+
super().__init__()
|
|
45
|
+
self.in_channels = sum(in_chs) if isinstance(in_chs, Sequence) else in_chs
|
|
46
|
+
self.out_channels = out_chs
|
|
47
|
+
self.output_resolution = to_2tuple(output_resolution)
|
|
48
|
+
self.expansion_ratio = expansion_ratio
|
|
49
|
+
self.interpolation_mode = interpolation_mode
|
|
50
|
+
self.use_layer_scale = use_layer_scale
|
|
51
|
+
self.layer_scale_init_value = layer_scale_init_value
|
|
52
|
+
self.noskip = noskip
|
|
53
|
+
|
|
54
|
+
norm_layer = RMSNormAct2d
|
|
55
|
+
self.ffn = UniversalInvertedResidual(
|
|
56
|
+
in_chs=self.in_channels,
|
|
57
|
+
out_chs=self.out_channels,
|
|
58
|
+
dw_kernel_size_mid=0,
|
|
59
|
+
exp_ratio=self.expansion_ratio,
|
|
60
|
+
norm_layer=norm_layer,
|
|
61
|
+
noskip=self.noskip,
|
|
62
|
+
layer_scale_init_value=(
|
|
63
|
+
self.layer_scale_init_value if self.use_layer_scale else None
|
|
64
|
+
),
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
self.norm = norm_layer(self.out_channels, eps=1e-6, apply_act=False)
|
|
68
|
+
|
|
69
|
+
def __call__(self, inputs: list[mx.array]) -> mx.array:
|
|
70
|
+
inputs = [i.transpose(0, 3, 1, 2) for i in inputs]
|
|
71
|
+
high_resolution = inputs[0].shape[
|
|
72
|
+
-2:
|
|
73
|
+
] # Assuming the first input is the highest resolution.
|
|
74
|
+
resized_inputs = []
|
|
75
|
+
|
|
76
|
+
for _, img in enumerate(inputs):
|
|
77
|
+
if any([r < hr for r, hr in zip(img.shape[-2:], high_resolution)]):
|
|
78
|
+
img = nearest_interpolate(img, size=high_resolution)
|
|
79
|
+
|
|
80
|
+
resized_inputs.append(img)
|
|
81
|
+
|
|
82
|
+
channel_cat_imgs = mx.concatenate(
|
|
83
|
+
resized_inputs, axis=1
|
|
84
|
+
) # Cat on channel dim, must equal self.in_channels
|
|
85
|
+
img = self.ffn(channel_cat_imgs.swapaxes(1, 3)).swapaxes(1, 3)
|
|
86
|
+
|
|
87
|
+
if any([ro != rh for ro, rh in zip(high_resolution, self.output_resolution)]):
|
|
88
|
+
if (
|
|
89
|
+
high_resolution[0] % self.output_resolution[0] != 0
|
|
90
|
+
or high_resolution[1] % self.output_resolution[1] != 0
|
|
91
|
+
):
|
|
92
|
+
img = bicubic_interpolate(img, self.output_resolution)
|
|
93
|
+
else:
|
|
94
|
+
h_strides = high_resolution[0] // self.output_resolution[0]
|
|
95
|
+
w_strides = high_resolution[1] // self.output_resolution[1]
|
|
96
|
+
|
|
97
|
+
img = nn.AvgPool2d(
|
|
98
|
+
kernel_size=(h_strides, w_strides),
|
|
99
|
+
stride=(h_strides, w_strides),
|
|
100
|
+
)(img.swapaxes(1, 3))
|
|
101
|
+
|
|
102
|
+
img = self.norm(img) if self.noskip else img
|
|
103
|
+
|
|
104
|
+
return img
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/layers/layer_scale.py#L22
|
|
108
|
+
class LayerScale2d(nn.Module):
|
|
109
|
+
def __init__(self, dim: int, init_values: float = 1e-5, inplace: bool = False):
|
|
110
|
+
super().__init__()
|
|
111
|
+
self.inplace = inplace
|
|
112
|
+
self.gamma = init_values * mx.ones((dim,))
|
|
113
|
+
|
|
114
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
115
|
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def rms_norm2d(
|
|
119
|
+
x: mx.array,
|
|
120
|
+
normalized_shape: List[int],
|
|
121
|
+
weight: Optional[mx.array] = None,
|
|
122
|
+
eps: float = 1e-5,
|
|
123
|
+
):
|
|
124
|
+
assert len(normalized_shape) == 1
|
|
125
|
+
dtype = x.dtype
|
|
126
|
+
v = mx.power(x, 2)
|
|
127
|
+
v = mx.mean(v, axis=1, keepdims=True)
|
|
128
|
+
x = x * mx.rsqrt(v + eps)
|
|
129
|
+
if weight is not None:
|
|
130
|
+
x = x.astype(dtype) * weight.reshape(1, -1, 1, 1)
|
|
131
|
+
return x
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/layers/norm_act.py#L504
|
|
135
|
+
class RMSNormAct2d(nn.RMSNorm):
|
|
136
|
+
def __init__(
|
|
137
|
+
self,
|
|
138
|
+
num_channels,
|
|
139
|
+
eps=1e-6,
|
|
140
|
+
apply_act: bool = True,
|
|
141
|
+
):
|
|
142
|
+
super().__init__(dims=num_channels, eps=eps)
|
|
143
|
+
self.normalized_shape = [num_channels]
|
|
144
|
+
self.drop = nn.Identity()
|
|
145
|
+
self.act = nn.GELU() if apply_act else nn.Identity()
|
|
146
|
+
|
|
147
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
148
|
+
|
|
149
|
+
x = x.transpose(0, 3, 1, 2) # Convert from NHWC to NCHW
|
|
150
|
+
x = rms_norm2d(x, self.normalized_shape, self.weight, self.eps)
|
|
151
|
+
