keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,207 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import keras
16
+ from keras import ops
17
+ from keras import tree
18
+
19
+ from keras_hub.src.api_export import keras_hub_export
20
+ from keras_hub.src.samplers.sampler import Sampler
21
+ from keras_hub.src.utils.tensor_utils import any_equal
22
+
23
+
24
+ @keras_hub_export("keras_hub.samplers.BeamSampler")
25
+ class BeamSampler(Sampler):
26
+ """Beam Sampler class.
27
+
28
+ This sampler implements beam search algorithm. At each time-step, beam
29
+ search keeps the beams (sequences) of the top `num_beams` highest
30
+ accumulated probabilities, and uses each one of the beams to predict
31
+ candidate next tokens.
32
+
33
+ Args:
34
+ num_beams: int. The number of beams that should be kept at each
35
+ time-step. `num_beams` should be strictly positive.
36
+ return_all_beams: bool. When set to `True`, the sampler will return all
37
+ beams and their respective probabilities score.
38
+
39
+ Call arguments:
40
+ {{call_args}}
41
+
42
+ Examples:
43
+ ```python
44
+ causal_lm = keras_hub.models.GPT2CausalLM.from_preset("gpt2_base_en")
45
+
46
+ # Pass by name to compile.
47
+ causal_lm.compile(sampler="beam")
48
+ causal_lm.generate(["Keras is a"])
49
+
50
+ # Pass by object to compile.
51
+ sampler = keras_hub.samplers.BeamSampler(num_beams=5)
52
+ causal_lm.compile(sampler=sampler)
53
+ causal_lm.generate(["Keras is a"])
54
+ ```
55
+ """
56
+
57
+ def __init__(
58
+ self,
59
+ num_beams=5,
60
+ return_all_beams=False,
61
+ **kwargs,
62
+ ):
63
+ super().__init__(**kwargs)
64
+ self.num_beams = num_beams
65
+ self.return_all_beams = return_all_beams
66
+
67
+ def __call__(
68
+ self,
69
+ next,
70
+ prompt,
71
+ cache=None,
72
+ index=0,
73
+ mask=None,
74
+ stop_token_ids=None,
75
+ hidden_states=None,
76
+ model=None,
77
+ ):
78
+ batch_size, max_length = ops.shape(prompt)[0], ops.shape(prompt)[1]
79
+ index = ops.cast(index, "int32")
80
+
81
+ def create_beams(x):
82
+ """Add initial beam state."""
83
+ return ops.repeat(x, self.num_beams, axis=0)
84
+
85
+ def flatten_beams(x):
86
+ """Combine the beam dim and batch dim."""
87
+ flat_shape = (batch_size * self.num_beams,) + ops.shape(x)[2:]
88
+ return ops.reshape(x, flat_shape)
89
+
90
+ def unflatten_beams(x):
91
+ """Separate the beam dim and batch dim."""
92
+ unflat_shape = (batch_size, self.num_beams) + ops.shape(x)[1:]
93
+ return ops.reshape(x, unflat_shape)
94
+
95
+ if mask is None:
96
+ mask = ops.zeros_like(prompt, dtype="bool")
97
+ else:
98
+ mask = ops.cast(mask, dtype="bool")
99
+ # `ops.while_loop` will not accept `None` as a value for `loop_vars`.
100
+ has_cache = cache is not None
101
+ cache = cache if has_cache else ()
102
+ # Add extra sequences for each beam.
103
+ prompt, mask = create_beams(prompt), create_beams(mask)
104
+ cache = tree.map_structure(create_beams, cache)
105
+ # Setup the initial beam log-likelihoods.
106
+ # On the first loop, make sure only the original beam is considered.
107
+ log_probs = ops.array(
108
+ [[0.0] + [-1e9] * (self.num_beams - 1)], dtype="float32"
109
+ )
110
+ log_probs = flatten_beams(ops.repeat(log_probs, batch_size, axis=0))
111
+
112
+ def cond(prompt, cache, index, log_probs):
113
+ if stop_token_ids is None:
114
+ return True
115
+ # Stop if all sequences have produced a *new* stop token.
