nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nexaai/__init__.py +99 -0
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +4 -0
- nexaai/asr.py +68 -0
- nexaai/asr_impl/__init__.py +0 -0
- nexaai/asr_impl/mlx_asr_impl.py +93 -0
- nexaai/asr_impl/pybind_asr_impl.py +127 -0
- nexaai/base.py +39 -0
- nexaai/binds/__init__.py +7 -0
- nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
- nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
- nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
- nexaai/binds/cpu_gpu/libggml.dylib +0 -0
- nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
- nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
- nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/metal/libnexa_plugin.dylib +0 -0
- nexaai/binds/metal/py-lib/ml.py +888 -0
- nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
- nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
- nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
- nexaai/binds/metal/py-lib/profiling.py +239 -0
- nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
- nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
- nexaai/binds/nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexaml/libggml.dylib +0 -0
- nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
- nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
- nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
- nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
- nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexaml/libnexaproc.dylib +0 -0
- nexaai/binds/nexaml/libomp.dylib +0 -0
- nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
- nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
- nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
- nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
- nexaai/common.py +106 -0
- nexaai/cv.py +95 -0
- nexaai/cv_impl/__init__.py +0 -0
- nexaai/cv_impl/mlx_cv_impl.py +91 -0
- nexaai/cv_impl/pybind_cv_impl.py +124 -0
- nexaai/diarize.py +80 -0
- nexaai/diarize_impl/__init__.py +1 -0
- nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
- nexaai/embedder.py +73 -0
- nexaai/embedder_impl/__init__.py +0 -0
- nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
- nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
- nexaai/image_gen.py +141 -0
- nexaai/image_gen_impl/__init__.py +0 -0
- nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
- nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
- nexaai/llm.py +98 -0
- nexaai/llm_impl/__init__.py +0 -0
- nexaai/llm_impl/mlx_llm_impl.py +271 -0
- nexaai/llm_impl/pybind_llm_impl.py +238 -0
- nexaai/log.py +92 -0
- nexaai/mlx_backend/asr/__init__.py +12 -0
- nexaai/mlx_backend/asr/interface.py +122 -0
- nexaai/mlx_backend/common/__init__.py +0 -0
- nexaai/mlx_backend/common/utils.py +25 -0
- nexaai/mlx_backend/cv/__init__.py +0 -0
- nexaai/mlx_backend/cv/generate.py +195 -0
- nexaai/mlx_backend/cv/interface.py +162 -0
- nexaai/mlx_backend/cv/main.py +81 -0
- nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/mlx_backend/embedding/__init__.py +0 -0
- nexaai/mlx_backend/embedding/generate.py +333 -0
- nexaai/mlx_backend/embedding/interface.py +617 -0
- nexaai/mlx_backend/embedding/main.py +173 -0
- nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
- nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/mlx_backend/image_gen/__init__.py +1 -0
- nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
- nexaai/mlx_backend/image_gen/interface.py +82 -0
- nexaai/mlx_backend/image_gen/main.py +281 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/mlx_backend/llm/__init__.py +0 -0
- nexaai/mlx_backend/llm/generate.py +149 -0
- nexaai/mlx_backend/llm/interface.py +764 -0
- nexaai/mlx_backend/llm/main.py +68 -0
- nexaai/mlx_backend/ml.py +888 -0
- nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
- nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
- nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
- nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
- nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
- nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
- nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
- nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
- nexaai/mlx_backend/mlx_audio/server.py +525 -0
- nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
- nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
- nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
- nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
- nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
- nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
- nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
- nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
- nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
- nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
- nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
- nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
- nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
- nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
- nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
- nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
- nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
- nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
- nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
- nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
- nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