x = self.drop(x)
|
|
152
|
+
x = self.act(x)
|
|
153
|
+
x = x.transpose(0, 2, 3, 1) # Convert back to NHWC
|
|
154
|
+
return x
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/_efficientnet_blocks.py#L310
|
|
158
|
+
class UniversalInvertedResidual(nn.Module):
|
|
159
|
+
def __init__(
|
|
160
|
+
self,
|
|
161
|
+
in_chs: int,
|
|
162
|
+
out_chs: int,
|
|
163
|
+
dw_kernel_size_start: int = 0,
|
|
164
|
+
dw_kernel_size_mid: int = 3,
|
|
165
|
+
dw_kernel_size_end: int = 0,
|
|
166
|
+
stride: int = 1,
|
|
167
|
+
dilation: int = 1,
|
|
168
|
+
group_size: int = 1,
|
|
169
|
+
pad_type: str = "",
|
|
170
|
+
noskip: bool = False,
|
|
171
|
+
exp_ratio: float = 1.0,
|
|
172
|
+
norm_layer=RMSNormAct2d,
|
|
173
|
+
conv_kwargs: Optional[Dict] = None,
|
|
174
|
+
drop_path_rate: float = 0.0,
|
|
175
|
+
layer_scale_init_value: Optional[float] = 1e-5,
|
|
176
|
+
):
|
|
177
|
+
super().__init__()
|
|
178
|
+
self.has_skip = (in_chs == out_chs and stride == 1) and not noskip
|
|
179
|
+
if stride > 1:
|
|
180
|
+
assert dw_kernel_size_start or dw_kernel_size_mid or dw_kernel_size_end
|
|
181
|
+
|
|
182
|
+
if dw_kernel_size_start:
|
|
183
|
+
dw_start_stride = stride if not dw_kernel_size_mid else 1
|
|
184
|
+
dw_start_groups = num_groups(group_size, in_chs)
|
|
185
|
+
self.dw_start = ConvNormAct(
|
|
186
|
+
nn.Conv2d,
|
|
187
|
+
in_chs,
|
|
188
|
+
in_chs,
|
|
189
|
+
kernel_size=dw_kernel_size_start,
|
|
190
|
+
stride=dw_start_stride,
|
|
191
|
+
padding=(dw_kernel_size_start - 1) // 2,
|
|
192
|
+
dilation=dilation,
|
|
193
|
+
groups=dw_start_groups,
|
|
194
|
+
bias=False,
|
|
195
|
+
apply_act=False,
|
|
196
|
+
eps=1e-05,
|
|
197
|
+
)
|
|
198
|
+
else:
|
|
199
|
+
self.dw_start = nn.Identity()
|
|
200
|
+
|
|
201
|
+
mid_chs = make_divisible(in_chs * exp_ratio)
|
|
202
|
+
self.pw_exp = ConvNormAct(
|
|
203
|
+
nn.Conv2d,
|
|
204
|
+
in_chs,
|
|
205
|
+
mid_chs,
|
|
206
|
+
kernel_size=1,
|
|
207
|
+
stride=1,
|
|
208
|
+
padding=0,
|
|
209
|
+
groups=1,
|
|
210
|
+
bias=False,
|
|
211
|
+
eps=1e-05,
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
if dw_kernel_size_mid:
|
|
215
|
+
dw_mid_groups = num_groups(group_size, mid_chs)
|
|
216
|
+
self.dw_mid = ConvNormAct(
|
|
217
|
+
Conv2dSame,
|
|
218
|
+
mid_chs,
|
|
219
|
+
mid_chs,
|
|
220
|
+
kernel_size=dw_kernel_size_mid,
|
|
221
|
+
stride=stride,
|
|
222
|
+
padding=0,
|
|
223
|
+
dilation=dilation,
|
|
224
|
+
groups=dw_mid_groups,
|
|
225
|
+
bias=False,
|
|
226
|
+
eps=1e-05,
|
|
227
|
+
)
|
|
228
|
+
else:
|
|
229
|
+
self.dw_mid = nn.Identity()
|
|
230
|
+
|
|
231
|
+
self.pw_proj = ConvNormAct(
|
|
232
|
+
nn.Conv2d,
|
|
233
|
+
mid_chs,
|
|
234
|
+
out_chs,
|
|
235
|
+
kernel_size=1,
|
|
236
|
+
stride=1,
|
|
237
|
+
padding=0,
|
|
238
|
+
groups=1,
|
|
239
|
+
bias=False,
|
|
240
|
+
apply_act=False,
|
|
241
|
+
eps=1e-05,
|
|
242
|
+
)
|
|
243
|
+
if layer_scale_init_value is not None:
|
|
244
|
+
self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value)
|
|
245
|
+
else:
|
|
246
|
+
self.layer_scale = nn.Identity()
|
|
247
|
+
|
|
248
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
249
|
+
shortcut = x
|
|
250
|
+
x = self.dw_start(x)
|
|
251
|
+
x = self.pw_exp(x)
|
|
252
|
+
x = self.dw_mid(x)
|
|
253
|
+
x = self.pw_proj(x)
|
|
254
|
+
x = self.layer_scale(x)
|
|
255
|
+
if self.has_skip:
|
|
256
|
+
x = x + shortcut
|
|
257
|
+
return x
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/layers/conv_bn_act.py#L15
|
|
261
|
+
class ConvNormAct(nn.Module):
|
|
262
|
+
def __init__(
|
|
263
|
+
self,
|
|
264
|
+
conv_cls,
|
|
265
|
+
in_chs: int,
|
|
266
|
+
out_chs: int,
|
|
267
|
+
kernel_size: int = 3,
|
|
268
|
+
stride: int = 1,
|
|
269
|
+
padding: int = 0,
|
|
270
|
+
dilation: int = 1,
|
|
271
|
+
groups: int = 1,
|
|
272
|
+
bias: bool = False,
|
|
273
|
+
apply_act: bool = True,
|
|
274
|
+
eps: float = 1e-6,
|
|
275
|
+
):
|
|
276
|
+
super().__init__()
|
|
277
|
+
self.out_chs = out_chs
|
|
278
|
+
self.conv = conv_cls(
|
|
279
|
+
in_chs,
|
|
280
|
+
out_chs,
|
|
281
|
+
kernel_size,
|
|
282
|
+
stride,
|
|
283
|
+
padding,
|
|
284
|
+
(dilation, dilation),
|
|
285
|
+
groups,
|
|
286
|
+
bias,
|
|
287
|
+
)
|
|
288
|
+