116
+ end_tokens = any_equal(prompt, stop_token_ids, ~mask)
117
+ prompt_done = ops.any(end_tokens, axis=-1)
118
+ return ops.logical_not(ops.all(prompt_done))
119
+
120
+ def body(prompt, cache, index, log_probs):
121
+ # Compute the softmax distribution for the next token.
122
+ logits, _, cache = next(prompt, cache, index)
123
+ vocab_size = ops.shape(logits)[-1]
124
+ probs = self.compute_probabilities(logits)
125
+
126
+ # Compute the running log-likelihood of each new candidate.
127
+ next_log_probs = ops.log(probs) + log_probs[..., None]
128
+ # Reshape `preds` to shape `(batch_size, num_beams * vocab_size)`.
129
+ next_log_probs = ops.reshape(next_log_probs, [batch_size, -1])
130
+
131
+ # Compute the top beam indices and next tokens.
132
+ next_log_probs, indices = ops.top_k(
133
+ next_log_probs, k=self.num_beams, sorted=False
134
+ )
135
+ beam_indices = indices // vocab_size
136
+ next_token = flatten_beams(indices % vocab_size)
137
+ # We need `ensure_shape` as `top_k` will change the static shape.
138
+ next_log_probs = flatten_beams(next_log_probs)
139
+ if keras.config.backend() == "tensorflow":
140
+ # Work around for bug in top_k output shape on tf backend.
141
+ import tensorflow as tf
142
+
143
+ log_probs = tf.ensure_shape(next_log_probs, log_probs.shape)
144
+ else:
145
+ log_probs = next_log_probs
146
+
147
+ def gather_beams(x):
148
+ x = unflatten_beams(x)
149
+ indices = beam_indices
150
+ for axis in range(2, len(x.shape)):
151
+ indices = ops.expand_dims(indices, axis=axis)
152
+ x = ops.take_along_axis(x, indices, axis=1)
153
+ return flatten_beams(x)
154
+
155
+ prompt = gather_beams(prompt)
156
+ if has_cache:
157
+ cache = tree.map_structure(gather_beams, cache)
158
+
159
+ # Update each beam with the next token.
160
+ next_token = ops.cast(next_token, prompt.dtype)
161
+ # Don't overwrite anywhere mask is True.
162
+ next_token = ops.where(mask[:, index], prompt[:, index], next_token)
163
+ # Update the prompt with the next token.
164
+ next_token = next_token[:, None]
165
+ prompt = ops.slice_update(prompt, [0, index], next_token)
166
+ # Return the iteration of the loop state.
167
+ return (prompt, cache, index + 1, log_probs)
168
+
169
+ prompt, _, _, log_probs = self.run_loop(
170
+ cond=cond,
171
+ body=body,
172
+ loop_vars=(prompt, cache, index, log_probs),
173
+ maximum_iterations=(max_length - index),
174
+ model=model,
175
+ )
176
+
177
+ all_prompts = unflatten_beams(prompt)
178
+ all_log_probs = unflatten_beams(log_probs)
179
+
180
+ if self.return_all_beams:
181
+ sorted_indices = ops.argsort(-all_log_probs, axis=-1)
182
+ sorted_log_probs = ops.take_along_axis(
183
+ all_log_probs,
184
+ sorted_indices,
185
+ axis=1,
186
+ )
187
+ sorted_prompts = ops.take_along_axis(
188
+ all_prompts,
189
+ ops.expand_dims(sorted_indices, -1),
190
+ axis=1,
191
+ )
192
+ return sorted_prompts, sorted_log_probs
193
+ else:
194
+ # Gather the top beam at each batch index.
195
+ top_beams = ops.argmax(all_log_probs, axis=-1)[:, None, None]
196
+ prompt = ops.take_along_axis(all_prompts, top_beams, axis=1)
197
+ return ops.squeeze(prompt, axis=1)
198
+
199
+ def get_config(self):
200
+ config = super().get_config()
201
+ config.update(
202
+ {
203
+ "num_beams": self.num_beams,
204
+ "return_all_beams": self.return_all_beams,
205
+ }
206
+ )
207
+ return config
@@ -0,0 +1,231 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from keras import ops
16
+ from keras import tree
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.samplers.sampler import Sampler
20
+ from keras_hub.src.utils.tensor_utils import any_equal
21
+
22
+
23
+ @keras_hub_export("keras_hub.samplers.ContrastiveSampler")
24
+ class ContrastiveSampler(Sampler):
25
+ """Contrastive Sampler class.
