nexaai 1.0.29__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (580) hide show
  1. nexaai/__init__.py +99 -0
  2. nexaai/_stub.cpython-310-darwin.so +0 -0
  3. nexaai/_version.py +4 -0
  4. nexaai/asr.py +68 -0
  5. nexaai/asr_impl/__init__.py +0 -0
  6. nexaai/asr_impl/mlx_asr_impl.py +93 -0
  7. nexaai/asr_impl/pybind_asr_impl.py +127 -0
  8. nexaai/base.py +39 -0
  9. nexaai/binds/__init__.py +7 -0
  10. nexaai/binds/asr_bind.cpython-310-darwin.so +0 -0
  11. nexaai/binds/common_bind.cpython-310-darwin.so +0 -0
  12. nexaai/binds/cpu_gpu/libggml-base.dylib +0 -0
  13. nexaai/binds/cpu_gpu/libggml-cpu.so +0 -0
  14. nexaai/binds/cpu_gpu/libggml-metal.so +0 -0
  15. nexaai/binds/cpu_gpu/libggml.dylib +0 -0
  16. nexaai/binds/cpu_gpu/libmtmd.dylib +0 -0
  17. nexaai/binds/cpu_gpu/libnexa_cpu_gpu.dylib +0 -0
  18. nexaai/binds/cpu_gpu/libnexa_plugin.dylib +0 -0
  19. nexaai/binds/cv_bind.cpython-310-darwin.so +0 -0
  20. nexaai/binds/diarize_bind.cpython-310-darwin.so +0 -0
  21. nexaai/binds/embedder_bind.cpython-310-darwin.so +0 -0
  22. nexaai/binds/libnexa_bridge.dylib +0 -0
  23. nexaai/binds/llm_bind.cpython-310-darwin.so +0 -0
  24. nexaai/binds/metal/libnexa_plugin.dylib +0 -0
  25. nexaai/binds/metal/py-lib/ml.py +888 -0
  26. nexaai/binds/metal/py-lib/mlx_audio/__init__.py +0 -0
  27. nexaai/binds/metal/py-lib/mlx_audio/codec/__init__.py +1 -0
  28. nexaai/binds/metal/py-lib/mlx_audio/codec/models/__init__.py +5 -0
  29. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  30. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  31. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  32. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  33. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  34. nexaai/binds/metal/py-lib/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  35. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/__init__.py +1 -0
  36. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/base.py +228 -0
  37. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/dac.py +285 -0
  38. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  39. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  40. nexaai/binds/metal/py-lib/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  41. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/__init__.py +1 -0
  42. nexaai/binds/metal/py-lib/mlx_audio/codec/models/encodec/encodec.py +777 -0
  43. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/__init__.py +1 -0
  44. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/mimi.py +286 -0
  45. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  46. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  47. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  48. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  49. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  50. nexaai/binds/metal/py-lib/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  51. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/__init__.py +1 -0
  52. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model.py +260 -0
  53. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/model_v2.py +383 -0
  54. nexaai/binds/metal/py-lib/mlx_audio/codec/models/s3/utils.py +122 -0
  55. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/__init__.py +1 -0
  56. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/attention.py +97 -0
  57. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/layers.py +306 -0
  58. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/snac.py +154 -0
  59. nexaai/binds/metal/py-lib/mlx_audio/codec/models/snac/vq.py +135 -0
  60. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/__init__.py +1 -0
  61. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/mel.py +33 -0
  62. nexaai/binds/metal/py-lib/mlx_audio/codec/models/vocos/vocos.py +359 -0
  63. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/__init__.py +0 -0
  64. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  65. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_descript.py +109 -0
  66. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_encodec.py +58 -0
  67. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_mimi.py +22 -0
  68. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_s3.py +25 -0
  69. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_snac.py +40 -0
  70. nexaai/binds/metal/py-lib/mlx_audio/codec/tests/test_vocos.py +93 -0
  71. nexaai/binds/metal/py-lib/mlx_audio/server.py +525 -0
  72. nexaai/binds/metal/py-lib/mlx_audio/sts/__init__.py +0 -0
  73. nexaai/binds/metal/py-lib/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  74. nexaai/binds/metal/py-lib/mlx_audio/sts/voice_pipeline.py +327 -0
  75. nexaai/binds/metal/py-lib/mlx_audio/stt/__init__.py +0 -0
  76. nexaai/binds/metal/py-lib/mlx_audio/stt/generate.py +174 -0
  77. nexaai/binds/metal/py-lib/mlx_audio/stt/models/__init__.py +0 -0
  78. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  79. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  80. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/attention.py +187 -0
  81. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/audio.py +76 -0
  82. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  83. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  84. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  85. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  86. nexaai/binds/metal/py-lib/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  87. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  88. nexaai/binds/metal/py-lib/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  89. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/__init__.py +1 -0
  90. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/audio.py +82 -0
  91. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/decoding.py +742 -0
  92. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/timing.py +329 -0
  93. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  94. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/whisper.py +862 -0
  95. nexaai/binds/metal/py-lib/mlx_audio/stt/models/whisper/writers.py +268 -0
  96. nexaai/binds/metal/py-lib/mlx_audio/stt/tests/test_models.py +381 -0
  97. nexaai/binds/metal/py-lib/mlx_audio/stt/utils.py +195 -0
  98. nexaai/binds/metal/py-lib/mlx_audio/tts/__init__.py +1 -0
  99. nexaai/binds/metal/py-lib/mlx_audio/tts/audio_player.py +120 -0
  100. nexaai/binds/metal/py-lib/mlx_audio/tts/convert.py +71 -0
  101. nexaai/binds/metal/py-lib/mlx_audio/tts/generate.py +449 -0
  102. nexaai/binds/metal/py-lib/mlx_audio/tts/models/__init__.py +0 -0
  103. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/__init__.py +4 -0
  104. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/bark.py +528 -0
  105. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/isftnet.py +12 -0
  106. nexaai/binds/metal/py-lib/mlx_audio/tts/models/bark/pipeline.py +442 -0
  107. nexaai/binds/metal/py-lib/mlx_audio/tts/models/base.py +84 -0
  108. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/__init__.py +1 -0
  109. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/audio.py +287 -0
  110. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/config.py +256 -0
  111. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/dia.py +592 -0
  112. nexaai/binds/metal/py-lib/mlx_audio/tts/models/dia/layers.py +870 -0
  113. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/__init__.py +3 -0
  114. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/attention.py +180 -0
  115. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  116. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/conformer.py +247 -0
  117. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  118. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  119. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  120. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  121. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  122. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  123. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/indextts.py +412 -0