self.bn = RMSNormAct2d(out_chs, eps=eps, apply_act=apply_act)
|
|
289
|
+
|
|
290
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
291
|
+
c = self.conv(x)
|
|
292
|
+
r = self.bn(c)
|
|
293
|
+
return r
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
def pad_same(
|
|
297
|
+
x,
|
|
298
|
+
kernel_size: List[int],
|
|
299
|
+
stride: List[int],
|
|
300
|
+
dilation: List[int] = (1, 1),
|
|
301
|
+
value: float = 0,
|
|
302
|
+
):
|
|
303
|
+
"""
|
|
304
|
+
Input should be in MLX format
|
|
305
|
+
"""
|
|
306
|
+
ih, iw = x.shape[1:3]
|
|
307
|
+
pad_h = get_same_padding(ih, kernel_size[0], stride[0], dilation[0])
|
|
308
|
+
pad_w = get_same_padding(iw, kernel_size[1], stride[1], dilation[1])
|
|
309
|
+
|
|
310
|
+
# MLX pad format: [(low, high), (low, high), ...] for each axis
|
|
311
|
+
# Padding order is reversed compared to PyTorch F.pad
|
|
312
|
+
pad_widths = [
|
|
313
|
+
(0, 0), # No padding for batch dimension
|
|
314
|
+
(pad_h // 2, pad_h - pad_h // 2), # Height padding
|
|
315
|
+
(pad_w // 2, pad_w - pad_w // 2), # Width padding
|
|
316
|
+
(0, 0), # No padding for channel dimension
|
|
317
|
+
]
|
|
318
|
+
|
|
319
|
+
x = mx.pad(x, pad_widths, constant_values=value)
|
|
320
|
+
return x
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]:
|
|
324
|
+
dynamic = False
|
|
325
|
+
if isinstance(padding, str):
|
|
326
|
+
# for any string padding, the padding will be calculated for you, one of three ways
|
|
327
|
+
padding = padding.lower()
|
|
328
|
+
if padding == "same":
|
|
329
|
+
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
|
|
330
|
+
if is_static_pad(kernel_size, **kwargs):
|
|
331
|
+
# static case, no extra overhead
|
|
332
|
+
padding = get_padding(kernel_size, **kwargs)
|
|
333
|
+
else:
|
|
334
|
+
# dynamic 'SAME' padding, has runtime/GPU memory overhead
|
|
335
|
+
padding = 0
|
|
336
|
+
dynamic = True
|
|
337
|
+
elif padding == "valid":
|
|
338
|
+
# 'VALID' padding, same as padding=0
|
|
339
|
+
padding = 0
|
|
340
|
+
else:
|
|
341
|
+
# Default to PyTorch style 'same'-ish symmetric padding
|
|
342
|
+
padding = get_padding(kernel_size, **kwargs)
|
|
343
|
+
return padding, dynamic
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
def get_same_padding(
|
|
347
|
+
input_size: int, kernel_size: int, stride: int, dilation: int = 1
|
|
348
|
+
) -> int:
|
|
349
|
+
"""Calculate padding needed for 'same' output size."""
|
|
350
|
+
effective_kernel_size = dilation * (kernel_size - 1) + 1
|
|
351
|
+
output_size = (input_size + stride - 1) // stride
|
|
352
|
+
total_padding = max(
|
|
353
|
+
0, (output_size - 1) * stride + effective_kernel_size - input_size
|
|
354
|
+
)
|
|
355
|
+
return total_padding
|
|
356
|
+
|
|
357
|
+
|
|
358
|
+
def get_padding(kernel_size, stride=1, dilation=1, **_):
|
|
359
|
+
"""Get symmetric padding for given kernel size."""
|
|
360
|
+
if isinstance(kernel_size, int):
|
|
361
|
+
kernel_size = [kernel_size, kernel_size]
|
|
362
|
+
if isinstance(stride, int):
|
|
363
|
+
stride = [stride, stride]
|
|
364
|
+
if isinstance(dilation, int):
|
|
365
|
+
dilation = [dilation, dilation]
|
|
366
|
+
|
|
367
|
+
padding = []
|
|
368
|
+
for k, d in zip(kernel_size, dilation):
|
|
369
|
+
effective_k = d * (k - 1) + 1
|
|
370
|
+
pad_total = effective_k - 1
|
|
371
|
+
padding.append(pad_total // 2)
|
|
372
|
+
return tuple(padding)
|
|
373
|
+
|
|
374
|
+
|
|
375
|
+
def is_static_pad(kernel_size, stride=1, dilation=1, **_):
|
|
376
|
+
"""Check if padding can be calculated statically."""
|
|
377
|
+
if isinstance(kernel_size, int):
|
|
378
|
+
kernel_size = [kernel_size, kernel_size]
|
|
379
|
+
if isinstance(stride, int):
|
|
380
|
+
stride = [stride, stride]
|
|
381
|
+
if isinstance(dilation, int):
|
|
382
|
+
dilation = [dilation, dilation]
|
|
383
|
+
|
|
384
|
+
# Static padding is possible when stride is 1 for all dimensions
|
|
385
|
+
return all(s == 1 for s in stride)
|
|
386
|
+
|
|
387
|
+
|
|
388
|
+
class Conv2dSame(nn.Conv2d):
|
|
389
|
+
def __init__(self, *args, **kwargs):
|
|
390
|
+
super().__init__(*args, **kwargs)
|
|
391
|
+
self.kernel_size = self.weight.shape[1:3]
|
|
392
|
+
|
|
393
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
394
|
+