- nexaai/mlx_backend/mlx_audio/utils.py +237 -0
- nexaai/mlx_backend/mlx_audio/version.py +1 -0
- nexaai/mlx_backend/profiling.py +239 -0
- nexaai/mlx_backend/rerank/__init__.py +0 -0
- nexaai/mlx_backend/rerank/generate.py +174 -0
- nexaai/mlx_backend/rerank/interface.py +287 -0
- nexaai/mlx_backend/rerank/main.py +127 -0
- nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
- nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/mlx_backend/sd/__init__.py +1 -0
- nexaai/mlx_backend/sd/interface.py +362 -0
- nexaai/mlx_backend/sd/main.py +286 -0
- nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
- nexaai/mlx_backend/sd/modeling/clip.py +116 -0
- nexaai/mlx_backend/sd/modeling/config.py +65 -0
- nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
- nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
- nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
- nexaai/mlx_backend/sd/modeling/unet.py +460 -0
- nexaai/mlx_backend/sd/modeling/vae.py +274 -0
- nexaai/mlx_backend/tts/__init__.py +12 -0
- nexaai/mlx_backend/tts/interface.py +276 -0
- nexaai/mlx_backend/vlm/__init__.py +3 -0
- nexaai/mlx_backend/vlm/generate.py +572 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
- nexaai/mlx_backend/vlm/interface.py +559 -0
- nexaai/mlx_backend/vlm/main.py +365 -0
- nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
- nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
- nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
- nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
- nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
- nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
- nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
- nexaai/rerank.py +57 -0
- nexaai/rerank_impl/__init__.py +0 -0
- nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
- nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
- nexaai/runtime.py +68 -0
- nexaai/runtime_error.py +24 -0
- nexaai/tts.py +75 -0
- nexaai/tts_impl/__init__.py +0 -0
- nexaai/tts_impl/mlx_tts_impl.py +94 -0
- nexaai/tts_impl/pybind_tts_impl.py +43 -0
- nexaai/utils/decode.py +18 -0
- nexaai/utils/manifest_utils.py +531 -0
- nexaai/utils/model_manager.py +1745 -0
- nexaai/utils/model_types.py +49 -0
- nexaai/utils/progress_tracker.py +389 -0
- nexaai/utils/quantization_utils.py +245 -0
- nexaai/vlm.py +130 -0
- nexaai/vlm_impl/__init__.py +0 -0
- nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
- nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
- nexaai-1.0.29.dist-info/METADATA +35 -0
- nexaai-1.0.29.dist-info/RECORD +580 -0
- nexaai-1.0.29.dist-info/WHEEL +5 -0
- nexaai-1.0.29.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,393 @@
|
|
|
1
|
+
import json
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from typing import List, Optional, Tuple, Union
|
|
4
|
+
|
|
5
|
+
import mlx.core as mx
|
|
6
|
+
import numpy as np
|
|
7
|
+
from PIL import Image
|
|
8
|
+
from transformers import (
|
|
9
|
+
AutoImageProcessor,
|
|
10
|
+
AutoProcessor,
|
|
11
|
+
AutoTokenizer,
|
|
12
|
+
BatchFeature,
|
|
13
|
+
PreTrainedTokenizerBase,
|
|
14
|
+
ProcessorMixin,
|
|
15
|
+
)
|
|
16
|
+
from transformers.image_utils import ImageFeatureExtractionMixin
|
|
17
|
+
from transformers.utils import logging
|
|
18
|
+
|
|
19
|
+
logger = logging.get_logger(__name__)
|
|
20
|
+
|
|
21
|
+
# Constants for image processing (from internvl_chat.py)
|
|
22
|
+
|
|
23
|
+
IMAGENET_MEAN = np.array([0.485, 0.456, 0.406])
|
|
24
|
+
IMAGENET_STD = np.array([0.229, 0.224, 0.225])
|
|
25
|
+
# chat_template = get_conv_template("internvl2_5")
|
|
26
|
+
chat_template = "{% for message in messages %}{{message['role'].capitalize() + ': '}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['content'] }}{% endfor %}{{'\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:\n' }}{% endif %}"
|
|
27
|
+
|
|
28
|
+
IMG_START_TOKEN = "<img>"
|
|
29
|
+
IMG_END_TOKEN = "</img>"
|
|
30
|
+
IMG_CONTEXT_TOKEN = "<IMG_CONTEXT>"
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def build_transform(input_size):
|
|
34
|
+
"""
|
|
35
|
+
Builds a transformation pipeline for images.
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
input_size (int): The target size for the image (height and width).
|
|
39
|
+
|
|
40
|
+
Returns:
|
|
41
|
+
function: A function that takes a PIL image and returns a normalized mx.array.
|
|
42
|
+
"""
|
|
43
|
+
mean = mx.array(IMAGENET_MEAN)
|
|
44
|
+
std = mx.array(IMAGENET_STD)
|
|
45
|
+
|
|
46
|
+
def transform(img: Image.Image) -> mx.array:
|
|
47
|
+
# Ensure image is RGB
|
|
48
|
+
if img.mode != "RGB":
|
|
49
|
+
img = img.convert("RGB")
|
|
50
|
+
|
|
51
|
+
# Resize using PIL - BICUBIC interpolation is default in Pillow >= 9.1.0 for resize
|
|
52
|
+
# For older versions, you might need Pillow-SIMD or explicitly set
|
|
53
|
+
# resampling=Image.BICUBIC if available.
|
|
54
|
+
img = img.resize((input_size, input_size), resample=Image.Resampling.BICUBIC)
|
|
55
|
+
|
|
56
|
+
# Convert PIL image to NumPy array (H, W, C) and scale to [0, 1]
|
|
57
|
+
img_np = np.array(img).astype(np.float32) / 255.0
|
|
58
|
+
|
|
59
|
+
# Convert to MLX array and transpose to (C, H, W)
|
|
60
|
+
img_mx = mx.array(img_np).transpose(2, 0, 1)
|
|
61
|
+
|
|
62
|
+
# Normalize
|
|
63
|
+
img_mx = (img_mx - mean[:, None, None]) / std[:, None, None]
|
|
64
|
+
|
|
65
|
+
return img_mx
|
|
66
|
+
|
|
67
|
+
return transform
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
|
71
|
+
"""Finds the closest aspect ratio from a list of targets."""