  124. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/mel.py +37 -0
  125. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/normalize.py +294 -0
  126. nexaai/binds/metal/py-lib/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  127. nexaai/binds/metal/py-lib/mlx_audio/tts/models/interpolate.py +108 -0
  128. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  129. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  130. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  131. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/modules.py +659 -0
  132. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  133. nexaai/binds/metal/py-lib/mlx_audio/tts/models/kokoro/voice.py +113 -0
  134. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/__init__.py +3 -0
  135. nexaai/binds/metal/py-lib/mlx_audio/tts/models/llama/llama.py +324 -0
  136. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/__init__.py +1 -0
  137. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  138. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  139. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/outetts.py +255 -0
  140. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  141. nexaai/binds/metal/py-lib/mlx_audio/tts/models/outetts/tokens.py +36 -0
  142. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/__init__.py +3 -0
  143. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/attention.py +195 -0
  144. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/sesame.py +633 -0
  145. nexaai/binds/metal/py-lib/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  146. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/__init__.py +1 -0
  147. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  148. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/bicodec.py +269 -0
  149. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  150. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  151. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  152. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  153. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  154. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  155. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  156. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  157. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  158. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  159. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  160. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  161. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  162. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  163. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  164. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/spark.py +382 -0
  165. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  166. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/file.py +221 -0
  167. nexaai/binds/metal/py-lib/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  168. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/__init__.py +0 -0
  169. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_base.py +66 -0
  170. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_convert.py +173 -0
  171. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_interpolate.py +88 -0
  172. nexaai/binds/metal/py-lib/mlx_audio/tts/tests/test_models.py +974 -0
  173. nexaai/binds/metal/py-lib/mlx_audio/tts/utils.py +337 -0
  174. nexaai/binds/metal/py-lib/mlx_audio/utils.py +237 -0
  175. nexaai/binds/metal/py-lib/mlx_audio/version.py +1 -0
  176. nexaai/binds/metal/py-lib/profiling.py +239 -0
  177. nexaai/binds/nexaml/libfftw3.3.dylib +0 -0
  178. nexaai/binds/nexaml/libfftw3f.3.dylib +0 -0
  179. nexaai/binds/nexaml/libggml-base.dylib +0 -0
  180. nexaai/binds/nexaml/libggml-cpu.so +0 -0
  181. nexaai/binds/nexaml/libggml-metal.so +0 -0
  182. nexaai/binds/nexaml/libggml.dylib +0 -0
  183. nexaai/binds/nexaml/libmp3lame.0.dylib +0 -0
  184. nexaai/binds/nexaml/libmpg123.0.dylib +0 -0
  185. nexaai/binds/nexaml/libnexa-mm-process.dylib +0 -0
  186. nexaai/binds/nexaml/libnexa-sampling.dylib +0 -0
  187. nexaai/binds/nexaml/libnexa_plugin.dylib +0 -0
  188. nexaai/binds/nexaml/libnexaproc.dylib +0 -0
  189. nexaai/binds/nexaml/libomp.dylib +0 -0
  190. nexaai/binds/nexaml/libqwen3-vl.dylib +0 -0
  191. nexaai/binds/nexaml/libqwen3vl-vision.dylib +0 -0
  192. nexaai/binds/rerank_bind.cpython-310-darwin.so +0 -0
  193. nexaai/binds/vlm_bind.cpython-310-darwin.so +0 -0
  194. nexaai/common.py +106 -0
  195. nexaai/cv.py +95 -0
  196. nexaai/cv_impl/__init__.py +0 -0
  197. nexaai/cv_impl/mlx_cv_impl.py +91 -0
  198. nexaai/cv_impl/pybind_cv_impl.py +124 -0
  199. nexaai/diarize.py +80 -0
  200. nexaai/diarize_impl/__init__.py +1 -0
  201. nexaai/diarize_impl/pybind_diarize_impl.py +125 -0
  202. nexaai/embedder.py +73 -0
  203. nexaai/embedder_impl/__init__.py +0 -0
  204. nexaai/embedder_impl/mlx_embedder_impl.py +118 -0
  205. nexaai/embedder_impl/pybind_embedder_impl.py +96 -0
  206. nexaai/image_gen.py +141 -0
  207. nexaai/image_gen_impl/__init__.py +0 -0
  208. nexaai/image_gen_impl/mlx_image_gen_impl.py +292 -0
  209. nexaai/image_gen_impl/pybind_image_gen_impl.py +85 -0
  210. nexaai/llm.py +98 -0
  211. nexaai/llm_impl/__init__.py +0 -0
  212. nexaai/llm_impl/mlx_llm_impl.py +271 -0
  213. nexaai/llm_impl/pybind_llm_impl.py +238 -0
  214. nexaai/log.py +92 -0
  215. nexaai/mlx_backend/asr/__init__.py +12 -0
  216. nexaai/mlx_backend/asr/interface.py +122 -0
  217. nexaai/mlx_backend/common/__init__.py +0 -0
  218. nexaai/mlx_backend/common/utils.py +25 -0
  219. nexaai/mlx_backend/cv/__init__.py +0 -0
  220. nexaai/mlx_backend/cv/generate.py +195 -0
  221. nexaai/mlx_backend/cv/interface.py +162 -0
  222. nexaai/mlx_backend/cv/main.py +81 -0
  223. nexaai/mlx_backend/cv/modeling/pp_ocr_v4.py +1736 -0
  224. nexaai/mlx_backend/embedding/__init__.py +0 -0
  225. nexaai/mlx_backend/embedding/generate.py +333 -0
  226. nexaai/mlx_backend/embedding/interface.py +617 -0
  227. nexaai/mlx_backend/embedding/main.py +173 -0
  228. nexaai/mlx_backend/embedding/modeling/__init__.py +0 -0
  229. nexaai/mlx_backend/embedding/modeling/nexa_jina_v2.py +399 -0
  230. nexaai/mlx_backend/image_gen/__init__.py +1 -0
  231. nexaai/mlx_backend/image_gen/generate_sd.py +244 -0
  232. nexaai/mlx_backend/image_gen/interface.py +82 -0
  233. nexaai/mlx_backend/image_gen/main.py +281 -0
  234. nexaai/mlx_backend/image_gen/stable_diffusion/__init__.py +306 -0
  235. nexaai/mlx_backend/image_gen/stable_diffusion/clip.py +116 -0
  236. nexaai/mlx_backend/image_gen/stable_diffusion/config.py +65 -0
  237. nexaai/mlx_backend/image_gen/stable_diffusion/model_io.py +386 -0
  238. nexaai/mlx_backend/image_gen/stable_diffusion/sampler.py +105 -0
  239. nexaai/mlx_backend/image_gen/stable_diffusion/tokenizer.py +100 -0
  240. nexaai/mlx_backend/image_gen/stable_diffusion/unet.py +460 -0
  241. nexaai/mlx_backend/image_gen/stable_diffusion/vae.py +274 -0
  242. nexaai/mlx_backend/llm/__init__.py +0 -0
  243. nexaai/mlx_backend/llm/generate.py +149 -0
  244. nexaai/mlx_backend/llm/interface.py +764 -0
  245. nexaai/mlx_backend/llm/main.py +68 -0
  246. nexaai/mlx_backend/ml.py +888 -0
  247. nexaai/mlx_backend/mlx_audio/__init__.py +0 -0
  248. nexaai/mlx_backend/mlx_audio/codec/__init__.py +1 -0
  249. nexaai/mlx_backend/mlx_audio/codec/models/__init__.py +5 -0
  250. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/__init__.py +1 -0
  251. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/activation.py +51 -0
  252. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/amp.py +96 -0
  253. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/bigvgan.py +149 -0
  254. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/conv.py +114 -0