x = pad_same(x, self.kernel_size, self.stride, self.dilation)
|
|
395
|
+
y = mx.conv2d(
|
|
396
|
+
x, self.weight, self.stride, self.padding, self.dilation, self.groups
|
|
397
|
+
)
|
|
398
|
+
if "bias" in self:
|
|
399
|
+
y = y + self.bias
|
|
400
|
+
return y
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/_efficientnet_blocks.py#L629
|
|
404
|
+
class EdgeResidual(nn.Module):
|
|
405
|
+
def __init__(
|
|
406
|
+
self,
|
|
407
|
+
in_chs: int,
|
|
408
|
+
out_chs: int,
|
|
409
|
+
exp_kernel_size: int = 3,
|
|
410
|
+
stride: int = 1,
|
|
411
|
+
dilation: int = 1,
|
|
412
|
+
group_size: int = 0,
|
|
413
|
+
pad_type: str = "",
|
|
414
|
+
force_in_chs: int = 0,
|
|
415
|
+
noskip: bool = False,
|
|
416
|
+
expand_ratio: float = 1.0,
|
|
417
|
+
pw_kernel_size: int = 1,
|
|
418
|
+
norm_layer=RMSNormAct2d,
|
|
419
|
+
):
|
|
420
|
+
super().__init__()
|
|
421
|
+
|
|
422
|
+
if force_in_chs > 0:
|
|
423
|
+
mid_chs = make_divisible(force_in_chs * expand_ratio)
|
|
424
|
+
else:
|
|
425
|
+
mid_chs = make_divisible(in_chs * expand_ratio)
|
|
426
|
+
|
|
427
|
+
groups = num_groups(group_size, mid_chs)
|
|
428
|
+
|
|
429
|
+
self.has_skip = (in_chs == out_chs and stride == 1) and not noskip
|
|
430
|
+
|
|
431
|
+
self.conv_exp = Conv2dSame(
|
|
432
|
+
in_chs,
|
|
433
|
+
mid_chs,
|
|
434
|
+
kernel_size=exp_kernel_size,
|
|
435
|
+
stride=stride,
|
|
436
|
+
padding=0,
|
|
437
|
+
dilation=(dilation, dilation),
|
|
438
|
+
groups=groups,
|
|
439
|
+
bias=False,
|
|
440
|
+
)
|
|
441
|
+
|
|
442
|
+
self.bn1 = norm_layer(mid_chs, eps=1e-05) if norm_layer else nn.Identity()
|
|
443
|
+
|
|
444
|
+
# Point-wise linear projection
|
|
445
|
+
padding_pwl = (pw_kernel_size - 1) // 2
|
|
446
|
+
self.conv_pwl = nn.Conv2d(
|
|
447
|
+
mid_chs,
|
|
448
|
+
out_chs,
|
|
449
|
+
kernel_size=pw_kernel_size,
|
|
450
|
+
padding=padding_pwl,
|
|
451
|
+
bias=False,
|
|
452
|
+
)
|
|
453
|
+
|
|
454
|
+
self.bn2 = (
|
|
455
|
+
norm_layer(out_chs, eps=1e-05, apply_act=False)
|
|
456
|
+
if norm_layer
|
|
457
|
+
else nn.Identity()
|
|
458
|
+
)
|
|
459
|
+
|
|
460
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
461
|
+
shortcut = x
|
|
462
|
+
x = self.conv_exp(x)
|
|
463
|
+
x = self.bn1(x)
|
|
464
|
+
x = self.conv_pwl(x)
|
|
465
|
+
x = self.bn2(x)
|
|
466
|
+
if self.has_skip:
|
|
467
|
+
x = x + shortcut
|
|
468
|
+
return x
|
|
469
|
+
|
|
470
|
+
|
|
471
|
+
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/_efficientnet_blocks.py#L449
|
|
472
|
+
class MobileAttention(nn.Module):
|
|
473
|
+
def __init__(
|
|
474
|
+
self,
|
|
475
|
+
in_chs: int,
|
|
476
|
+
out_chs: int,
|
|
477
|
+
stride: int = 1,
|
|
478
|
+
dw_kernel_size: int = 3,
|
|
479
|
+
dilation: int = 1,
|
|
480
|
+
group_size: int = 1,
|
|
481
|
+
pad_type: str = "",
|
|
482
|
+
num_heads: int = 8,
|
|
483
|
+
key_dim: int = 64,
|
|
484
|
+
value_dim: int = 64,
|
|
485
|
+
use_multi_query: bool = True,
|
|
486
|
+
query_strides: Tuple[int, int] = (1, 1),
|
|
487
|
+
kv_stride: int = 1,
|
|
488
|
+
cpe_dw_kernel_size: int = 3,
|
|
489
|
+
noskip: bool = False,
|
|
490
|
+
act_layer=nn.GELU,
|
|
491
|
+
aa_layer=None,
|
|
492
|
+
drop_path_rate: float = 0.0,
|
|
493
|
+
attn_drop: float = 0.0,
|
|
494
|
+
proj_drop: float = 0.0,
|
|
495
|
+
layer_scale_init_value: Optional[float] = 1e-5,
|
|
496
|
+
use_bias: bool = False,
|
|
497
|
+
):
|
|
498
|
+
super().__init__()
|
|
499
|
+
self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip
|
|
500
|
+
self.query_strides = to_2tuple(query_strides)
|
|
501
|
+
self.kv_stride = kv_stride
|
|
502
|
+
self.has_query_stride = any([s > 1 for s in self.query_strides])
|
|
503
|
+
|
|
504
|
+
# Normalization layer
|
|
505
|
+
self.norm = RMSNormAct2d(
|
|
506
|
+
in_chs,
|
|
507
|
+
eps=1e-05,
|
|
508
|
+
apply_act=False,
|
|
509
|
+
)
|
|
510
|
+
# Determine number of heads if not provided
|
|
511
|
+
if num_heads is None:
|
|
512
|
+
assert in_chs % key_dim == 0
|
|
513
|
+
num_heads = in_chs // key_dim
|
|
514
|
+
|
|
515
|
+
# Attention layer
|
|
516
|
+
if use_multi_query:
|
|
517
|
+
self.attn = MultiQueryAttention2d(
|
|
518
|
+
in_chs,
|
|
519
|
+
dim_out=out_chs,
|
|
520
|
+
num_heads=num_heads,
|
|
521
|
+
key_dim=key_dim,
|
|
522
