keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +52 -0
- keras_hub/api/__init__.py +27 -0
- keras_hub/api/layers/__init__.py +47 -0
- keras_hub/api/metrics/__init__.py +24 -0
- keras_hub/api/models/__init__.py +249 -0
- keras_hub/api/samplers/__init__.py +29 -0
- keras_hub/api/tokenizers/__init__.py +35 -0
- keras_hub/src/__init__.py +13 -0
- keras_hub/src/api_export.py +53 -0
- keras_hub/src/layers/__init__.py +13 -0
- keras_hub/src/layers/modeling/__init__.py +13 -0
- keras_hub/src/layers/modeling/alibi_bias.py +143 -0
- keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
- keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
- keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
- keras_hub/src/layers/modeling/position_embedding.py +123 -0
- keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
- keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
- keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
- keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
- keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
- keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
- keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
- keras_hub/src/layers/preprocessing/__init__.py +13 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
- keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
- keras_hub/src/layers/preprocessing/random_swap.py +267 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
- keras_hub/src/metrics/__init__.py +13 -0
- keras_hub/src/metrics/bleu.py +394 -0
- keras_hub/src/metrics/edit_distance.py +197 -0
- keras_hub/src/metrics/perplexity.py +181 -0
- keras_hub/src/metrics/rouge_base.py +204 -0
- keras_hub/src/metrics/rouge_l.py +97 -0
- keras_hub/src/metrics/rouge_n.py +125 -0
- keras_hub/src/models/__init__.py +13 -0
- keras_hub/src/models/albert/__init__.py +20 -0
- keras_hub/src/models/albert/albert_backbone.py +267 -0
- keras_hub/src/models/albert/albert_classifier.py +202 -0
- keras_hub/src/models/albert/albert_masked_lm.py +129 -0
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/albert/albert_preprocessor.py +206 -0
- keras_hub/src/models/albert/albert_presets.py +70 -0
- keras_hub/src/models/albert/albert_tokenizer.py +119 -0
- keras_hub/src/models/backbone.py +311 -0
- keras_hub/src/models/bart/__init__.py +20 -0
- keras_hub/src/models/bart/bart_backbone.py +261 -0
- keras_hub/src/models/bart/bart_preprocessor.py +276 -0
- keras_hub/src/models/bart/bart_presets.py +74 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
- keras_hub/src/models/bart/bart_tokenizer.py +124 -0
- keras_hub/src/models/bert/__init__.py +23 -0
- keras_hub/src/models/bert/bert_backbone.py +227 -0
- keras_hub/src/models/bert/bert_classifier.py +183 -0
- keras_hub/src/models/bert/bert_masked_lm.py +131 -0
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/bert/bert_preprocessor.py +184 -0
- keras_hub/src/models/bert/bert_presets.py +147 -0
- keras_hub/src/models/bert/bert_tokenizer.py +112 -0
- keras_hub/src/models/bloom/__init__.py +20 -0
- keras_hub/src/models/bloom/bloom_attention.py +186 -0
- keras_hub/src/models/bloom/bloom_backbone.py +173 -0
- keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
- keras_hub/src/models/bloom/bloom_decoder.py +206 -0
- keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
- keras_hub/src/models/bloom/bloom_presets.py +121 -0
- keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
- keras_hub/src/models/causal_lm.py +383 -0
- keras_hub/src/models/classifier.py +109 -0
- keras_hub/src/models/csp_darknet/__init__.py +13 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
- keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
- keras_hub/src/models/deberta_v3/__init__.py +24 -0
- keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
- keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
- keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
- keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
- keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
- keras_hub/src/models/densenet/__init__.py +13 -0
- keras_hub/src/models/densenet/densenet_backbone.py +210 -0
- keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
- keras_hub/src/models/distil_bert/__init__.py +26 -0
- keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
- keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
- keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
- keras_hub/src/models/electra/__init__.py +20 -0
- keras_hub/src/models/electra/electra_backbone.py +247 -0
- keras_hub/src/models/electra/electra_preprocessor.py +154 -0
- keras_hub/src/models/electra/electra_presets.py +95 -0
- keras_hub/src/models/electra/electra_tokenizer.py +104 -0