|
|
72
|
+
best_ratio_diff = float("inf")
|
|
73
|
+
best_ratio = (1, 1)
|
|
74
|
+
area = width * height
|
|
75
|
+
for ratio in target_ratios:
|
|
76
|
+
target_aspect_ratio = ratio[0] / ratio[1]
|
|
77
|
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
|
78
|
+
if ratio_diff < best_ratio_diff:
|
|
79
|
+
best_ratio_diff = ratio_diff
|
|
80
|
+
best_ratio = ratio
|
|
81
|
+
elif ratio_diff == best_ratio_diff:
|
|
82
|
+
# Prioritize ratios closer to the original image area if diffs are equal
|
|
83
|
+
target_area = image_size * image_size * ratio[0] * ratio[1]
|
|
84
|
+
if abs(area - target_area) < abs(
|
|
85
|
+
area - image_size * image_size * best_ratio[0] * best_ratio[1]
|
|
86
|
+
):
|
|
87
|
+
best_ratio = ratio
|
|
88
|
+
return best_ratio
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
def dynamic_preprocess(
|
|
92
|
+
image: Image.Image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
|
|
93
|
+
):
|
|
94
|
+
"""
|
|
95
|
+
Preprocesses the image by splitting it into blocks based on the closest aspect ratio.
|
|
96
|
+
|
|
97
|
+
Args:
|
|
98
|
+
image (PIL.Image.Image): Input image.
|
|
99
|
+
min_num (int): Minimum number of blocks.
|
|
100
|
+
max_num (int): Maximum number of blocks.
|
|
101
|
+
image_size (int): Target size for each block.
|
|
102
|
+
use_thumbnail (bool): Whether to include a thumbnail of the original image.
|
|
103
|
+
|
|
104
|
+
Returns:
|
|
105
|
+
list[PIL.Image.Image]: A list of processed image blocks (as PIL images).
|
|
106
|
+
"""
|
|
107
|
+
orig_width, orig_height = image.size
|
|
108
|
+
if orig_width == 0 or orig_height == 0:
|
|
109
|
+
# Handle potential zero dimensions
|
|
110
|
+
return []
|
|
111
|
+
aspect_ratio = orig_width / orig_height
|
|
112
|
+
|
|
113
|
+
# Calculate the possible target aspect ratios
|
|
114
|
+
target_ratios = set(
|
|
115
|
+
(i, j)
|
|
116
|
+
for n in range(min_num, max_num + 1)
|
|
117
|
+
for i in range(1, n + 1)
|
|
118
|
+
for j in range(1, n + 1)
|
|
119
|
+
if min_num <= i * j <= max_num
|
|
120
|
+
)
|
|
121
|
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
|
122
|
+
|
|
123
|
+
# Find the closest target aspect ratio
|
|
124
|
+
target_aspect_ratio = find_closest_aspect_ratio(
|
|
125
|
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
# Calculate the target dimensions for resizing
|
|
129
|
+
target_width = image_size * target_aspect_ratio[0]
|
|
130
|
+
target_height = image_size * target_aspect_ratio[1]
|
|
131
|
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
|
132
|
+
|
|
133
|
+
# Resize the image to fit the target block structure
|
|
134
|
+
# Using BICUBIC resampling
|
|
135
|
+
resized_img = image.resize(
|
|
136
|
+
(target_width, target_height), resample=Image.Resampling.BICUBIC
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
processed_images = []
|
|
140
|
+
# Crop the resized image into blocks
|
|
141
|
+
for i in range(blocks):
|
|
142
|
+
# Calculate crop box for the i-th block
|
|
143
|
+
row_idx = i // target_aspect_ratio[0]
|
|
144
|
+
col_idx = i % target_aspect_ratio[0]
|
|
145
|
+
left = col_idx * image_size
|
|
146
|
+
top = row_idx * image_size
|
|
147
|
+
right = (col_idx + 1) * image_size
|
|
148
|
+
bottom = (row_idx + 1) * image_size
|
|
149
|
+
box = (left, top, right, bottom)
|
|
150
|
+
|
|
151
|
+
# Crop and add the block
|
|
152
|
+
split_img = resized_img.crop(box)
|
|
153
|
+
processed_images.append(split_img)
|
|
154
|
+
|
|
155
|
+
assert (
|
|
156
|
+
len(processed_images) == blocks
|
|
157
|
+
), f"Expected {blocks} blocks, but got {len(processed_images)}"
|
|
158
|
+
|
|
159
|
+
# Add a thumbnail if requested and if the image was split
|
|
160
|
+
if use_thumbnail and blocks > 1:
|
|
161
|
+
thumbnail_img = image.resize(
|
|
162
|
+
(image_size, image_size), resample=Image.Resampling.BICUBIC
|
|
163
|
+
)
|
|
164