26
+
27
+ This sampler implements contrastive search algorithm. In short, the sampler
28
+ chooses the token having the max "score" as the next token. The "score" is
29
+ a weighted sum between token's probability and max similarity against
30
+ previous tokens. By using this joint score, contrastive sampler reduces the
31
+ behavior of duplicating seen tokens.
32
+
33
+ Args:
34
+ k: int, the `k` value of top-k. Next token will be chosen from k tokens.
35
+ alpha: float, the weight of minus max similarity in joint score
36
+ computation. The larger the value of `alpha`, the score relies more
37
+ on the similarity than the token probability.
38
+
39
+ Call arguments:
40
+ {{call_args}}
41
+
42
+ Examples:
43
+ ```python
44
+ causal_lm = keras_hub.models.GPT2CausalLM.from_preset("gpt2_base_en")
45
+
46
+ # Pass by name to compile.
47
+ causal_lm.compile(sampler="contrastive")
48
+ causal_lm.generate(["Keras is a"])
49
+
50
+ # Pass by object to compile.
51
+ sampler = keras_hub.samplers.ContrastiveSampler(k=5)
52
+ causal_lm.compile(sampler=sampler)
53
+ causal_lm.generate(["Keras is a"])
54
+ ```
55
+ """
56
+
57
+ def __init__(
58
+ self,
59
+ k=5,
60
+ alpha=0.6,
61
+ **kwargs,
62
+ ):
63
+ super().__init__(**kwargs)
64
+ self.k = k
65
+ self.alpha = alpha
66
+
67
+ def __call__(
68
+ self,
69
+ next,
70
+ prompt,
71
+ cache=None,
72
+ index=0,
73
+ mask=None,
74
+ stop_token_ids=None,
75
+ hidden_states=None,
76
+ model=None,
77
+ ):
78
+ if hidden_states is None:
79
+ raise ValueError(
80
+ "`ContrastiveSampler` requires passing a `hidden_states`, but"
81
+ "received `None`."
82
+ )
83
+ batch_size, max_length = ops.shape(prompt)[0], ops.shape(prompt)[1]
84
+ index = ops.cast(index, "int32")
85
+
86
+ def create_beams(x):
87
+ """Add initial beam state."""
88
+ x = ops.repeat(x, self.k, axis=0)
89
+ flat_shape = (batch_size * self.k,) + ops.shape(x)[1:]
90
+ return ops.reshape(x, flat_shape)
91
+
92
+ def flatten_beams(x):
93
+ """Combine the beam dim and batch dim."""
94
+ flat_shape = (batch_size * self.k,) + ops.shape(x)[2:]
95
+ return ops.reshape(x, flat_shape)
96
+
97
+ def unflatten_beams(x):
98
+ """Separate the beam dim and batch dim."""
99
+ unflat_shape = (batch_size, self.k) + ops.shape(x)[1:]
100
+ return ops.reshape(x, unflat_shape)
101
+
102
+ mask = ops.zeros_like(prompt, dtype="bool") if mask is None else mask
103
+ # Compute initial logits.
104
+ logits, _, cache = next(prompt, cache, index)
105
+ # `ops.while_loop` will not accept `None` as a value for `loop_vars`.
106
+ has_cache = cache is not None
107
+ cache = cache if has_cache else ()
108
+
109
+ def cond(prompt, cache, index, logits, hidden_states):
110
+ if stop_token_ids is None:
111
+ return True
112
+ # Stop if all sequences have produced a *new* stop token.
113
+ end_tokens = any_equal(prompt, stop_token_ids, ~mask)
114
+ prompt_done = ops.any(end_tokens, axis=-1)
115
+ return ops.logical_not(ops.all(prompt_done))
116
+
117
+ def body(prompt, cache, index, logits, hidden_states):
118
+ # Compute the softmax distribution for the next token.