  255. nexaai/mlx_backend/mlx_audio/codec/models/bigvgan/resample.py +177 -0
  256. nexaai/mlx_backend/mlx_audio/codec/models/descript/__init__.py +1 -0
  257. nexaai/mlx_backend/mlx_audio/codec/models/descript/base.py +228 -0
  258. nexaai/mlx_backend/mlx_audio/codec/models/descript/dac.py +285 -0
  259. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/__init__.py +1 -0
  260. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/layers.py +129 -0
  261. nexaai/mlx_backend/mlx_audio/codec/models/descript/nn/quantize.py +149 -0
  262. nexaai/mlx_backend/mlx_audio/codec/models/encodec/__init__.py +1 -0
  263. nexaai/mlx_backend/mlx_audio/codec/models/encodec/encodec.py +777 -0
  264. nexaai/mlx_backend/mlx_audio/codec/models/mimi/__init__.py +1 -0
  265. nexaai/mlx_backend/mlx_audio/codec/models/mimi/mimi.py +286 -0
  266. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/__init__.py +20 -0
  267. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/conv.py +398 -0
  268. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/kv_cache.py +199 -0
  269. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/quantization.py +179 -0
  270. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/seanet.py +314 -0
  271. nexaai/mlx_backend/mlx_audio/codec/models/mimi/modules/transformer.py +256 -0
  272. nexaai/mlx_backend/mlx_audio/codec/models/s3/__init__.py +1 -0
  273. nexaai/mlx_backend/mlx_audio/codec/models/s3/model.py +260 -0
  274. nexaai/mlx_backend/mlx_audio/codec/models/s3/model_v2.py +383 -0
  275. nexaai/mlx_backend/mlx_audio/codec/models/s3/utils.py +122 -0
  276. nexaai/mlx_backend/mlx_audio/codec/models/snac/__init__.py +1 -0
  277. nexaai/mlx_backend/mlx_audio/codec/models/snac/attention.py +97 -0
  278. nexaai/mlx_backend/mlx_audio/codec/models/snac/layers.py +306 -0
  279. nexaai/mlx_backend/mlx_audio/codec/models/snac/snac.py +154 -0
  280. nexaai/mlx_backend/mlx_audio/codec/models/snac/vq.py +135 -0
  281. nexaai/mlx_backend/mlx_audio/codec/models/vocos/__init__.py +1 -0
  282. nexaai/mlx_backend/mlx_audio/codec/models/vocos/mel.py +33 -0
  283. nexaai/mlx_backend/mlx_audio/codec/models/vocos/vocos.py +359 -0
  284. nexaai/mlx_backend/mlx_audio/codec/tests/__init__.py +0 -0
  285. nexaai/mlx_backend/mlx_audio/codec/tests/test_bigvgan.py +54 -0
  286. nexaai/mlx_backend/mlx_audio/codec/tests/test_descript.py +109 -0
  287. nexaai/mlx_backend/mlx_audio/codec/tests/test_encodec.py +58 -0
  288. nexaai/mlx_backend/mlx_audio/codec/tests/test_mimi.py +22 -0
  289. nexaai/mlx_backend/mlx_audio/codec/tests/test_s3.py +25 -0
  290. nexaai/mlx_backend/mlx_audio/codec/tests/test_snac.py +40 -0
  291. nexaai/mlx_backend/mlx_audio/codec/tests/test_vocos.py +93 -0
  292. nexaai/mlx_backend/mlx_audio/server.py +525 -0
  293. nexaai/mlx_backend/mlx_audio/sts/__init__.py +0 -0
  294. nexaai/mlx_backend/mlx_audio/sts/tests/test_voice_pipeline.py +156 -0
  295. nexaai/mlx_backend/mlx_audio/sts/voice_pipeline.py +327 -0
  296. nexaai/mlx_backend/mlx_audio/stt/__init__.py +0 -0
  297. nexaai/mlx_backend/mlx_audio/stt/generate.py +174 -0
  298. nexaai/mlx_backend/mlx_audio/stt/models/__init__.py +0 -0
  299. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/__init__.py +1 -0
  300. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/alignment.py +248 -0
  301. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/attention.py +187 -0
  302. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/audio.py +76 -0
  303. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/conformer.py +331 -0
  304. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/ctc.py +34 -0
  305. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/parakeet.py +604 -0
  306. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/rnnt.py +157 -0
  307. nexaai/mlx_backend/mlx_audio/stt/models/parakeet/tokenizer.py +2 -0
  308. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/feature_extractor.py +757 -0
  309. nexaai/mlx_backend/mlx_audio/stt/models/wav2vec/wav2vec.py +738 -0
  310. nexaai/mlx_backend/mlx_audio/stt/models/whisper/__init__.py +1 -0
  311. nexaai/mlx_backend/mlx_audio/stt/models/whisper/audio.py +82 -0
  312. nexaai/mlx_backend/mlx_audio/stt/models/whisper/decoding.py +742 -0
  313. nexaai/mlx_backend/mlx_audio/stt/models/whisper/timing.py +329 -0
  314. nexaai/mlx_backend/mlx_audio/stt/models/whisper/tokenizer.py +398 -0
  315. nexaai/mlx_backend/mlx_audio/stt/models/whisper/whisper.py +862 -0
  316. nexaai/mlx_backend/mlx_audio/stt/models/whisper/writers.py +268 -0
  317. nexaai/mlx_backend/mlx_audio/stt/tests/test_models.py +381 -0
  318. nexaai/mlx_backend/mlx_audio/stt/utils.py +195 -0
  319. nexaai/mlx_backend/mlx_audio/tts/__init__.py +1 -0
  320. nexaai/mlx_backend/mlx_audio/tts/audio_player.py +120 -0
  321. nexaai/mlx_backend/mlx_audio/tts/convert.py +71 -0
  322. nexaai/mlx_backend/mlx_audio/tts/generate.py +449 -0
  323. nexaai/mlx_backend/mlx_audio/tts/models/__init__.py +0 -0
  324. nexaai/mlx_backend/mlx_audio/tts/models/bark/__init__.py +4 -0
  325. nexaai/mlx_backend/mlx_audio/tts/models/bark/bark.py +528 -0
  326. nexaai/mlx_backend/mlx_audio/tts/models/bark/isftnet.py +12 -0
  327. nexaai/mlx_backend/mlx_audio/tts/models/bark/pipeline.py +442 -0
  328. nexaai/mlx_backend/mlx_audio/tts/models/base.py +84 -0
  329. nexaai/mlx_backend/mlx_audio/tts/models/dia/__init__.py +1 -0
  330. nexaai/mlx_backend/mlx_audio/tts/models/dia/audio.py +287 -0
  331. nexaai/mlx_backend/mlx_audio/tts/models/dia/config.py +256 -0
  332. nexaai/mlx_backend/mlx_audio/tts/models/dia/dia.py +592 -0
  333. nexaai/mlx_backend/mlx_audio/tts/models/dia/layers.py +870 -0
  334. nexaai/mlx_backend/mlx_audio/tts/models/indextts/__init__.py +3 -0
  335. nexaai/mlx_backend/mlx_audio/tts/models/indextts/attention.py +180 -0
  336. nexaai/mlx_backend/mlx_audio/tts/models/indextts/bigvgan.py +124 -0
  337. nexaai/mlx_backend/mlx_audio/tts/models/indextts/conformer.py +247 -0
  338. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/__init__.py +0 -0
  339. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/asp.py +59 -0
  340. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/ecapa_tdnn.py +91 -0
  341. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/se_res2net.py +132 -0
  342. nexaai/mlx_backend/mlx_audio/tts/models/indextts/ecapa_tdnn/tdnn.py +42 -0
  343. nexaai/mlx_backend/mlx_audio/tts/models/indextts/gpt2.py +38 -0
  344. nexaai/mlx_backend/mlx_audio/tts/models/indextts/indextts.py +412 -0
  345. nexaai/mlx_backend/mlx_audio/tts/models/indextts/mel.py +37 -0
  346. nexaai/mlx_backend/mlx_audio/tts/models/indextts/normalize.py +294 -0
  347. nexaai/mlx_backend/mlx_audio/tts/models/indextts/perceiver.py +62 -0
  348. nexaai/mlx_backend/mlx_audio/tts/models/interpolate.py +108 -0
  349. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/__init__.py +4 -0
  350. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/istftnet.py +979 -0
  351. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/kokoro.py +331 -0
  352. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/modules.py +659 -0
  353. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/pipeline.py +453 -0
  354. nexaai/mlx_backend/mlx_audio/tts/models/kokoro/voice.py +113 -0
  355. nexaai/mlx_backend/mlx_audio/tts/models/llama/__init__.py +3 -0
  356. nexaai/mlx_backend/mlx_audio/tts/models/llama/llama.py +324 -0
  357. nexaai/mlx_backend/mlx_audio/tts/models/outetts/__init__.py +1 -0
  358. nexaai/mlx_backend/mlx_audio/tts/models/outetts/audio_processor.py +351 -0
  359. nexaai/mlx_backend/mlx_audio/tts/models/outetts/dac_interface.py +162 -0
  360. nexaai/mlx_backend/mlx_audio/tts/models/outetts/default_speaker.json +461 -0
  361. nexaai/mlx_backend/mlx_audio/tts/models/outetts/outetts.py +255 -0
  362. nexaai/mlx_backend/mlx_audio/tts/models/outetts/prompt_processor.py +181 -0
  363. nexaai/mlx_backend/mlx_audio/tts/models/outetts/tokens.py +36 -0
  364. nexaai/mlx_backend/mlx_audio/tts/models/sesame/__init__.py +3 -0