|
+
value_dim=value_dim,
|
|
523
|
+
query_strides=query_strides,
|
|
524
|
+
kv_stride=kv_stride,
|
|
525
|
+
dilation=dilation,
|
|
526
|
+
padding=pad_type,
|
|
527
|
+
dw_kernel_size=dw_kernel_size,
|
|
528
|
+
attn_drop=attn_drop,
|
|
529
|
+
proj_drop=proj_drop,
|
|
530
|
+
)
|
|
531
|
+
else:
|
|
532
|
+
raise NotImplementedError("attention not implemented")
|
|
533
|
+
|
|
534
|
+
# Layer scaling
|
|
535
|
+
if layer_scale_init_value is not None:
|
|
536
|
+
self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value)
|
|
537
|
+
else:
|
|
538
|
+
self.layer_scale = nn.Identity()
|
|
539
|
+
|
|
540
|
+
# Drop path for residual connection
|
|
541
|
+
self.drop_path = nn.Identity()
|
|
542
|
+
|
|
543
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
544
|
+
shortcut = x
|
|
545
|
+
x = self.norm(x)
|
|
546
|
+
x = self.attn(x)
|
|
547
|
+
x = self.layer_scale(x)
|
|
548
|
+
|
|
549
|
+
# Apply skip connection if available
|
|
550
|
+
if self.has_skip:
|
|
551
|
+
x = self.drop_path(x) + shortcut
|
|
552
|
+
return x
|
|
553
|
+
|
|
554
|
+
|
|
555
|
+
def create_conv2d(
|
|
556
|
+
in_channels,
|
|
557
|
+
out_channels,
|
|
558
|
+
kernel_size,
|
|
559
|
+
stride=1,
|
|
560
|
+
dilation=1,
|
|
561
|
+
depthwise=False,
|
|
562
|
+
bias=False,
|
|
563
|
+
**kwargs,
|
|
564
|
+
):
|
|
565
|
+
"""Helper function to create a 2D convolution with common parameters"""
|
|
566
|
+
if depthwise:
|
|
567
|
+
# Depthwise convolution
|
|
568
|
+
return nn.Conv2d(
|
|
569
|
+
in_channels,
|
|
570
|
+
out_channels,
|
|
571
|
+
kernel_size=kernel_size,
|
|
572
|
+
stride=stride,
|
|
573
|
+
padding=(kernel_size - 1) // 2 * dilation,
|
|
574
|
+
dilation=dilation,
|
|
575
|
+
groups=in_channels,
|
|
576
|
+
bias=bias,
|
|
577
|
+
)
|
|
578
|
+
else:
|
|
579
|
+
# Regular convolution
|
|
580
|
+
return nn.Conv2d(
|
|
581
|
+
in_channels,
|
|
582
|
+
out_channels,
|
|
583
|
+
kernel_size=kernel_size,
|
|
584
|
+
stride=stride,
|
|
585
|
+
padding=(kernel_size - 1) // 2 * dilation,
|
|
586
|
+
dilation=dilation,
|
|
587
|
+
bias=bias,
|
|
588
|
+
)
|
|
589
|
+
|
|
590
|
+
|
|
591
|
+
def to_2tuple(x):
|
|
592
|
+
"""Convert input to 2-tuple"""
|
|
593
|
+
if isinstance(x, tuple):
|
|
594
|
+
return x
|
|
595
|
+
return (x, x)
|
|
596
|
+
|
|
597
|
+
|
|
598
|
+
class NamedSequential(nn.Module):
|
|
599
|
+
def __init__(self):
|
|
600
|
+
super().__init__()
|
|
601
|
+
self._order = []
|
|
602
|
+
|
|
603
|
+
def add_module(self, name, module):
|
|
604
|
+
setattr(self, name, module)
|
|
605
|
+
self._order.append(name)
|
|
606
|
+
|
|
607
|
+
def __call__(self, x):
|
|
608
|
+
for name in self._order:
|
|
609
|
+
x = getattr(self, name)(x)
|
|
610
|
+
return x
|
|
611
|
+
|
|
612
|
+
|
|
613
|
+
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/layers/attention2d.py#L82
|
|
614
|
+
class MultiQueryAttention2d(nn.Module):
|
|
615
|
+
def __init__(
|
|
616
|
+
self,
|
|
617
|
+
dim: int,
|
|
618
|
+
dim_out: Optional[int] = None,
|
|
619
|
+
num_heads: int = 8,
|
|
620
|
+
key_dim: int = 64,
|
|
621
|
+
value_dim: int = 64,
|
|
622
|
+
query_strides: Tuple[int, int] = (1, 1),
|
|
623
|
+
kv_stride: int = 1,
|
|
624
|
+
dilation: int = 1,
|
|
625
|
+
padding: str = "",
|
|
626
|
+
dw_kernel_size: int = 3,
|
|
627
|
+
attn_drop: float = 0.0,
|
|
628
|
+
proj_drop: float = 0.0,
|
|
629
|
+
):
|
|
630
|
+
super().__init__()
|
|
631
|
+
dim_out = dim_out or dim
|
|
632
|
+
self.num_heads = num_heads
|
|
633
|
+
self.query_strides = to_2tuple(query_strides)
|
|
634
|
+
self.kv_stride = kv_stride
|
|
635
|
+
self.fused_attn = True
|
|
636
|
+
self.key_dim = key_dim
|
|
637
|
+
self.value_dim = value_dim
|
|
638
|
+
head_dim = key_dim
|
|
639
|
+
self.scale = head_dim**-0.5
|
|
640
|
+
|
|
641
|
+
self.query = NamedSequential()
|
|
642
|
+
self.query.add_module(
|
|
643
|
+
"proj",
|
|
644
|
+
create_conv2d(
|
|
645
|
+
dim,
|
|
646
|
+
self.num_heads * self.key_dim,
|
|
647
|
+
kernel_size=1,
|
|
648
|
+
),
|
|
649
|
+
)
|
|
650
|
+
self.key = NamedSequential()
|
|
651
|
+
if kv_stride > 1:
|
|
652
|
+
self.key.add_module(
|
|
653
|
+
"down_conv",
|
|
654
|
+
create_conv2d(
|
|
655
|
+
dim,
|
|
656
|
+
dim,
|
|
657
|
+
kernel_size=dw_kernel_size,
|
|
658
|
+