119
+ probabilities = self.compute_probabilities(logits)
120
+
121
+ # Replicate for `self.k` times to find the best token in top-k
122
+ # candidates.
123
+ prompt_beams = create_beams(prompt)
124
+ mask_beams = create_beams(mask)
125
+ hidden_states_beams = create_beams(hidden_states)
126
+ cache_beams = None
127
+ if has_cache:
128
+ cache_beams = tree.map_structure(create_beams, cache)
129
+
130
+ # Get top-k candidate tokens and their probabilities.
131
+ top_k_probabilities, top_k_indices = ops.top_k(
132
+ probabilities, k=self.k, sorted=False
133
+ )
134
+ next_token_probabilities = flatten_beams(top_k_probabilities)
135
+ next_token = flatten_beams(top_k_indices)
136
+ next_token = ops.cast(next_token, prompt.dtype)
137
+ next_token = ops.where(
138
+ mask_beams[:, index], prompt_beams[:, index], next_token
139
+ )
140
+
141
+ # Update the prompt with the next token.
142
+ next_token = ops.expand_dims(next_token, -1)
143
+ prompt_beams = ops.slice_update(
144
+ prompt_beams, [0, index], next_token
145
+ )
146
+
147
+ # Compute the logits and hidden states for top-k candidate tokens.
148
+ next_logits, next_hidden_states_beams, cache_beams = next(
149
+ prompt_beams, cache_beams, index + 1
150
+ )
151
+
152
+ # Compute the max similarity score for top-k candidate tokens
153
+ # against previous tokens.
154
+ similarity_scores = self.similarity(
155
+ hidden_states_beams, next_hidden_states_beams
156
+ )
157
+ # Replace all future indices with -1, the lowest similarity score.
158
+ score_mask = ops.expand_dims(ops.arange(max_length) < index, 0)
159
+ similarity_scores = ops.where(score_mask, similarity_scores, -1)
160
+ max_similarity_scores = ops.cast(
161
+ ops.max(similarity_scores, axis=1),
162
+ dtype=next_token_probabilities.dtype,
163
+ )
164
+ # The final score of each candidate token is weighted sum of
165
+ # probability and similarity against previous tokens.
166
+ accumulated_scores = (
167
+ (1 - self.alpha) * next_token_probabilities
168
+ - self.alpha * max_similarity_scores
169
+ )
170
+ # Unflatten variables to shape [batch_size, self.k, ...] for
171
+ # gather purpose.
172
+ unflat_score = unflatten_beams(accumulated_scores)
173
+ unflat_prompt = unflatten_beams(prompt_beams)
174
+ unflat_next_logits = unflatten_beams(next_logits)
175
+ unflat_next_hidden_states = unflatten_beams(
176
+ next_hidden_states_beams
177
+ )
178
+ best_token_indices = ops.argmax(unflat_score, axis=1)
179
+
180
+ def gather_best_token(beams):
181
+ indices = best_token_indices
182
+ for axis in range(1, len(beams.shape)):
183
+ indices = ops.expand_dims(indices, axis=axis)
184
+ best = ops.take_along_axis(
185
+ beams,
186
+ indices,
187
+ axis=1,
188
+ )
189
+ return ops.squeeze(best, axis=1)
190
+
191
+ prompt = gather_best_token(unflat_prompt)
192
+ # We avoid recomputing forward pass for each token by updating the
193
+ # cache/hidden_states using the output, and pass the logits to
194
+ # next iteration step.