  365. nexaai/mlx_backend/mlx_audio/tts/models/sesame/attention.py +195 -0
  366. nexaai/mlx_backend/mlx_audio/tts/models/sesame/sesame.py +633 -0
  367. nexaai/mlx_backend/mlx_audio/tts/models/sesame/watermarking.py +105 -0
  368. nexaai/mlx_backend/mlx_audio/tts/models/spark/__init__.py +1 -0
  369. nexaai/mlx_backend/mlx_audio/tts/models/spark/audio_tokenizer.py +138 -0
  370. nexaai/mlx_backend/mlx_audio/tts/models/spark/bicodec.py +269 -0
  371. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/__init__.py +0 -0
  372. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/__init__.py +0 -0
  373. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/blocks/sampler.py +111 -0
  374. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/__init__.py +0 -0
  375. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_decoder.py +120 -0
  376. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/feat_encoder.py +136 -0
  377. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/encoder_decoder/wave_generator.py +113 -0
  378. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/finite_scalar_quantization.py +238 -0
  379. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual.py +209 -0
  380. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/residual_fsq.py +309 -0
  381. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/__init__.py +1 -0
  382. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/ecapa_tdnn.py +283 -0
  383. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/perceiver_encoder.py +326 -0
  384. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/pooling_layers.py +297 -0
  385. nexaai/mlx_backend/mlx_audio/tts/models/spark/modules/speaker/speaker_encoder.py +155 -0
  386. nexaai/mlx_backend/mlx_audio/tts/models/spark/spark.py +382 -0
  387. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/audio.py +220 -0
  388. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/file.py +221 -0
  389. nexaai/mlx_backend/mlx_audio/tts/models/spark/utils/token_parser.py +181 -0
  390. nexaai/mlx_backend/mlx_audio/tts/tests/__init__.py +0 -0
  391. nexaai/mlx_backend/mlx_audio/tts/tests/test_base.py +66 -0
  392. nexaai/mlx_backend/mlx_audio/tts/tests/test_convert.py +173 -0
  393. nexaai/mlx_backend/mlx_audio/tts/tests/test_interpolate.py +88 -0
  394. nexaai/mlx_backend/mlx_audio/tts/tests/test_models.py +974 -0
  395. nexaai/mlx_backend/mlx_audio/tts/utils.py +337 -0
  396. nexaai/mlx_backend/mlx_audio/utils.py +237 -0
  397. nexaai/mlx_backend/mlx_audio/version.py +1 -0
  398. nexaai/mlx_backend/profiling.py +239 -0
  399. nexaai/mlx_backend/rerank/__init__.py +0 -0
  400. nexaai/mlx_backend/rerank/generate.py +174 -0
  401. nexaai/mlx_backend/rerank/interface.py +287 -0
  402. nexaai/mlx_backend/rerank/main.py +127 -0
  403. nexaai/mlx_backend/rerank/modeling/__init__.py +0 -0
  404. nexaai/mlx_backend/rerank/modeling/nexa_jina_rerank.py +330 -0
  405. nexaai/mlx_backend/sd/__init__.py +1 -0
  406. nexaai/mlx_backend/sd/interface.py +362 -0
  407. nexaai/mlx_backend/sd/main.py +286 -0
  408. nexaai/mlx_backend/sd/modeling/__init__.py +306 -0
  409. nexaai/mlx_backend/sd/modeling/clip.py +116 -0
  410. nexaai/mlx_backend/sd/modeling/config.py +65 -0
  411. nexaai/mlx_backend/sd/modeling/model_io.py +385 -0
  412. nexaai/mlx_backend/sd/modeling/sampler.py +105 -0
  413. nexaai/mlx_backend/sd/modeling/tokenizer.py +100 -0
  414. nexaai/mlx_backend/sd/modeling/unet.py +460 -0
  415. nexaai/mlx_backend/sd/modeling/vae.py +274 -0
  416. nexaai/mlx_backend/tts/__init__.py +12 -0
  417. nexaai/mlx_backend/tts/interface.py +276 -0
  418. nexaai/mlx_backend/vlm/__init__.py +3 -0
  419. nexaai/mlx_backend/vlm/generate.py +572 -0
  420. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +374 -0
  421. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +259 -0
  422. nexaai/mlx_backend/vlm/interface.py +559 -0
  423. nexaai/mlx_backend/vlm/main.py +365 -0
  424. nexaai/mlx_backend/vlm/modeling/__init__.py +0 -0
  425. nexaai/mlx_backend/vlm/modeling/convert.py +68 -0
  426. nexaai/mlx_backend/vlm/modeling/models/__init__.py +0 -0
  427. nexaai/mlx_backend/vlm/modeling/models/aya_vision/__init__.py +8 -0
  428. nexaai/mlx_backend/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  429. nexaai/mlx_backend/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  430. nexaai/mlx_backend/vlm/modeling/models/aya_vision/language.py +233 -0
  431. nexaai/mlx_backend/vlm/modeling/models/aya_vision/vision.py +503 -0
  432. nexaai/mlx_backend/vlm/modeling/models/base.py +202 -0
  433. nexaai/mlx_backend/vlm/modeling/models/cache.py +230 -0
  434. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  435. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  436. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  437. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  438. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  439. nexaai/mlx_backend/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  440. nexaai/mlx_backend/vlm/modeling/models/florence2/__init__.py +8 -0
  441. nexaai/mlx_backend/vlm/modeling/models/florence2/florence2.py +366 -0
  442. nexaai/mlx_backend/vlm/modeling/models/florence2/language.py +488 -0
  443. nexaai/mlx_backend/vlm/modeling/models/florence2/vision.py +591 -0
  444. nexaai/mlx_backend/vlm/modeling/models/gemma3/__init__.py +8 -0
  445. nexaai/mlx_backend/vlm/modeling/models/gemma3/gemma3.py +213 -0
  446. nexaai/mlx_backend/vlm/modeling/models/gemma3/language.py +315 -0
  447. nexaai/mlx_backend/vlm/modeling/models/gemma3/vision.py +238 -0
  448. nexaai/mlx_backend/vlm/modeling/models/gemma3n/__init__.py +2 -0
  449. nexaai/mlx_backend/vlm/modeling/models/gemma3n/audio.py +1038 -0
  450. nexaai/mlx_backend/vlm/modeling/models/gemma3n/config.py +139 -0
  451. nexaai/mlx_backend/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  452. nexaai/mlx_backend/vlm/modeling/models/gemma3n/language.py +629 -0
  453. nexaai/mlx_backend/vlm/modeling/models/gemma3n/vision.py +1022 -0
  454. nexaai/mlx_backend/vlm/modeling/models/idefics2/__init__.py +9 -0
  455. nexaai/mlx_backend/vlm/modeling/models/idefics2/idefics2.py +294 -0
  456. nexaai/mlx_backend/vlm/modeling/models/idefics2/language.py +191 -0
  457. nexaai/mlx_backend/vlm/modeling/models/idefics2/vision.py +267 -0
  458. nexaai/mlx_backend/vlm/modeling/models/idefics3/__init__.py +8 -0
  459. nexaai/mlx_backend/vlm/modeling/models/idefics3/idefics3.py +175 -0
  460. nexaai/mlx_backend/vlm/modeling/models/idefics3/language.py +192 -0
  461. nexaai/mlx_backend/vlm/modeling/models/idefics3/vision.py +233 -0
  462. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  463. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  464. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/language.py +220 -0
  465. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/processor.py +393 -0
  466. nexaai/mlx_backend/vlm/modeling/models/internvl_chat/vision.py +293 -0
  467. nexaai/mlx_backend/vlm/modeling/models/kernels.py +307 -0
  468. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  469. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  470. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/language.py +509 -0
  471. nexaai/mlx_backend/vlm/modeling/models/kimi_vl/vision.py +522 -0
  472. nexaai/mlx_backend/vlm/modeling/models/llama4/__init__.py +8 -0
  473. nexaai/mlx_backend/vlm/modeling/models/llama4/language.py +386 -0
  474. nexaai/mlx_backend/vlm/modeling/models/llama4/llama4.py +138 -0
  475. nexaai/mlx_backend/vlm/modeling/models/llama4/vision.py +560 -0
  476. nexaai/mlx_backend/vlm/modeling/models/llava/__init__.py +8 -0
  477. nexaai/mlx_backend/vlm/modeling/models/llava/language.py +240 -0
  478. nexaai/mlx_backend/vlm/modeling/models/llava/llava.py +153 -0
  479. nexaai/mlx_backend/vlm/modeling/models/llava/vision.py +259 -0
  480. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  481. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/language.py +236 -0