|
+
processed_images.append(thumbnail_img)
|
|
165
|
+
|
|
166
|
+
return processed_images
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
class InternVLImageProcessor(ImageFeatureExtractionMixin):
|
|
170
|
+
model_input_names = ["pixel_values"]
|
|
171
|
+
|
|
172
|
+
def __init__(
|
|
173
|
+
self,
|
|
174
|
+
do_resize: bool = True,
|
|
175
|
+
size: int = 448, # Default image size from dynamic_preprocess
|
|
176
|
+
resample=Image.Resampling.BICUBIC,
|
|
177
|
+
do_center_crop: bool = False, # Not used in original, but standard HF param
|
|
178
|
+
crop_size=None,
|
|
179
|
+
do_rescale: bool = True, # Original code scales by 1/255.0
|
|
180
|
+
rescale_factor: float = 1 / 255.0,
|
|
181
|
+
do_normalize: bool = True,
|
|
182
|
+
image_mean=IMAGENET_MEAN.tolist(),
|
|
183
|
+
image_std=IMAGENET_STD.tolist(),
|
|
184
|
+
do_dynamic_preprocess: bool = True,
|
|
185
|
+
dynamic_min_num: int = 1,
|
|
186
|
+
dynamic_max_num: int = 12,
|
|
187
|
+
dynamic_use_thumbnail: bool = True,
|
|
188
|
+
**kwargs,
|
|
189
|
+
):
|
|
190
|
+
super().__init__()
|
|
191
|
+
self.do_resize = (
|
|
192
|
+
do_resize # Although dynamic_preprocess handles resizing internally
|
|
193
|
+
)
|
|
194
|
+
self.size = size
|
|
195
|
+
self.resample = resample
|
|
196
|
+
self.do_center_crop = do_center_crop
|
|
197
|
+
self.crop_size = crop_size
|
|
198
|
+
self.do_rescale = do_rescale
|
|
199
|
+
self.rescale_factor = rescale_factor
|
|
200
|
+
self.do_normalize = do_normalize
|
|
201
|
+
self.image_mean = image_mean
|
|
202
|
+
self.image_std = image_std
|
|
203
|
+
# Custom dynamic processing params
|
|
204
|
+
self.do_dynamic_preprocess = do_dynamic_preprocess
|
|
205
|
+
self.dynamic_min_num = dynamic_min_num
|
|
206
|
+
self.dynamic_max_num = dynamic_max_num
|
|
207
|
+
self.dynamic_use_thumbnail = dynamic_use_thumbnail
|
|
208
|
+
|
|
209
|
+
def preprocess(
|
|
210
|
+
self,
|
|
211
|
+
images: List[Image.Image],
|
|
212
|
+
do_dynamic_preprocess: Optional[bool] = None,
|
|
213
|
+
size: Optional[int] = None,
|
|
214
|
+
# ... other params matching __init__ ...
|
|
215
|
+
return_tensors: Optional[str] = None,
|
|
216
|
+
**kwargs,
|
|
217
|
+
) -> List[mx.array]:
|
|
218
|
+
|
|
219
|
+
do_dynamic_preprocess = (
|
|
220
|
+
do_dynamic_preprocess
|
|
221
|
+
if do_dynamic_preprocess is not None
|
|
222
|
+
else self.do_dynamic_preprocess
|
|
223
|
+
)
|
|
224
|
+
size = size if size is not None else self.size
|
|
225
|
+
# ... handle other overrides ...
|
|
226
|
+
|
|
227
|
+
if not isinstance(images, list):
|
|
228
|
+
images = [images]
|
|
229
|
+
|
|
230
|
+
if not all(isinstance(image, Image.Image) for image in images):
|
|
231
|
+
raise ValueError("Input must be a list of PIL Images.")
|
|
232
|
+
|
|
233
|
+
processed_images_batch = []
|
|
234
|
+
for image in images:
|
|
235
|
+
# Apply dynamic preprocessing
|
|
236
|
+
if do_dynamic_preprocess:
|
|
237
|
+
processed_images = dynamic_preprocess(
|
|
238
|
+
image,
|
|
239
|
+
min_num=self.dynamic_min_num,
|
|
240
|
+
max_num=self.dynamic_max_num,
|
|
241
|
+
image_size=size,
|
|
242
|
+
use_thumbnail=self.dynamic_use_thumbnail,
|
|
243
|
+
)
|
|
244
|
+
else:
|
|
245
|
+
# Fallback or alternative simpler preprocessing if needed
|
|
246
|
+
# e.g., simple resize + normalize
|
|
247
|
+
processed_images = [image.resize((size, size), resample=self.resample)]
|
|
248
|
+
|
|
249
|
+
# Create transform function
|
|
250
|
+
transform = build_transform(input_size=size)
|
|
251
|
+
|
|
252
|
+
# Apply transform to each image block and collect arrays
|
|
253
|
+
pixel_values_list = [transform(img) for img in processed_images]
|
|
254
|
+
|
|
255
|
+
# Stack the arrays along a new dimension (batch dimension)
|
|
256
|
+
pixel_values = mx.stack(pixel_values_list, axis=0)
|
|
257
|
+
|
|
258
|
+
processed_images_batch.append(pixel_values)