- keras_hub/src/models/f_net/__init__.py +20 -0
- keras_hub/src/models/f_net/f_net_backbone.py +236 -0
- keras_hub/src/models/f_net/f_net_classifier.py +154 -0
- keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
- keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
- keras_hub/src/models/f_net/f_net_presets.py +43 -0
- keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
- keras_hub/src/models/falcon/__init__.py +20 -0
- keras_hub/src/models/falcon/falcon_attention.py +156 -0
- keras_hub/src/models/falcon/falcon_backbone.py +164 -0
- keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
- keras_hub/src/models/falcon/falcon_presets.py +30 -0
- keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
- keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
- keras_hub/src/models/feature_pyramid_backbone.py +73 -0
- keras_hub/src/models/gemma/__init__.py +20 -0
- keras_hub/src/models/gemma/gemma_attention.py +250 -0
- keras_hub/src/models/gemma/gemma_backbone.py +316 -0
- keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
- keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
- keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
- keras_hub/src/models/gemma/gemma_presets.py +248 -0
- keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
- keras_hub/src/models/gemma/rms_normalization.py +40 -0
- keras_hub/src/models/gpt2/__init__.py +20 -0
- keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
- keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
- keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
- keras_hub/src/models/image_classifier.py +90 -0
- keras_hub/src/models/llama/__init__.py +20 -0
- keras_hub/src/models/llama/llama_attention.py +225 -0
- keras_hub/src/models/llama/llama_backbone.py +188 -0
- keras_hub/src/models/llama/llama_causal_lm.py +327 -0
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
- keras_hub/src/models/llama/llama_decoder.py +246 -0
- keras_hub/src/models/llama/llama_layernorm.py +48 -0
- keras_hub/src/models/llama/llama_preprocessor.py +189 -0
- keras_hub/src/models/llama/llama_presets.py +80 -0
- keras_hub/src/models/llama/llama_tokenizer.py +84 -0
- keras_hub/src/models/llama3/__init__.py +20 -0
- keras_hub/src/models/llama3/llama3_backbone.py +84 -0
- keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
- keras_hub/src/models/llama3/llama3_presets.py +69 -0
- keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
- keras_hub/src/models/masked_lm.py +101 -0
- keras_hub/src/models/mistral/__init__.py +20 -0
- keras_hub/src/models/mistral/mistral_attention.py +238 -0
- keras_hub/src/models/mistral/mistral_backbone.py +203 -0
- keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
- keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
- keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
- keras_hub/src/models/mistral/mistral_presets.py +48 -0
- keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
- keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
- keras_hub/src/models/mix_transformer/__init__.py +13 -0
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
- keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
- keras_hub/src/models/opt/__init__.py +20 -0
- keras_hub/src/models/opt/opt_backbone.py +173 -0
- keras_hub/src/models/opt/opt_causal_lm.py +301 -0
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
- keras_hub/src/models/opt/opt_preprocessor.py +188 -0
- keras_hub/src/models/opt/opt_presets.py +72 -0
- keras_hub/src/models/opt/opt_tokenizer.py +116 -0
- keras_hub/src/models/pali_gemma/__init__.py +23 -0
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
- keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
- keras_hub/src/models/phi3/__init__.py +20 -0
- keras_hub/src/models/phi3/phi3_attention.py +260 -0
- keras_hub/src/models/phi3/phi3_backbone.py +224 -0
- keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/phi3/phi3_decoder.py +260 -0
- keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
- keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
- keras_hub/src/models/phi3/phi3_presets.py +50 -0
- keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
- keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
- keras_hub/src/models/preprocessor.py +207 -0
- keras_hub/src/models/resnet/__init__.py +13 -0
- keras_hub/src/models/resnet/resnet_backbone.py +612 -0
- keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
- keras_hub/src/models/roberta/__init__.py +20 -0
- keras_hub/src/models/roberta/roberta_backbone.py +184 -0
- keras_hub/src/models/roberta/roberta_classifier.py +209 -0
- keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
- keras_hub/src/models/roberta/roberta_presets.py +43 -0
- keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