  482. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  483. nexaai/mlx_backend/vlm/modeling/models/llava_bunny/vision.py +303 -0
  484. nexaai/mlx_backend/vlm/modeling/models/llava_next/__init__.py +8 -0
  485. nexaai/mlx_backend/vlm/modeling/models/llava_next/language.py +230 -0
  486. nexaai/mlx_backend/vlm/modeling/models/llava_next/llava_next.py +160 -0
  487. nexaai/mlx_backend/vlm/modeling/models/llava_next/vision.py +243 -0
  488. nexaai/mlx_backend/vlm/modeling/models/mistral3/__init__.py +8 -0
  489. nexaai/mlx_backend/vlm/modeling/models/mistral3/mistral3.py +283 -0
  490. nexaai/mlx_backend/vlm/modeling/models/mllama/__init__.py +8 -0
  491. nexaai/mlx_backend/vlm/modeling/models/mllama/language.py +416 -0
  492. nexaai/mlx_backend/vlm/modeling/models/mllama/mllama.py +172 -0
  493. nexaai/mlx_backend/vlm/modeling/models/mllama/vision.py +499 -0
  494. nexaai/mlx_backend/vlm/modeling/models/molmo/__init__.py +8 -0
  495. nexaai/mlx_backend/vlm/modeling/models/molmo/language.py +243 -0
  496. nexaai/mlx_backend/vlm/modeling/models/molmo/molmo.py +133 -0
  497. nexaai/mlx_backend/vlm/modeling/models/molmo/vision.py +465 -0
  498. nexaai/mlx_backend/vlm/modeling/models/multi_modality/__init__.py +10 -0
  499. nexaai/mlx_backend/vlm/modeling/models/multi_modality/language.py +230 -0
  500. nexaai/mlx_backend/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  501. nexaai/mlx_backend/vlm/modeling/models/multi_modality/sam.py +557 -0
  502. nexaai/mlx_backend/vlm/modeling/models/multi_modality/vision.py +526 -0
  503. nexaai/mlx_backend/vlm/modeling/models/paligemma/__init__.py +8 -0
  504. nexaai/mlx_backend/vlm/modeling/models/paligemma/language.py +282 -0
  505. nexaai/mlx_backend/vlm/modeling/models/paligemma/paligemma.py +160 -0
  506. nexaai/mlx_backend/vlm/modeling/models/paligemma/vision.py +242 -0
  507. nexaai/mlx_backend/vlm/modeling/models/phi3_v/__init__.py +8 -0
  508. nexaai/mlx_backend/vlm/modeling/models/phi3_v/language.py +21 -0
  509. nexaai/mlx_backend/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  510. nexaai/mlx_backend/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  511. nexaai/mlx_backend/vlm/modeling/models/phi3_v/vision.py +324 -0
  512. nexaai/mlx_backend/vlm/modeling/models/pixtral/__init__.py +8 -0
  513. nexaai/mlx_backend/vlm/modeling/models/pixtral/language.py +229 -0
  514. nexaai/mlx_backend/vlm/modeling/models/pixtral/pixtral.py +161 -0
  515. nexaai/mlx_backend/vlm/modeling/models/pixtral/vision.py +320 -0
  516. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  517. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  518. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  519. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  520. nexaai/mlx_backend/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  521. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  522. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/config.py +104 -0
  523. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/language.py +490 -0
  524. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  525. nexaai/mlx_backend/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  526. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  527. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  528. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  529. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  530. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  531. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  532. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  533. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  534. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +1262 -0
  535. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  536. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  537. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  538. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  539. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  540. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  541. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  542. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  543. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1308 -0
  544. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  545. nexaai/mlx_backend/vlm/modeling/models/smolvlm/__init__.py +8 -0
  546. nexaai/mlx_backend/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  547. nexaai/mlx_backend/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  548. nexaai/mlx_backend/vlm/modeling/processing_qwen2_vl.py +215 -0
  549. nexaai/mlx_backend/vlm/modeling/prompt_utils.py +474 -0
  550. nexaai/mlx_backend/vlm/modeling/sample_utils.py +39 -0
  551. nexaai/mlx_backend/vlm/modeling/tokenizer_utils.py +344 -0
  552. nexaai/mlx_backend/vlm/modeling/trainer/__init__.py +9 -0
  553. nexaai/mlx_backend/vlm/modeling/trainer/lora.py +70 -0
  554. nexaai/mlx_backend/vlm/modeling/trainer/trainer.py +296 -0
  555. nexaai/mlx_backend/vlm/modeling/trainer/utils.py +160 -0
  556. nexaai/mlx_backend/vlm/modeling/utils.py +928 -0
  557. nexaai/rerank.py +57 -0
  558. nexaai/rerank_impl/__init__.py +0 -0
  559. nexaai/rerank_impl/mlx_rerank_impl.py +94 -0
  560. nexaai/rerank_impl/pybind_rerank_impl.py +136 -0
  561. nexaai/runtime.py +68 -0
  562. nexaai/runtime_error.py +24 -0
  563. nexaai/tts.py +75 -0
  564. nexaai/tts_impl/__init__.py +0 -0
  565. nexaai/tts_impl/mlx_tts_impl.py +94 -0
  566. nexaai/tts_impl/pybind_tts_impl.py +43 -0
  567. nexaai/utils/decode.py +18 -0
  568. nexaai/utils/manifest_utils.py +531 -0
  569. nexaai/utils/model_manager.py +1745 -0
  570. nexaai/utils/model_types.py +49 -0
  571. nexaai/utils/progress_tracker.py +389 -0
  572. nexaai/utils/quantization_utils.py +245 -0
  573. nexaai/vlm.py +130 -0
  574. nexaai/vlm_impl/__init__.py +0 -0
  575. nexaai/vlm_impl/mlx_vlm_impl.py +259 -0
  576. nexaai/vlm_impl/pybind_vlm_impl.py +275 -0
  577. nexaai-1.0.29.dist-info/METADATA +35 -0
  578. nexaai-1.0.29.dist-info/RECORD +580 -0
  579. nexaai-1.0.29.dist-info/WHEEL +5 -0
  580. nexaai-1.0.29.dist-info/top_level.txt +1 -0
@@ -0,0 +1,393 @@
1
+ import json
2
+ from pathlib import Path
3
+ from typing import List, Optional, Tuple, Union
4
+
5
+ import mlx.core as mx
6
+ import numpy as np
7
+ from PIL import Image
8
+ from transformers import (
9
+ AutoImageProcessor,
10
+ AutoProcessor,
11
+ AutoTokenizer,
12
+ BatchFeature,
13
+ PreTrainedTokenizerBase,
14
+ ProcessorMixin,
15
+ )
16
+ from transformers.image_utils import ImageFeatureExtractionMixin
17
+ from transformers.utils import logging
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+ # Constants for image processing (from internvl_chat.py)
22
+
23
+ IMAGENET_MEAN = np.array([0.485, 0.456, 0.406])
24
+ IMAGENET_STD = np.array([0.229, 0.224, 0.225])
25
+ # chat_template = get_conv_template("internvl2_5")
26
+ chat_template = "{% for message in messages %}{{message['role'].capitalize() + ': '}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['content'] }}{% endfor %}{{'\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:\n' }}{% endif %}"
27
+
28
+ IMG_START_TOKEN = "<img>"
29
+ IMG_END_TOKEN = "</img>"
30
+ IMG_CONTEXT_TOKEN = "<IMG_CONTEXT>"
31
+
32
+
33
+ def build_transform(input_size):
34
+ """
35
+ Builds a transformation pipeline for images.
36
+
37
+ Args:
38
+ input_size (int): The target size for the image (height and width).
39
+
40
+ Returns:
41
+ function: A function that takes a PIL image and returns a normalized mx.array.
42
+ """
43
+ mean = mx.array(IMAGENET_MEAN)
44
+ std = mx.array(IMAGENET_STD)
45
+
46
+ def transform(img: Image.Image) -> mx.array:
47
+ # Ensure image is RGB
48
+ if img.mode != "RGB":
49
+ img = img.convert("RGB")
50
+
51
+ # Resize using PIL - BICUBIC interpolation is default in Pillow >= 9.1.0 for resize
52
+ # For older versions, you might need Pillow-SIMD or explicitly set
53
+ # resampling=Image.BICUBIC if available.