|
|
259
|
+
|
|
260
|
+
# At this point, processed_images_batch contains a list of mx arrays,
|
|
261
|
+
# each array corresponding to an input image with stacked blocks.
|
|
262
|
+
|
|
263
|
+
data = {"pixel_values": mx.array(processed_images_batch)}
|
|
264
|
+
return BatchFeature(data=data, tensor_type=None)
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
class InternVLChatProcessor(ProcessorMixin):
|
|
268
|
+
attributes = ["image_processor", "tokenizer"]
|
|
269
|
+
image_processor_class = "InternVLImageProcessor"
|
|
270
|
+
tokenizer_class = (
|
|
271
|
+
"AutoTokenizer",
|
|
272
|
+
"Qwen2TokenizerFast",
|
|
273
|
+
) # Specify possible classes
|
|
274
|
+
|
|
275
|
+
def __init__(
|
|
276
|
+
self,
|
|
277
|
+
image_processor=None,
|
|
278
|
+
tokenizer=None,
|
|
279
|
+
chat_template=chat_template,
|
|
280
|
+
**kwargs,
|
|
281
|
+
):
|
|
282
|
+
if image_processor is None:
|
|
283
|
+
image_processor = InternVLImageProcessor(**kwargs)
|
|
284
|
+
if isinstance(tokenizer, str):
|
|
285
|
+
# Defaulting to the likely repo ID found earlier
|
|
286
|
+
tokenizer = AutoTokenizer.from_pretrained(
|
|
287
|
+
tokenizer, trust_remote_code=True, **kwargs
|
|
288
|
+
)
|
|
289
|
+
|
|
290
|
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
|
291
|
+
|
|
292
|
+
self.num_image_token = int((448 // 14) ** 2 * (0.5**2))
|
|
293
|
+
|
|
294
|
+
def __call__(
|
|
295
|
+
self,
|
|
296
|
+
text: Union[str, List[str]] = None,
|
|
297
|
+
images: List[Image.Image] = None,
|
|
298
|
+
padding: Union[bool, str] = True,
|
|
299
|
+
truncation: bool = True,
|
|
300
|
+
max_length: Optional[int] = None,
|
|
301
|
+
return_tensors: Optional[str] = "pt", # Default to PyTorch tensors
|
|
302
|
+
**kwargs,
|
|
303
|
+
):
|
|
304
|
+
processed_inputs = {}
|
|
305
|
+
if images is not None:
|
|
306
|
+
image_features = self.image_processor.preprocess(
|
|
307
|
+
images, return_tensors=return_tensors, **kwargs
|
|
308
|
+
)
|
|
309
|
+
processed_inputs.update(image_features) # Should contain 'pixel_values'
|
|
310
|
+
|
|
311
|
+
if text is not None:
|
|
312
|
+
queries = []
|
|
313
|
+
|
|
314
|
+
if isinstance(text, str):
|
|
315
|
+
text = [text]
|
|
316
|
+
|
|
317
|
+
for idx in range(len(images)):
|
|
318
|
+
question = text[idx]
|
|
319
|
+
|
|
320
|
+
if images is not None and "<image>" not in question:
|
|
321
|
+
question = "<image>\n" + question
|
|
322
|
+
|
|
323
|
+
num_patches = image_features["pixel_values"][idx].shape[0]
|
|
324
|
+
image_tokens = (
|
|
325
|
+
IMG_START_TOKEN
|
|
326
|
+
+ IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
|
|
327
|
+
+ IMG_END_TOKEN
|
|
328
|
+
)
|
|
329
|
+
question = question.replace("<image>", image_tokens, 1)
|
|
330
|
+
queries.append(question)
|
|
331
|
+
|
|
332
|
+
self.tokenizer.padding_side = "left"
|
|
333
|
+
text_inputs = self.tokenizer(
|
|
334
|
+
queries,
|
|
335
|
+
padding=padding,
|
|
336
|
+
truncation=truncation,
|
|
337
|
+
max_length=max_length,
|
|
338
|
+
return_tensors=return_tensors,
|
|
339
|
+
**kwargs,
|
|
340
|
+
)
|
|
341
|
+
processed_inputs.update(text_inputs) # 'input_ids', 'attention_mask'
|
|
342
|
+
|
|
343
|
+
return processed_inputs
|
|
344
|
+
|
|
345
|
+
def batch_decode(self, *args, **kwargs):
|
|
346
|
+
"""
|
|
347
|
+
This method forwards all its arguments to the tokenizer's batch_decode method.
|
|
348
|
+
"""
|
|
349
|
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
350
|
+
|
|
351
|
+
def decode(self, *args, **kwargs):
|
|
352
|
+
"""
|
|
353
|
+
This method forwards all its arguments to the tokenizer's decode method.