stride=kv_stride,
|
|
659
|
+
dilation=dilation,
|
|
660
|
+
padding=padding,
|
|
661
|
+
depthwise=True,
|
|
662
|
+
),
|
|
663
|
+
)
|
|
664
|
+
self.key.add_module("norm", RMSNormAct2d(dim, eps=1e-6, apply_act=False))
|
|
665
|
+
self.key.add_module(
|
|
666
|
+
"proj", create_conv2d(dim, key_dim, kernel_size=1, bias=False)
|
|
667
|
+
)
|
|
668
|
+
|
|
669
|
+
self.value = NamedSequential()
|
|
670
|
+
if kv_stride > 1:
|
|
671
|
+
self.value.add_module(
|
|
672
|
+
"down_conv",
|
|
673
|
+
create_conv2d(
|
|
674
|
+
dim,
|
|
675
|
+
dim,
|
|
676
|
+
kernel_size=dw_kernel_size,
|
|
677
|
+
stride=kv_stride,
|
|
678
|
+
dilation=dilation,
|
|
679
|
+
padding=padding,
|
|
680
|
+
depthwise=True,
|
|
681
|
+
),
|
|
682
|
+
)
|
|
683
|
+
self.value.add_module("norm", RMSNormAct2d(dim, eps=1e-6, apply_act=False))
|
|
684
|
+
self.value.add_module(
|
|
685
|
+
"proj", create_conv2d(dim, value_dim, kernel_size=1, bias=False)
|
|
686
|
+
)
|
|
687
|
+
|
|
688
|
+
# Attention dropout
|
|
689
|
+
self.attn_drop = nn.Dropout(attn_drop) if attn_drop > 0 else nn.Identity()
|
|
690
|
+
|
|
691
|
+
# Output projection
|
|
692
|
+
self.output = NamedSequential()
|
|
693
|
+
self.output.add_module(
|
|
694
|
+
"proj",
|
|
695
|
+
create_conv2d(
|
|
696
|
+
value_dim * num_heads,
|
|
697
|
+
dim_out,
|
|
698
|
+
kernel_size=1,
|
|
699
|
+
stride=1,
|
|
700
|
+
bias=False,
|
|
701
|
+
),
|
|
702
|
+
)
|
|
703
|
+
self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0 else nn.Identity()
|
|
704
|
+
|
|
705
|
+
def _reshape_input(self, t: mx.array):
|
|
706
|
+
"""
|
|
707
|
+
Input shape MLX: [B, H, W, C]
|
|
708
|
+
Input shape PyTorch: [B, C, H, W]
|
|
709
|
+
|
|
710
|
+
PyTorch Reshape: [B, C, H, W] -> [B, C, -1] -> [B, -1, C] -> [B, 1, -1, C] -> SDPA
|
|
711
|
+
MLX Reshape: [B, H, W, C] -> [B, -1, C] -> [B, 1, -1, C] -> SDPA
|
|
712
|
+
"""
|
|
713
|
+
s = t.shape
|
|
714
|
+
t = t.reshape(s[0], -1, s[3])[:, None, :, :]
|
|
715
|
+
|
|
716
|
+
return t
|
|
717
|
+
|
|
718
|
+
def _reshape_projected_query(self, t: mx.array, num_heads: int, key_dim: int):
|
|
719
|
+
"""
|
|
720
|
+
Input shape MLX: [B, H, W, C] where C = num_heads * key_dim
|
|
721
|
+
"""
|
|
722
|
+
B, H, W, C = t.shape
|
|
723
|
+
# t = t.reshape(B, H, W, num_heads, key_dim)
|
|
724
|
+
t = t.reshape(B, H * W, num_heads, key_dim)
|
|
725
|
+
return t.transpose(0, 2, 1, 3)
|
|
726
|
+
|
|
727
|
+
def _reshape_output(self, t: mx.array, num_heads: int, h_px: int, w_px: int):
|
|
728
|
+
"""
|
|
729
|
+
Input shape: [B, NH, L, D] where L = h_px * w_px
|
|
730
|
+
Output shape MLX: [B, H, W, C] where C = NH * D
|
|
731
|
+
"""
|
|
732
|
+
B, NH, L, D = t.shape
|
|
733
|
+
# First transpose to [B, L, NH, D]
|
|
734
|
+
t = t.transpose(0, 2, 1, 3)
|
|
735
|
+
# Then reshape to [B, H, W, NH*D]
|
|
736
|
+
t = t.reshape(B, h_px, w_px, NH * D)
|
|
737
|
+
return t
|
|
738
|
+
|
|
739
|
+
def __call__(self, x: mx.array, attn_mask: Optional[mx.array] = None) -> mx.array:
|
|
740
|
+
B, H, W, C = x.shape
|
|
741
|
+
q = self.query(x)
|
|
742
|
+
q = self._reshape_projected_query(q, self.num_heads, self.key_dim)
|
|
743
|
+
|
|
744
|
+
k = self.key(x)
|
|
745
|
+
k = self._reshape_input(k)
|
|
746
|
+
|
|
747
|
+
v = self.value(x)
|
|
748
|
+
v = self._reshape_input(v)
|
|
749
|
+
|
|
750
|
+
if self.fused_attn:
|
|
751
|
+
o = mx.fast.scaled_dot_product_attention(
|
|
752
|
+
q,
|
|
753
|
+
k,
|
|
754
|
+
v,
|
|
755
|
+
scale=1.0 / sqrt(q.shape[-1]),
|
|
756
|
+
)
|
|
757
|
+
else:
|
|
758
|
+
raise NotImplementedError("unfused attention not implemented")
|
|
759
|
+
|
|
760
|
+
o = self._reshape_output(
|
|
761
|
+
o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1]
|
|
762
|
+
)
|
|
763
|
+
x = self.output(o)
|
|
764
|
+
return x
|
|
765
|
+
|
|
766
|
+
|
|
767
|
+
def num_groups(group_size: Optional[int], channels: int) -> int:
|
|
768
|
+
if not group_size: # 0 or None
|
|
769
|
+
return 1 # normal conv with 1 group
|
|
770
|
+
else:
|
|
771
|
+
# NOTE group_size == 1 -> depthwise conv
|
|
772
|
+
assert channels % group_size == 0
|
|
773
|
+
return channels // group_size
|
|
774
|
+
|
|
775
|
+
|
|
776
|
+
def make_divisible(v, divisor: int = 8, min_value=None, round_limit: float = 0.9):