54
+ img = img.resize((input_size, input_size), resample=Image.Resampling.BICUBIC)
55
+
56
+ # Convert PIL image to NumPy array (H, W, C) and scale to [0, 1]
57
+ img_np = np.array(img).astype(np.float32) / 255.0
58
+
59
+ # Convert to MLX array and transpose to (C, H, W)
60
+ img_mx = mx.array(img_np).transpose(2, 0, 1)
61
+
62
+ # Normalize
63
+ img_mx = (img_mx - mean[:, None, None]) / std[:, None, None]
64
+
65
+ return img_mx
66
+
67
+ return transform
68
+
69
+
70
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
71
+ """Finds the closest aspect ratio from a list of targets."""
72
+ best_ratio_diff = float("inf")
73
+ best_ratio = (1, 1)
74
+ area = width * height
75
+ for ratio in target_ratios:
76
+ target_aspect_ratio = ratio[0] / ratio[1]
77
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
78
+ if ratio_diff < best_ratio_diff:
79
+ best_ratio_diff = ratio_diff
80
+ best_ratio = ratio
81
+ elif ratio_diff == best_ratio_diff:
82
+ # Prioritize ratios closer to the original image area if diffs are equal
83
+ target_area = image_size * image_size * ratio[0] * ratio[1]
84
+ if abs(area - target_area) < abs(
85
+ area - image_size * image_size * best_ratio[0] * best_ratio[1]
86
+ ):
87
+ best_ratio = ratio
88
+ return best_ratio
89
+
90
+
91
+ def dynamic_preprocess(
92
+ image: Image.Image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
93
+ ):
94
+ """
95
+ Preprocesses the image by splitting it into blocks based on the closest aspect ratio.
96
+
97
+ Args:
98
+ image (PIL.Image.Image): Input image.
99
+ min_num (int): Minimum number of blocks.
100
+ max_num (int): Maximum number of blocks.
101
+ image_size (int): Target size for each block.
102
+ use_thumbnail (bool): Whether to include a thumbnail of the original image.
103
+
104
+ Returns:
105
+ list[PIL.Image.Image]: A list of processed image blocks (as PIL images).
106
+ """
107
+ orig_width, orig_height = image.size
108
+ if orig_width == 0 or orig_height == 0:
109
+ # Handle potential zero dimensions
110
+ return []
111
+ aspect_ratio = orig_width / orig_height
112
+
113
+ # Calculate the possible target aspect ratios
114
+ target_ratios = set(
115
+ (i, j)
116
+ for n in range(min_num, max_num + 1)
117
+ for i in range(1, n + 1)
118
+ for j in range(1, n + 1)
119
+ if min_num <= i * j <= max_num
120
+ )
121
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
122
+
123
+ # Find the closest target aspect ratio
124
+ target_aspect_ratio = find_closest_aspect_ratio(
125
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size
126
+ )
127
+
128
+ # Calculate the target dimensions for resizing
129
+ target_width = image_size * target_aspect_ratio[0]
130
+ target_height = image_size * target_aspect_ratio[1]
131
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
132
+
133
+ # Resize the image to fit the target block structure
134
+ # Using BICUBIC resampling
135
+ resized_img = image.resize(
136
+ (target_width, target_height), resample=Image.Resampling.BICUBIC
137
+ )
138
+
139
+ processed_images = []
140
+ # Crop the resized image into blocks
141
+ for i in range(blocks):
142
+ # Calculate crop box for the i-th block
143
+ row_idx = i // target_aspect_ratio[0]
144
+ col_idx = i % target_aspect_ratio[0]
145
+ left = col_idx * image_size
146
+ top = row_idx * image_size
147
+ right = (col_idx + 1) * image_size
148
+ bottom = (row_idx + 1) * image_size
149
+ box = (left, top, right, bottom)
150
+
151
+ # Crop and add the block
152
+ split_img = resized_img.crop(box)
153
+ processed_images.append(split_img)
154
+
155
+ assert (
156
+ len(processed_images) == blocks
157
+ ), f"Expected {blocks} blocks, but got {len(processed_images)}"
158
+
159
+ # Add a thumbnail if requested and if the image was split
160
+ if use_thumbnail and blocks > 1:
161
+ thumbnail_img = image.resize(
162
+ (image_size, image_size), resample=Image.Resampling.BICUBIC
163
+ )
164
+ processed_images.append(thumbnail_img)
165
+
166
+ return processed_images
167
+
168
+
169
+ class InternVLImageProcessor(ImageFeatureExtractionMixin):
170
+ model_input_names = ["pixel_values"]
171
+
172
+ def __init__(
173
+ self,
174
+ do_resize: bool = True,
175
+ size: int = 448, # Default image size from dynamic_preprocess
176
+ resample=Image.Resampling.BICUBIC,
177
+ do_center_crop: bool = False, # Not used in original, but standard HF param
178
+ crop_size=None,
179
+ do_rescale: bool = True, # Original code scales by 1/255.0
180
+ rescale_factor: float = 1 / 255.0,
181
+ do_normalize: bool = True,
182
+ image_mean=IMAGENET_MEAN.tolist(),
183
+ image_std=IMAGENET_STD.tolist(),
184
+ do_dynamic_preprocess: bool = True,
185
+ dynamic_min_num: int = 1,
186
+ dynamic_max_num: int = 12,
187
+ dynamic_use_thumbnail: bool = True,
188
+ **kwargs,
189
+ ):
190
+ super().__init__()
191
+ self.do_resize = (
192
+ do_resize # Although dynamic_preprocess handles resizing internally
193
+ )
194
+ self.size = size
195
+ self.resample = resample
196
+ self.do_center_crop = do_center_crop
197
+ self.crop_size = crop_size
198
+ self.do_rescale = do_rescale
199
+ self.rescale_factor = rescale_factor
200
+ self.do_normalize = do_normalize
201
+ self.image_mean = image_mean
202
+ self.image_std = image_std
203
+ # Custom dynamic processing params
204
+ self.do_dynamic_preprocess = do_dynamic_preprocess
205
+ self.dynamic_min_num = dynamic_min_num
206
+ self.dynamic_max_num = dynamic_max_num
207
+ self.dynamic_use_thumbnail = dynamic_use_thumbnail
208
+
209
+ def preprocess(
210
+ self,
211
+ images: List[Image.Image],
212
+ do_dynamic_preprocess: Optional[bool] = None,
213
+ size: Optional[int] = None,
214
+ # ... other params matching __init__ ...
215
+ return_tensors: Optional[str] = None,
216
+ **kwargs,
217
+ ) -> List[mx.array]:
218
+
219
+ do_dynamic_preprocess = (
220
+ do_dynamic_preprocess
221
+ if do_dynamic_preprocess is not None
222
+ else self.do_dynamic_preprocess
223
+ )
224
+ size = size if size is not None else self.size
225
+ # ... handle other overrides ...
226
+
227
+ if not isinstance(images, list):
228
+ images = [images]
229
+
230
+ if not all(isinstance(image, Image.Image) for image in images):
231
+ raise ValueError("Input must be a list of PIL Images.")
232
+
233
+ processed_images_batch = []
234
+ for image in images:
235
+ # Apply dynamic preprocessing
236
+ if do_dynamic_preprocess:
237
+ processed_images = dynamic_preprocess(
238
+ image,
239
+ min_num=self.dynamic_min_num,
240
+ max_num=self.dynamic_max_num,
241
+ image_size=size,
242
+ use_thumbnail=self.dynamic_use_thumbnail,
243
+ )
244
+ else:
245
+ # Fallback or alternative simpler preprocessing if needed
246
+ # e.g., simple resize + normalize
247
+ processed_images = [image.resize((size, size), resample=self.resample)]
248
+
249
+ # Create transform function
250
+ transform = build_transform(input_size=size)
251
+
252
+ # Apply transform to each image block and collect arrays
253
+ pixel_values_list = [transform(img) for img in processed_images]
254
+
255
+ # Stack the arrays along a new dimension (batch dimension)
256
+ pixel_values = mx.stack(pixel_values_list, axis=0)
257
+
258
+ processed_images_batch.append(pixel_values)
259
+
260
+ # At this point, processed_images_batch contains a list of mx arrays,
261
+ # each array corresponding to an input image with stacked blocks.