|
|
354
|
+
"""
|
|
355
|
+
return self.tokenizer.decode(*args, **kwargs)
|
|
356
|
+
|
|
357
|
+
def save_pretrained(self, save_directory, **kwargs):
|
|
358
|
+
pass
|
|
359
|
+
|
|
360
|
+
@staticmethod
|
|
361
|
+
def from_pretrained(pretrained_model_name_or_path, **kwargs):
|
|
362
|
+
tokenizer = AutoTokenizer.from_pretrained(
|
|
363
|
+
pretrained_model_name_or_path, **kwargs
|
|
364
|
+
)
|
|
365
|
+
image_processor = InternVLImageProcessor(**kwargs)
|
|
366
|
+
return InternVLChatProcessor(
|
|
367
|
+
image_processor=image_processor, tokenizer=tokenizer
|
|
368
|
+
)
|
|
369
|
+
|
|
370
|
+
# Need save_pretrained and from_pretrained
|
|
371
|
+
# save_pretrained should save both tokenizer and image_processor configs/files
|
|
372
|
+
# from_pretrained should load both
|
|
373
|
+
|
|
374
|
+
# Example:
|
|
375
|
+
# def save_pretrained(self, save_directory, **kwargs):
|
|
376
|
+
# self.tokenizer.save_pretrained(save_directory, **kwargs)
|
|
377
|
+
# self.image_processor.save_pretrained(save_directory, **kwargs)
|
|
378
|
+
|
|
379
|
+
# def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
|
380
|
+
# tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
|
381
|
+
# image_processor = InternVLImageProcessor.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
|
382
|
+
# return cls(image_processor=image_processor, tokenizer=tokenizer)
|
|
383
|
+
|
|
384
|
+
|
|
385
|
+
# Registration
|
|
386
|
+
MODEL_TYPE = "internvl_chat" # Verify this from the model's config.json
|
|
387
|
+
|
|
388
|
+
AutoImageProcessor.register(
|
|
389
|
+
MODEL_TYPE, slow_image_processor_class=InternVLImageProcessor
|
|
390
|
+
)
|
|
391
|
+
AutoProcessor.register(MODEL_TYPE, InternVLChatProcessor)
|
|
392
|
+
|
|
393
|
+
logger.info(f"Registered custom processor classes for model type '{MODEL_TYPE}'.")
|
|
@@ -0,0 +1,293 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
import mlx.core as mx
|
|
6
|
+
import mlx.nn as nn
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
from ..base import interpolate
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@dataclass
|
|
13
|
+
class VisionConfig:
|
|
14
|
+
model_type: str
|
|
15
|
+
hidden_size: int = 1024
|
|
16
|
+
num_attention_heads: int = 16
|
|
17
|
+
patch_size: int = 14
|
|
18
|
+
num_hidden_layers: int = 24
|
|
19
|
+
intermediate_size: int = 4096
|
|
20
|
+
image_size: int = 448
|
|
21
|
+
num_channels: int = 3
|
|
22
|
+
layer_norm_eps: float = 1e-6
|
|
23
|
+
drop_path_rate: float = 0.1
|
|
24
|
+
qkv_bias: bool = True
|
|
25
|
+
qk_normalization: bool = False
|
|
26
|
+
norm_type: str = "layer_norm"
|
|
27
|
+
|
|
28
|
+
@classmethod
|
|
29
|
+
def from_dict(cls, params):
|
|
30
|
+
return cls(
|
|
31
|
+
**{
|
|
32
|
+
k: v
|
|
33
|
+
for k, v in params.items()
|
|
34
|
+
if k in inspect.signature(cls).parameters
|
|
35
|
+
}
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def check_array_shape(arr):
|
|
40
|
+
shape = arr.shape
|
|
41
|
+
|
|
42
|
+
# Check if the shape has 4 dimensions
|
|
43
|
+
if len(shape) != 4:
|
|
44
|
+
return False
|
|
45
|
+
|
|
46
|
+
out_channels, kH, KW, _ = shape
|
|
47
|
+
|
|
48
|
+
# Check if out_channels is the largest, and kH and KW are the same
|
|
49
|
+
if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
|
|
50
|
+
return True
|
|
51
|
+
else:
|
|
52
|
+
return False
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
class Attention(nn.Module):
|
|
56
|
+
def __init__(self, config: VisionConfig):
|
|
57
|
+
super().__init__()
|
|
58
|
+
|
|
59
|
+
if (config.hidden_size % config.num_attention_heads) != 0:
|
|
60
|
+
raise ValueError(
|
|
61
|
+
"The input feature dimensions should be divisible by the "
|
|
62
|
+
f"number of heads ({config.hidden_size} % {config.num_attention_heads}) != 0"
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
self.dims = dims = config.hidden_size
|
|
66
|
+
|
|
67
|
+
self.num_heads = config.num_attention_heads
|
|
68
|
+
head_dim = config.hidden_size // config.num_attention_heads
|
|
69
|
+
self.scale = head_dim**-0.5
|
|
70
|
+
self.qkv_bias = config.qkv_bias
|
|
71
|
+
|
|
72
|
+
self.qkv = nn.Linear(dims, 3 * dims, bias=config.qkv_bias)
|
|
73
|
+
self.proj = nn.Linear(dims, dims)
|
|
74
|
+
|
|
75
|
+