195
+ logits = gather_best_token(unflat_next_logits)
196
+ next_hidden_states = gather_best_token(unflat_next_hidden_states)
197
+ if has_cache:
198
+ cache = tree.map_structure(unflatten_beams, cache_beams)
199
+ cache = tree.map_structure(gather_best_token, cache)
200
+
201
+ hidden_states = ops.slice_update(
202
+ hidden_states,
203
+ [0, index, 0],
204
+ next_hidden_states[:, None, :],
205
+ )
206
+ return (prompt, cache, index + 1, logits, hidden_states)
207
+
208
+ prompt, _, _, _, _ = self.run_loop(
209
+ cond=cond,
210
+ body=body,
211
+ loop_vars=(prompt, cache, index, logits, hidden_states),
212
+ maximum_iterations=(max_length - index),
213
+ model=model,
214
+ )
215
+ return prompt
216
+
217
+ def similarity(self, h1, h2):
218
+ h2 = ops.expand_dims(h2, -1)
219
+ h1_norm = ops.sqrt(ops.sum(h1 * h1, axis=-1))
220
+ h2_norm = ops.sqrt(ops.sum(h2 * h2, axis=-2))
221
+ return ops.squeeze(ops.matmul(h1, h2), axis=-1) / (h1_norm * h2_norm)
222
+
223
+ def get_config(self):
224
+ config = super().get_config()
225
+ config.update(
226
+ {
227
+ "k": self.k,
228
+ "alpha": self.alpha,
229
+ }
230
+ )
231
+ return config
@@ -0,0 +1,50 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from keras import ops
16
+
17
+ from keras_hub.src.api_export import keras_hub_export
18
+ from keras_hub.src.samplers.sampler import Sampler
19
+
20
+
21
+ @keras_hub_export("keras_hub.samplers.GreedySampler")
22
+ class GreedySampler(Sampler):
23
+ """Greedy sampler class.
24
+
25
+ This sampler is implemented on greedy search, i.e., always picking up the
26
+ token of the largest probability as the next token.
27
+
28
+ Examples:
29
+ ```python
30
+ causal_lm = keras_hub.models.GPT2CausalLM.from_preset("gpt2_base_en")
31
+
32
+ # Pass by name to compile.
33
+ causal_lm.compile(sampler="greedy")
34
+ causal_lm.generate(["Keras is a"])
35
+
36
+ # Pass by object to compile.
37
+ sampler = keras_hub.samplers.GreedySampler()
38
+ causal_lm.compile(sampler=sampler)
39
+ causal_lm.generate(["Keras is a"])
40
+ ```
41
+ """
42
+
43
+ def __init__(
44
+ self,
45
+ **kwargs,
46
+ ):
47
+ super().__init__(**kwargs)
48
+
49
+ def get_next_token(self, probabilities):
50
+ return ops.argmax(probabilities, axis=-1)
@@ -0,0 +1,77 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from keras import ops
16
+ from keras import random
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.samplers.sampler import Sampler
20
+
21
+
22
+ @keras_hub_export("keras_hub.samplers.RandomSampler")
23
+ class RandomSampler(Sampler):
24
+ """Random Sampler class.
25
+
26
+ This sampler implements random sampling. Briefly, random sampler randomly
27
+ selects a token from the entire distribution of the tokens, with selection
28
+ chance determined by the probability of each token.
29
+
30
+ Args:
31
+ seed: int. The random seed. Defaults to `None`.
32
+
33
+ Call arguments:
34
+ {{call_args}}
35
+
36
+ Examples:
37
+ ```python
38
+ causal_lm = keras_hub.models.GPT2CausalLM.from_preset("gpt2_base_en")
39
+
40
+ # Pass by name to compile.
41
+ causal_lm.compile(sampler="random")
42
+ causal_lm.generate(["Keras is a"])
43
+
44
+ # Pass by object to compile.
45
+ sampler = keras_hub.samplers.RandomSampler(temperature=0.7)
46
+ causal_lm.compile(sampler=sampler)
47
+ causal_lm.generate(["Keras is a"])
48
+ ```
49
+ """
50
+
51
+ def __init__(
52
+ self,
53
+ seed=None,
54
+ **kwargs,
55
+ ):
56
+ super().__init__(**kwargs)
57
+ self.seed = seed
58
+ self.seed_generator = random.SeedGenerator(seed)
59
+
60
+ def get_next_token(self, probabilities):
61
+ # Sample the next token from the probability distribution.
62
+ next_token_id = random.categorical(
63
+ ops.log(probabilities),
64
+ 1,
65
+ seed=self.seed_generator,
66
+ dtype="int32",
67
+ )
68
+ return ops.squeeze(next_token_id, axis=-1)
69
+
70
+ def get_config(self):
71
+ config = super().get_config()
72
+ config.update(
73
+ {
74
+ "seed": self.seed,
75
+ }
76
+ )
77
+ return config