262
+
263
+ data = {"pixel_values": mx.array(processed_images_batch)}
264
+ return BatchFeature(data=data, tensor_type=None)
265
+
266
+
267
+ class InternVLChatProcessor(ProcessorMixin):
268
+ attributes = ["image_processor", "tokenizer"]
269
+ image_processor_class = "InternVLImageProcessor"
270
+ tokenizer_class = (
271
+ "AutoTokenizer",
272
+ "Qwen2TokenizerFast",
273
+ ) # Specify possible classes
274
+
275
+ def __init__(
276
+ self,
277
+ image_processor=None,
278
+ tokenizer=None,
279
+ chat_template=chat_template,
280
+ **kwargs,
281
+ ):
282
+ if image_processor is None:
283
+ image_processor = InternVLImageProcessor(**kwargs)
284
+ if isinstance(tokenizer, str):
285
+ # Defaulting to the likely repo ID found earlier
286
+ tokenizer = AutoTokenizer.from_pretrained(
287
+ tokenizer, trust_remote_code=True, **kwargs
288
+ )
289
+
290
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
291
+
292
+ self.num_image_token = int((448 // 14) ** 2 * (0.5**2))
293
+
294
+ def __call__(
295
+ self,
296
+ text: Union[str, List[str]] = None,
297
+ images: List[Image.Image] = None,
298
+ padding: Union[bool, str] = True,
299
+ truncation: bool = True,
300
+ max_length: Optional[int] = None,
301
+ return_tensors: Optional[str] = "pt", # Default to PyTorch tensors
302
+ **kwargs,
303
+ ):
304
+ processed_inputs = {}
305
+ if images is not None:
306
+ image_features = self.image_processor.preprocess(
307
+ images, return_tensors=return_tensors, **kwargs
308
+ )
309
+ processed_inputs.update(image_features) # Should contain 'pixel_values'
310
+
311
+ if text is not None:
312
+ queries = []
313
+
314
+ if isinstance(text, str):
315
+ text = [text]
316
+
317
+ for idx in range(len(images)):
318
+ question = text[idx]
319
+
320
+ if images is not None and "<image>" not in question:
321
+ question = "<image>\n" + question
322
+
323
+ num_patches = image_features["pixel_values"][idx].shape[0]
324
+ image_tokens = (
325
+ IMG_START_TOKEN
326
+ + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
327
+ + IMG_END_TOKEN
328
+ )
329
+ question = question.replace("<image>", image_tokens, 1)
330
+ queries.append(question)
331
+
332
+ self.tokenizer.padding_side = "left"
333
+ text_inputs = self.tokenizer(
334
+ queries,
335
+ padding=padding,
336
+ truncation=truncation,
337
+ max_length=max_length,
338
+ return_tensors=return_tensors,
339
+ **kwargs,
340
+ )
341
+ processed_inputs.update(text_inputs) # 'input_ids', 'attention_mask'
342
+
343
+ return processed_inputs
344
+
345
+ def batch_decode(self, *args, **kwargs):
346
+ """
347
+ This method forwards all its arguments to the tokenizer's batch_decode method.
348
+ """
349
+ return self.tokenizer.batch_decode(*args, **kwargs)
350
+
351
+ def decode(self, *args, **kwargs):
352
+ """
353
+ This method forwards all its arguments to the tokenizer's decode method.
354
+ """
355
+ return self.tokenizer.decode(*args, **kwargs)
356
+
357
+ def save_pretrained(self, save_directory, **kwargs):
358
+ pass
359
+
360
+ @staticmethod
361
+ def from_pretrained(pretrained_model_name_or_path, **kwargs):
362
+ tokenizer = AutoTokenizer.from_pretrained(
363
+ pretrained_model_name_or_path, **kwargs
364
+ )
365
+ image_processor = InternVLImageProcessor(**kwargs)
366
+ return InternVLChatProcessor(
367
+ image_processor=image_processor, tokenizer=tokenizer
368
+ )
369
+
370
+ # Need save_pretrained and from_pretrained
371
+ # save_pretrained should save both tokenizer and image_processor configs/files
372
+ # from_pretrained should load both
373
+
374
+ # Example:
375
+ # def save_pretrained(self, save_directory, **kwargs):
376
+ # self.tokenizer.save_pretrained(save_directory, **kwargs)
377
+ # self.image_processor.save_pretrained(save_directory, **kwargs)
378
+
379
+ # def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
380
+ # tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
381
+ # image_processor = InternVLImageProcessor.from_pretrained(pretrained_model_name_or_path, **kwargs)
382
+ # return cls(image_processor=image_processor, tokenizer=tokenizer)
383
+
384
+
385
+ # Registration
386
+ MODEL_TYPE = "internvl_chat" # Verify this from the model's config.json
387
+
388
+ AutoImageProcessor.register(
389
+ MODEL_TYPE, slow_image_processor_class=InternVLImageProcessor
390
+ )
391
+ AutoProcessor.register(MODEL_TYPE, InternVLChatProcessor)
392
+
393
+ logger.info(f"Registered custom processor classes for model type '{MODEL_TYPE}'.")
@@ -0,0 +1,293 @@
1
+ import inspect
2
+ from dataclasses import dataclass
3
+ from typing import Optional
4
+
5
+ import mlx.core as mx
6
+ import mlx.nn as nn
7
+ import numpy as np
8
+
9
+ from ..base import interpolate
10
+
11
+
12
+ @dataclass
13
+ class VisionConfig:
14
+ model_type: str
15
+ hidden_size: int = 1024
16
+ num_attention_heads: int = 16
17
+ patch_size: int = 14
18
+ num_hidden_layers: int = 24
19
+ intermediate_size: int = 4096
20
+ image_size: int = 448
21
+ num_channels: int = 3
22
+ layer_norm_eps: float = 1e-6
23
+ drop_path_rate: float = 0.1
24
+ qkv_bias: bool = True
25
+ qk_normalization: bool = False
26
+ norm_type: str = "layer_norm"
27
+
28
+ @classmethod
29
+ def from_dict(cls, params):
30
+ return cls(
31
+ **{
32
+ k: v
33
+ for k, v in params.items()
34
+ if k in inspect.signature(cls).parameters
35
+ }
36
+ )
37
+
38
+
39
+ def check_array_shape(arr):
40
+ shape = arr.shape
41
+
42
+ # Check if the shape has 4 dimensions
43
+ if len(shape) != 4:
44
+ return False
45
+
46
+ out_channels, kH, KW, _ = shape
47
+
48
+ # Check if out_channels is the largest, and kH and KW are the same
49
+ if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
50
+ return True
51
+ else:
52
+ return False
53
+
54
+
55
+ class Attention(nn.Module):
56
+ def __init__(self, config: VisionConfig):
57
+ super().__init__()
58
+
59
+ if (config.hidden_size % config.num_attention_heads) != 0:
60
+ raise ValueError(
61
+ "The input feature dimensions should be divisible by the "
62
+ f"number of heads ({config.hidden_size} % {config.num_attention_heads}) != 0"
63
+ )
64
+
65
+ self.dims = dims = config.hidden_size
66
+
67
+ self.num_heads = config.num_attention_heads
68
+ head_dim = config.hidden_size // config.num_attention_heads
69
+ self.scale = head_dim**-0.5
70
+ self.qkv_bias = config.qkv_bias
71
+
72
+ self.qkv = nn.Linear(dims, 3 * dims, bias=config.qkv_bias)
73
+ self.proj = nn.Linear(dims, dims)
74
+
75
+ self.qk_normalization = config.qk_normalization
76
+
77
+ if self.qk_normalization:
78
+ self.q_norm = nn.RMSNorm(dims, eps=config.layer_norm_eps)
79
+ self.k_norm = nn.RMSNorm(dims, eps=config.layer_norm_eps)
80
+
81
+ def __call__(self, x, mask=None):
82
+ B, L, C = x.shape
83
+ qkv = self.qkv(x).reshape(B, L, 3, self.num_heads, C // self.num_heads)
84
+ qkv = qkv.transpose(2, 0, 3, 1, 4)
85
+ queries, keys, values = (