self.qk_normalization = config.qk_normalization
|
|
76
|
+
|
|
77
|
+
if self.qk_normalization:
|
|
78
|
+
self.q_norm = nn.RMSNorm(dims, eps=config.layer_norm_eps)
|
|
79
|
+
self.k_norm = nn.RMSNorm(dims, eps=config.layer_norm_eps)
|
|
80
|
+
|
|
81
|
+
def __call__(self, x, mask=None):
|
|
82
|
+
B, L, C = x.shape
|
|
83
|
+
qkv = self.qkv(x).reshape(B, L, 3, self.num_heads, C // self.num_heads)
|
|
84
|
+
qkv = qkv.transpose(2, 0, 3, 1, 4)
|
|
85
|
+
queries, keys, values = (
|
|
86
|
+
qkv[0],
|
|
87
|
+
qkv[1],
|
|
88
|
+
qkv[2],
|
|
89
|
+
) # Each has shape (B, groups, N, C//groups)
|
|
90
|
+
|
|
91
|
+
if self.qk_normalization:
|
|
92
|
+
B_, H_, N_, D_ = queries.shape
|
|
93
|
+
queries = (
|
|
94
|
+
self.q_norm(queries.transpose(0, 2, 1, 3).flatten(-2, -1))
|
|
95
|
+
.reshape(B_, N_, H_, D_)
|
|
96
|
+
.transpose(0, 2, 1, 3)
|
|
97
|
+
)
|
|
98
|
+
keys = (
|
|
99
|
+
self.k_norm(keys.transpose(0, 2, 1, 3).flatten(-2, -1))
|
|
100
|
+
.reshape(B_, N_, H_, D_)
|
|
101
|
+
.transpose(0, 2, 1, 3)
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
output = mx.fast.scaled_dot_product_attention(
|
|
105
|
+
queries, keys, values, scale=self.scale, mask=mask
|
|
106
|
+
)
|
|
107
|
+
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
108
|
+
return self.proj(output)
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
class MLP(nn.Module):
|
|
112
|
+
def __init__(self, config: VisionConfig):
|
|
113
|
+
super().__init__()
|
|
114
|
+
self.activation_fn = nn.GELU(approx="precise")
|
|
115
|
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
116
|
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
117
|
+
|
|
118
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
119
|
+
x = self.fc1(x)
|
|
120
|
+
x = self.activation_fn(x)
|
|
121
|
+
x = self.fc2(x)
|
|
122
|
+
return x
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
class EncoderLayer(nn.Module):
|
|
126
|
+
def __init__(self, config: VisionConfig, drop_path_rate: float = 0.0):
|
|
127
|
+
super().__init__()
|
|
128
|
+
self.embed_dim = config.hidden_size
|
|
129
|
+
self.intermediate_size = config.intermediate_size
|
|
130
|
+
self.norm_type = getattr(config, "norm_type", "layer_norm")
|
|
131
|
+
|
|
132
|
+
self.attn = Attention(config)
|
|
133
|
+
self.mlp = MLP(config)
|
|
134
|
+
|
|
135
|
+
if self.norm_type == "layer_norm":
|
|
136
|
+
self.norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
137
|
+
self.norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
138
|
+
elif self.norm_type == "rms_norm":
|
|
139
|
+
self.norm1 = nn.RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
140
|
+
self.norm2 = nn.RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
141
|
+
else:
|
|
142
|
+
raise ValueError(f"Unsupported normalization type: {self.norm_type}")
|
|
143
|
+
|
|
144
|
+
self.ls1 = mx.ones((self.embed_dim,))
|
|
145
|
+
self.ls2 = mx.ones((self.embed_dim,))
|
|
146
|
+
|
|
147
|
+
self.drop_path1 = (
|
|
148
|
+
nn.Dropout(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
|
149
|
+
)
|
|
150
|
+
self.drop_path2 = (
|
|
151
|
+
nn.Dropout(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
|
|
155
|
+
dtype = x.dtype
|
|
156
|
+
x = x + self.drop_path1(self.attn(self.norm1(x).astype(dtype)) * self.ls1)
|
|
157
|
+
|
|
158
|
+
x = x + self.drop_path2(self.mlp(self.norm2(x).astype(dtype)) * self.ls2)
|
|
159
|
+
|
|
160
|
+
return x.astype(dtype)
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
class Encoder(nn.Module):
|
|
164
|
+
def __init__(self, config: VisionConfig):
|
|
165
|
+
super().__init__()
|
|
166
|
+
dpr = [
|
|
167
|
+
mx.array(x)
|
|
168
|
+
for x in np.linspace(0, config.drop_path_rate, config.num_hidden_layers)
|
|
169
|
+
]
|
|
170
|
+
self.layers = [
|
|
171
|
+
EncoderLayer(config, dpr[i]) for i in range(config.num_hidden_layers)
|
|
172
|
+
]
|
|
173
|
+
|
|
174
|
+
def __call__(
|
|
175
|
+
self,
|
|
176
|
+
x: mx.array,
|
|
177
|
+
output_hidden_states: Optional[bool] = None,
|
|
178
|
+
mask: Optional[mx.array] = None,
|
|
179
|
+
) -> mx.array:
|
|
180
|
+
encoder_states = (x,) if output_hidden_states else None
|
|
181
|
+
h = x
|
|
182
|
+
for l in self.layers:
|
|
183
|
+
x = l(x, mask=mask)
|
|
184
|
+
if output_hidden_states:
|
|
185
|
+
encoder_states = encoder_states + (x,)
|
|
186
|
+
|
|
187
|
+
h = x
|
|
188
|
+
|
|
189
|
+
return (h, encoder_states)
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
class VisionEmbeddings(nn.Module):
|
|
193
|
+
def __init__(self, config: VisionConfig):
|
|
194
|
+
super().__init__()
|
|
195
|
+
self.config = config
|
|
196
|
+
self.embed_dim = config.hidden_size
|
|
197
|
+
self.image_size = config.image_size
|
|
198
|
+
self.patch_size = config.patch_size
|
|
199
|
+
|
|
200
|
+
self.class_embedding = mx.random.normal((1, 1, self.embed_dim))
|
|
201
|
+
|
|
202
|
+
self.patch_embedding = nn.Conv2d(
|
|
203
|
+
in_channels=3,
|
|
204
|
+
out_channels=self.embed_dim,
|
|
205
|
+
kernel_size=self.patch_size,
|
|
206
|
+
stride=self.patch_size,
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
210
|
+
self.num_positions = self.num_patches + 1
|
|
211
|
+
|
|
212
|
+
self.position_embedding = mx.random.normal(
|
|
213
|
+
(1, self.num_positions, self.embed_dim)
|
|
214
|
+
)
|
|
215
|
+
|
|
216
|
+
def _get_pos_embed(self, pos_embed, H, W):
|
|
217
|
+
target_dtype = pos_embed.dtype
|
|
218
|
+
pos_embed = pos_embed.reshape(
|
|
219
|
+
1,
|
|
220
|
+
self.image_size // self.patch_size,
|
|
221
|
+
self.image_size // self.patch_size,
|
|
222
|
+
-1,
|
|
223
|
+
).transpose(0, 3, 1, 2)
|
|
224
|
+
pos_embed = interpolate(pos_embed, (H, W))
|
|
225
|
+
pos_embed = (
|
|
226
|
+
pos_embed.reshape(1, -1, H * W).transpose(0, 2, 1).astype(target_dtype)
|
|
227
|
+
)
|
|
228
|
+
return pos_embed
|
|
229
|
+
|
|
230
|
+
def __call__(self, x: mx.array) -> mx.array:
|
|
231
|
+
target_dtype = self.patch_embedding.weight.dtype
|
|
232
|
+
patch_embeds = self.patch_embedding(x).transpose(
|
|
233
|
+
0, 3, 1, 2
|
|
234
|
+
) # shape = [*, channel, width, height]
|
|
235
|
+
batch_size, _, height, width = patch_embeds.shape
|
|
236
|
+
patch_embeds = mx.flatten(patch_embeds, start_axis=2).transpose(0, 2, 1)
|
|
237
|
+
class_embeds = mx.broadcast_to(
|
|
238
|
+
self.class_embedding, (batch_size, 1, self.embed_dim)
|
|
239
|
+
).astype(target_dtype)
|
|
240
|
+
embeddings = mx.concatenate([class_embeds, patch_embeds], axis=1)
|
|
241
|
+
position_embedding = mx.concatenate(
|
|
242
|
+
[
|
|
243
|
+
self.position_embedding[:, :1, :],
|
|
244
|
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width),
|
|
245
|
+
],
|
|
246
|
+
axis=1,
|
|
247
|
+
)
|
|
248
|
+
embeddings = embeddings + position_embedding.astype(target_dtype)
|
|
249
|
+
|
|
250
|
+
return embeddings
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
class VisionModel(nn.Module):
|
|
254
|
+
def __init__(self, config: VisionConfig):
|
|
255
|
+
super().__init__()
|
|
256
|
+
self.model_type = config.model_type
|
|
257
|
+
if self.model_type not in ["siglip_vision_model", "intern_vit_6b"]:
|
|
258
|
+
raise ValueError(f"Unsupported model type: {self.model_type}")
|
|
259
|
+
|
|
260
|
+
self.embeddings = VisionEmbeddings(config)
|
|
261
|
+
self.encoder = Encoder(config)
|
|
262
|
+
|
|
263
|
+
def __call__(
|
|
264
|
+
self,
|
|
265
|
+
x: mx.array,
|
|
266
|
+
output_hidden_states: Optional[bool] = None,
|
|
267
|
+
) -> mx.array:
|
|
268
|
+
x = self.embeddings(x)
|
|
269
|
+
last_hidden_state, encoder_outputs = self.encoder(
|
|
270
|
+
x=x, output_hidden_states=output_hidden_states, mask=None
|
|
271
|
+
)
|
|
272
|
+
pooler_output = last_hidden_state[:, 0, :]
|
|
273
|
+
return last_hidden_state, pooler_output, encoder_outputs[1:]
|
|
274
|
+
|
|
275
|
+
def sanitize(self, weights):
|
|
276
|
+
sanitized_weights = {}
|
|
277
|
+
for k, v in weights.items():
|
|
278
|
+
if "position_ids" in k:
|
|
279
|
+
# Remove unused position_ids
|
|
280
|
+
continue
|
|
281
|
+
elif "patch_embedding.weight" in k:
|
|
282
|
+
# PyTorch conv2d weight tensors have shape:
|
|
283
|
+
# [out_channels, in_channels, kH, KW]
|
|
284
|
+
# MLX conv2d expects the weight be of shape:
|
|
285
|
+
# [out_channels, kH, KW, in_channels]
|
|
286
|
+
if check_array_shape(v):
|
|
287
|
+
sanitized_weights[k] = v
|
|
288
|
+
else:
|
|
289
|
+
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
|
|
290
|
+
else:
|
|
291
|
+
sanitized_weights[k] = v
|
|
292
|
+
|
|
293
|
+
return sanitized_weights
|