|
|
777
|
+
min_value = min_value or divisor
|
|
778
|
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
779
|
+
# Make sure that round down does not go down by more than 10%.
|
|
780
|
+
if new_v < round_limit * v:
|
|
781
|
+
new_v += divisor
|
|
782
|
+
return new_v
|
|
783
|
+
|
|
784
|
+
|
|
785
|
+
@dataclass(frozen=True)
|
|
786
|
+
class EdgeResidualConfig:
|
|
787
|
+
kernel_size: int = 3
|
|
788
|
+
filters: int = 32
|
|
789
|
+
strides: int = 1
|
|
790
|
+
expand_ratio: float = 4.0
|
|
791
|
+
is_multiscale: bool = False
|
|
792
|
+
|
|
793
|
+
|
|
794
|
+
def _er(kernel_size, filters, strides=1, expand_ratio=4.0, is_multiscale=False):
|
|
795
|
+
return EdgeResidualConfig(
|
|
796
|
+
kernel_size=kernel_size,
|
|
797
|
+
filters=filters,
|
|
798
|
+
strides=strides,
|
|
799
|
+
expand_ratio=expand_ratio,
|
|
800
|
+
is_multiscale=is_multiscale,
|
|
801
|
+
)
|
|
802
|
+
|
|
803
|
+
|
|
804
|
+
@dataclass(frozen=True)
|
|
805
|
+
class UniversalInvertedResidualConfig:
|
|
806
|
+
start_dw_kernel_size: int = 0 # Zero size means no conv
|
|
807
|
+
mid_dw_kernel_size: int = 0 # Zero size means no conv
|
|
808
|
+
filters: int = 32
|
|
809
|
+
strides: int = 1
|
|
810
|
+
expand_ratio: float = 4.0
|
|
811
|
+
is_multiscale: bool = False
|
|
812
|
+
|
|
813
|
+
|
|
814
|
+
def _uir(
|
|
815
|
+
start_dw_kernel_size,
|
|
816
|
+
mid_dw_kernel_size,
|
|
817
|
+
filters,
|
|
818
|
+
strides=1,
|
|
819
|
+
expand_ratio=4.0,
|
|
820
|
+
is_multiscale=False,
|
|
821
|
+
):
|
|
822
|
+
return UniversalInvertedResidualConfig(
|
|
823
|
+
start_dw_kernel_size=start_dw_kernel_size,
|
|
824
|
+
mid_dw_kernel_size=mid_dw_kernel_size,
|
|
825
|
+
filters=filters,
|
|
826
|
+
strides=strides,
|
|
827
|
+
expand_ratio=expand_ratio,
|
|
828
|
+
is_multiscale=is_multiscale,
|
|
829
|
+
)
|
|
830
|
+
|
|
831
|
+
|
|
832
|
+
@dataclass(frozen=True)
|
|
833
|
+
class MultiQueryAttentionBlockConfig:
|
|
834
|
+
num_heads: int = 8
|
|
835
|
+
kv_dim: int = 16
|
|
836
|
+
kv_strides: int = 1
|
|
837
|
+
mmqa_avg_pool_kv: bool = False
|
|
838
|
+
mmqa_dropout: float = 0.0
|
|
839
|
+
mmqa_dw_kernel_size: int = 3
|
|
840
|
+
is_multiscale: bool = False
|
|
841
|
+
|
|
842
|
+
|
|
843
|
+
def _mmqa(
|
|
844
|
+
num_heads,
|
|
845
|
+
kv_dim,
|
|
846
|
+
kv_strides,
|
|
847
|
+
mmqa_avg_pool_kv=False,
|
|
848
|
+
is_multiscale=False,
|
|
849
|
+
):
|
|
850
|
+
conf = MultiQueryAttentionBlockConfig(
|
|
851
|
+
num_heads=num_heads,
|
|
852
|
+
kv_dim=kv_dim,
|
|
853
|
+
kv_strides=kv_strides,
|
|
854
|
+
mmqa_avg_pool_kv=mmqa_avg_pool_kv,
|
|
855
|
+
is_multiscale=is_multiscale,
|
|
856
|
+
)
|
|
857
|
+
return conf
|
|
858
|
+
|
|
859
|
+
|
|
860
|
+
# https://github.com/huggingface/new-model-addition-timm-gemma3p5-non-fork/blob/mobilenet-gemma3n-rw/timm/models/mobilenetv5.py#L596
|
|
861
|
+
def gemma3n_mobilenet_def():
|
|
862
|
+
return [
|
|
863
|
+
# Stage 1: Edge Residuals
|
|
864
|
+
[_er(3, 128, 2)] + [_er(3, 128, 1)] * 2,
|
|
865
|
+
# Stage 2: Universal Inverted Residuals
|
|
866
|
+
[_uir(3, 5, 256, 2, 6.0)] + [_uir(k, 0, 256) for k in [5, 3, 5, 3]],
|
|
867
|
+
# Stage 3: Universal Inverted Residuals with Multi-Query Attention
|
|
868
|
+
[_uir(5, 5, 640, 2, 6.0)]
|
|
869
|
+
+ [_uir(5, 0, 640)] * 7
|
|
870
|
+
+ [_uir(0, 0, 640, 1, 1.0)]
|
|
871
|
+
+ [_mmqa(12, 64, 2), _uir(0, 0, 640, 1, 2.0)] * 13
|
|
872
|
+
+ [_mmqa(12, 64, 2), _uir(0, 0, 640, 1, 2.0, is_multiscale=True)],
|
|
873
|
+
# Stage 4: Universal Inverted Residuals with Multi-Query Attention
|
|
874
|
+
[_uir(5, 5, 1280, 2, 6.0)]
|
|
875
|
+
+ [_mmqa(16, 96, 1), _uir(0, 0, 1280, 1, 2.0)] * 18
|
|
876
|
+
+ [_mmqa(16, 96, 1), _uir(0, 0, 1280, 1, 2.0, is_multiscale=True)],
|
|
877
|
+
]
|
|
878
|
+
|
|
879
|
+
|
|
880
|
+
class VisionTower(nn.Module):
|
|
881
|
+
def __init__(self, config: VisionConfig):
|
|
882
|
+
super().__init__()
|
|
883
|
+
self.conv_stem = ConvNormAct(
|
|
884
|
+
Conv2dSame,
|
|
885
|
+
in_chs=3,
|
|
886
|
+
out_chs=64,
|
|
887
|
+
kernel_size=3,
|
|
888
|
+
stride=2,
|
|
889
|
+
padding=0,
|
|
890
|
+
eps=1e-05,
|
|
891
|
+
bias=True,
|
|
892
|
+
)
|
|
893
|
+
msfa_indices = (3, 4)
|
|
894
|
+
msfa_output_resolution = (16, 16)
|
|
895
|
+
|
|
896
|
+
(num_features, self.blocks) = self.build()
|
|
897
|
+
self.num_features = self.head_hidden_size = (
|
|
898
|
+
num_features # output of msfa is output of forward_features()