86
+ qkv[0],
87
+ qkv[1],
88
+ qkv[2],
89
+ ) # Each has shape (B, groups, N, C//groups)
90
+
91
+ if self.qk_normalization:
92
+ B_, H_, N_, D_ = queries.shape
93
+ queries = (
94
+ self.q_norm(queries.transpose(0, 2, 1, 3).flatten(-2, -1))
95
+ .reshape(B_, N_, H_, D_)
96
+ .transpose(0, 2, 1, 3)
97
+ )
98
+ keys = (
99
+ self.k_norm(keys.transpose(0, 2, 1, 3).flatten(-2, -1))
100
+ .reshape(B_, N_, H_, D_)
101
+ .transpose(0, 2, 1, 3)
102
+ )
103
+
104
+ output = mx.fast.scaled_dot_product_attention(
105
+ queries, keys, values, scale=self.scale, mask=mask
106
+ )
107
+ output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
108
+ return self.proj(output)
109
+
110
+
111
+ class MLP(nn.Module):
112
+ def __init__(self, config: VisionConfig):
113
+ super().__init__()
114
+ self.activation_fn = nn.GELU(approx="precise")
115
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
116
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
117
+
118
+ def __call__(self, x: mx.array) -> mx.array:
119
+ x = self.fc1(x)
120
+ x = self.activation_fn(x)
121
+ x = self.fc2(x)
122
+ return x
123
+
124
+
125
+ class EncoderLayer(nn.Module):
126
+ def __init__(self, config: VisionConfig, drop_path_rate: float = 0.0):
127
+ super().__init__()
128
+ self.embed_dim = config.hidden_size
129
+ self.intermediate_size = config.intermediate_size
130
+ self.norm_type = getattr(config, "norm_type", "layer_norm")
131
+
132
+ self.attn = Attention(config)
133
+ self.mlp = MLP(config)
134
+
135
+ if self.norm_type == "layer_norm":
136
+ self.norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
137
+ self.norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
138
+ elif self.norm_type == "rms_norm":
139
+ self.norm1 = nn.RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
140
+ self.norm2 = nn.RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
141
+ else:
142
+ raise ValueError(f"Unsupported normalization type: {self.norm_type}")
143
+
144
+ self.ls1 = mx.ones((self.embed_dim,))
145
+ self.ls2 = mx.ones((self.embed_dim,))
146
+
147
+ self.drop_path1 = (
148
+ nn.Dropout(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
149
+ )
150
+ self.drop_path2 = (
151
+ nn.Dropout(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
152
+ )
153
+
154
+ def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
155
+ dtype = x.dtype
156
+ x = x + self.drop_path1(self.attn(self.norm1(x).astype(dtype)) * self.ls1)
157
+
158
+ x = x + self.drop_path2(self.mlp(self.norm2(x).astype(dtype)) * self.ls2)
159
+
160
+ return x.astype(dtype)
161
+
162
+
163
+ class Encoder(nn.Module):
164
+ def __init__(self, config: VisionConfig):
165
+ super().__init__()
166
+ dpr = [
167
+ mx.array(x)
168
+ for x in np.linspace(0, config.drop_path_rate, config.num_hidden_layers)
169
+ ]
170
+ self.layers = [
171
+ EncoderLayer(config, dpr[i]) for i in range(config.num_hidden_layers)
172
+ ]
173
+
174
+ def __call__(
175
+ self,
176
+ x: mx.array,
177
+ output_hidden_states: Optional[bool] = None,
178
+ mask: Optional[mx.array] = None,
179
+ ) -> mx.array:
180
+ encoder_states = (x,) if output_hidden_states else None
181
+ h = x
182
+ for l in self.layers:
183
+ x = l(x, mask=mask)
184
+ if output_hidden_states:
185
+ encoder_states = encoder_states + (x,)
186
+
187
+ h = x
188
+
189
+ return (h, encoder_states)
190
+
191
+
192
+ class VisionEmbeddings(nn.Module):
193
+ def __init__(self, config: VisionConfig):
194
+ super().__init__()
195
+ self.config = config
196
+ self.embed_dim = config.hidden_size
197
+ self.image_size = config.image_size
198
+ self.patch_size = config.patch_size
199
+
200
+ self.class_embedding = mx.random.normal((1, 1, self.embed_dim))
201
+
202
+ self.patch_embedding = nn.Conv2d(
203
+ in_channels=3,
204
+ out_channels=self.embed_dim,
205
+ kernel_size=self.patch_size,
206
+ stride=self.patch_size,
207
+ )
208
+
209
+ self.num_patches = (self.image_size // self.patch_size) ** 2
210
+ self.num_positions = self.num_patches + 1
211
+
212
+ self.position_embedding = mx.random.normal(
213
+ (1, self.num_positions, self.embed_dim)
214
+ )
215
+
216
+ def _get_pos_embed(self, pos_embed, H, W):
217
+ target_dtype = pos_embed.dtype
218
+ pos_embed = pos_embed.reshape(
219
+ 1,
220
+ self.image_size // self.patch_size,
221
+ self.image_size // self.patch_size,
222
+ -1,
223
+ ).transpose(0, 3, 1, 2)
224
+ pos_embed = interpolate(pos_embed, (H, W))
225
+ pos_embed = (
226
+ pos_embed.reshape(1, -1, H * W).transpose(0, 2, 1).astype(target_dtype)
227
+ )
228
+ return pos_embed
229
+
230
+ def __call__(self, x: mx.array) -> mx.array:
231
+ target_dtype = self.patch_embedding.weight.dtype
232
+ patch_embeds = self.patch_embedding(x).transpose(
233
+ 0, 3, 1, 2
234
+ ) # shape = [*, channel, width, height]
235
+ batch_size, _, height, width = patch_embeds.shape
236
+ patch_embeds = mx.flatten(patch_embeds, start_axis=2).transpose(0, 2, 1)
237
+ class_embeds = mx.broadcast_to(
238
+ self.class_embedding, (batch_size, 1, self.embed_dim)
239
+ ).astype(target_dtype)
240
+ embeddings = mx.concatenate([class_embeds, patch_embeds], axis=1)
241
+ position_embedding = mx.concatenate(
242
+ [
243
+ self.position_embedding[:, :1, :],
244
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width),
245
+ ],
246
+ axis=1,
247
+ )
248
+ embeddings = embeddings + position_embedding.astype(target_dtype)
249
+
250
+ return embeddings
251
+
252
+
253
+ class VisionModel(nn.Module):
254
+ def __init__(self, config: VisionConfig):
255
+ super().__init__()
256
+ self.model_type = config.model_type
257
+ if self.model_type not in ["siglip_vision_model", "intern_vit_6b"]:
258
+ raise ValueError(f"Unsupported model type: {self.model_type}")
259
+
260
+ self.embeddings = VisionEmbeddings(config)
261
+ self.encoder = Encoder(config)
262
+
263
+ def __call__(
264
+ self,
265
+ x: mx.array,
266
+ output_hidden_states: Optional[bool] = None,
267
+ ) -> mx.array:
268
+ x = self.embeddings(x)
269
+ last_hidden_state, encoder_outputs = self.encoder(
270
+ x=x, output_hidden_states=output_hidden_states, mask=None
271
+ )
272
+ pooler_output = last_hidden_state[:, 0, :]
273
+ return last_hidden_state, pooler_output, encoder_outputs[1:]
274
+
275
+ def sanitize(self, weights):
276
+ sanitized_weights = {}
277
+ for k, v in weights.items():
278
+ if "position_ids" in k:
279
+ # Remove unused position_ids
280
+ continue
281
+ elif "patch_embedding.weight" in k:
282
+ # PyTorch conv2d weight tensors have shape:
283
+ # [out_channels, in_channels, kH, KW]
284
+ # MLX conv2d expects the weight be of shape:
285
+ # [out_channels, kH, KW, in_channels]
286
+ if check_array_shape(v):
287
+ sanitized_weights[k] = v
288
+ else:
289
+ sanitized_weights[k] = v.transpose(0, 2, 3, 1)
290
+ else:
291
+ sanitized_weights[k] = v
292
+
293
+ return sanitized_weights