|
|
899
|
+
)
|
|
900
|
+
self.msfa_indices = msfa_indices
|
|
901
|
+
self.msfa_output_resolution = msfa_output_resolution
|
|
902
|
+
|
|
903
|
+
self.msfa = MobileNetV5MultiScaleFusionAdapter(
|
|
904
|
+
in_chs=[1920],
|
|
905
|
+
out_chs=2048,
|
|
906
|
+
output_resolution=self.msfa_output_resolution,
|
|
907
|
+
)
|
|
908
|
+
|
|
909
|
+
def build(self):
|
|
910
|
+
blocks = []
|
|
911
|
+
in_chs = self.conv_stem.out_chs
|
|
912
|
+
for stage, block_config in enumerate(gemma3n_mobilenet_def()):
|
|
913
|
+
block_group = []
|
|
914
|
+
for config in block_config:
|
|
915
|
+
match config:
|
|
916
|
+
case EdgeResidualConfig(
|
|
917
|
+
kernel_size, filters, strides, expand_ratio, is_multiscale
|
|
918
|
+
):
|
|
919
|
+
x = EdgeResidual(
|
|
920
|
+
exp_kernel_size=kernel_size,
|
|
921
|
+
in_chs=in_chs,
|
|
922
|
+
out_chs=filters,
|
|
923
|
+
stride=strides,
|
|
924
|
+
expand_ratio=expand_ratio,
|
|
925
|
+
)
|
|
926
|
+
in_chs = filters # in_chs of next is out_chs of prev
|
|
927
|
+
block_group.append(x)
|
|
928
|
+
case UniversalInvertedResidualConfig(
|
|
929
|
+
start_dw_kernel_size,
|
|
930
|
+
mid_dw_kernel_size,
|
|
931
|
+
filters,
|
|
932
|
+
strides,
|
|
933
|
+
expand_ratio,
|
|
934
|
+
is_multiscale,
|
|
935
|
+
):
|
|
936
|
+
x = UniversalInvertedResidual(
|
|
937
|
+
in_chs=in_chs,
|
|
938
|
+
out_chs=filters,
|
|
939
|
+
dw_kernel_size_start=start_dw_kernel_size,
|
|
940
|
+
dw_kernel_size_mid=mid_dw_kernel_size,
|
|
941
|
+
stride=strides,
|
|
942
|
+
exp_ratio=expand_ratio,
|
|
943
|
+
)
|
|
944
|
+
in_chs = filters
|
|
945
|
+
block_group.append(x)
|
|
946
|
+
case MultiQueryAttentionBlockConfig(
|
|
947
|
+
num_heads,
|
|
948
|
+
kv_dim,
|
|
949
|
+
kv_strides,
|
|
950
|
+
mmqa_avg_pool_kv,
|
|
951
|
+
is_multiscale,
|
|
952
|
+
):
|
|
953
|
+
x = MobileAttention(
|
|
954
|
+
in_chs=in_chs,
|
|
955
|
+
out_chs=in_chs,
|
|
956
|
+
stride=1,
|
|
957
|
+
num_heads=num_heads,
|
|
958
|
+
key_dim=kv_dim,
|
|
959
|
+
value_dim=kv_dim,
|
|
960
|
+
kv_stride=kv_strides,
|
|
961
|
+
act_layer=None,
|
|
962
|
+
)
|
|
963
|
+
block_group.append(x)
|
|
964
|
+
case _:
|
|
965
|
+
continue
|
|
966
|
+
blocks.append(block_group)
|
|
967
|
+
return (in_chs, blocks)
|
|
968
|
+
|
|
969
|
+
def __call__(
|
|
970
|
+
self, x: mx.array, output_hidden_states: Optional[bool] = None
|
|
971
|
+
) -> mx.array:
|
|
972
|
+
feat_idx = 0
|
|
973
|
+
x = x.transpose(0, 2, 3, 1) # Convert from NCHW to NHWC
|
|
974
|
+
x = self.conv_stem(x)
|
|
975
|
+
intermediates = []
|
|
976
|
+
|
|
977
|
+
if feat_idx in self.msfa_indices:
|
|
978
|
+
intermediates.append(x)
|
|
979
|
+
|
|
980
|
+
# MBV5 is constructed of 4 stages, each stage is a group of blocks.
|
|
981
|
+
for block_group in self.blocks:
|
|
982
|
+
feat_idx += 1
|
|
983
|
+
for block in block_group:
|
|
984
|
+
x = block(x)
|
|
985
|
+
|
|
986
|
+
if feat_idx in self.msfa_indices:
|
|
987
|
+
intermediates.append(x)
|
|
988
|
+
|
|
989
|
+
x = self.msfa(intermediates)
|
|
990
|
+
return x
|
|
991
|
+
|
|
992
|
+
|
|
993
|
+
class VisionModel(nn.Module):
|
|
994
|
+
def __init__(self, config: VisionConfig):
|
|
995
|
+
super().__init__()
|
|
996
|
+
self.model_type = config.model_type
|
|
997
|
+
if self.model_type not in ["gemma3", "gemma3_vision", "gemma3n_vision"]:
|
|
998
|
+
raise ValueError(f"Unsupported model type: {self.model_type}")
|
|
999
|
+
|
|
1000
|
+
self.timm_model = VisionTower(config)
|
|
1001
|
+
|
|
1002
|
+
def __call__(
|
|
1003
|
+
self, x: mx.array, output_hidden_states: Optional[bool] = None
|
|
1004
|
+
) -> mx.array:
|
|
1005
|
+
return self.timm_model(x, output_hidden_states)
|
|
1006
|
+
|
|
1007
|
+
def sanitize(self, weights):
|
|
1008
|
+
sanitized_weights = {}
|
|
1009
|
+
skip_transpose = False
|
|
1010
|
+
_, H, _, C = weights["vision_tower.timm_model.blocks.0.0.conv_exp.weight"].shape
|
|
1011
|
+
if C > H:
|
|
1012
|
+
skip_transpose = True
|
|
1013
|
+
|
|
1014
|
+
for k, v in weights.items():
|
|
1015
|
+
# PyTorch conv2d weight: [out_channels, in_channels, kH, kW]
|
|
1016
|
+
# MLX conv2d weight: [out_channels, kH, KW, in_channels]
|
|
1017
|
+
if ("conv" in k and "weight" in k) or ("attn" and "proj.weight") in k:
|
|
1018
|
+
if len(v.shape) == 4 and not skip_transpose:
|
|
1019
|
+
v = v.transpose(0, 2, 3, 1)
|
|
1020
|
+
sanitized_weights[k] = v
|
|
1021
|
+
|
|
1022
|
+
return sanitized_weights
|