- keras_hub/src/models/seq_2_seq_lm.py +54 -0
- keras_hub/src/models/t5/__init__.py +20 -0
- keras_hub/src/models/t5/t5_backbone.py +261 -0
- keras_hub/src/models/t5/t5_layer_norm.py +35 -0
- keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
- keras_hub/src/models/t5/t5_presets.py +95 -0
- keras_hub/src/models/t5/t5_tokenizer.py +100 -0
- keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
- keras_hub/src/models/task.py +419 -0
- keras_hub/src/models/vgg/__init__.py +13 -0
- keras_hub/src/models/vgg/vgg_backbone.py +158 -0
- keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
- keras_hub/src/models/vit_det/__init__.py +13 -0
- keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
- keras_hub/src/models/vit_det/vit_layers.py +565 -0
- keras_hub/src/models/whisper/__init__.py +20 -0
- keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
- keras_hub/src/models/whisper/whisper_backbone.py +305 -0
- keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
- keras_hub/src/models/whisper/whisper_decoder.py +141 -0
- keras_hub/src/models/whisper/whisper_encoder.py +106 -0
- keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
- keras_hub/src/models/whisper/whisper_presets.py +148 -0
- keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
- keras_hub/src/models/xlm_roberta/__init__.py +26 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
- keras_hub/src/models/xlnet/__init__.py +13 -0
- keras_hub/src/models/xlnet/relative_attention.py +459 -0
- keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
- keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
- keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
- keras_hub/src/samplers/__init__.py +13 -0
- keras_hub/src/samplers/beam_sampler.py +207 -0
- keras_hub/src/samplers/contrastive_sampler.py +231 -0
- keras_hub/src/samplers/greedy_sampler.py +50 -0
- keras_hub/src/samplers/random_sampler.py +77 -0
- keras_hub/src/samplers/sampler.py +237 -0
- keras_hub/src/samplers/serialization.py +97 -0
- keras_hub/src/samplers/top_k_sampler.py +92 -0
- keras_hub/src/samplers/top_p_sampler.py +113 -0
- keras_hub/src/tests/__init__.py +13 -0
- keras_hub/src/tests/test_case.py +608 -0
- keras_hub/src/tokenizers/__init__.py +13 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
- keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
- keras_hub/src/tokenizers/tokenizer.py +235 -0
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
- keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
- keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
- keras_hub/src/utils/__init__.py +13 -0
- keras_hub/src/utils/keras_utils.py +130 -0
- keras_hub/src/utils/pipeline_model.py +293 -0
- keras_hub/src/utils/preset_utils.py +621 -0
- keras_hub/src/utils/python_utils.py +21 -0
- keras_hub/src/utils/tensor_utils.py +206 -0
- keras_hub/src/utils/timm/__init__.py +13 -0
- keras_hub/src/utils/timm/convert.py +37 -0
- keras_hub/src/utils/timm/convert_resnet.py +171 -0
- keras_hub/src/utils/transformers/__init__.py +13 -0
- keras_hub/src/utils/transformers/convert.py +101 -0
- keras_hub/src/utils/transformers/convert_bert.py +173 -0
- keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
- keras_hub/src/utils/transformers/convert_gemma.py +187 -0
- keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
- keras_hub/src/utils/transformers/convert_llama3.py +136 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
- keras_hub/src/version_utils.py +23 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,173 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
import keras
|
17
|
+
|
18
|
+
from keras_hub.src.api_export import keras_hub_export
|
19
|
+
from keras_hub.src.layers.modeling.token_and_position_embedding import (
|
20
|
+
TokenAndPositionEmbedding,
|
21
|
+
)
|
22
|
+
from keras_hub.src.layers.modeling.transformer_decoder import TransformerDecoder
|
23
|
+
from keras_hub.src.models.backbone import Backbone
|
24
|
+
|
25
|
+
|
26
|
+
def opt_kernel_initializer(stddev=0.02):
|
27
|
+
return keras.initializers.TruncatedNormal(stddev=stddev)
|
28
|
+
|
29
|
+
|
30
|
+
@keras_hub_export("keras_hub.models.OPTBackbone")
|
31
|
+
class OPTBackbone(Backbone):
|
32
|
+
"""An OPT decoder network.
|
33
|
+
|
34
|
+
This class implements a Transformer-based decoder model as described in
|
35
|
+
["OPT: Open Pre-trained Transformer Language Models"](https://arxiv.org/abs/2205.01068).
|
36
|
+
The default constructor gives a fully customizable, randomly initialized OPT
|
37
|
+
model with any number of layers, heads, and embedding dimensions. To load
|
38
|
+
preset architectures and weights, use the `from_preset()` constructor.
|
39
|
+
|
40
|
+
Disclaimer: Pre-trained models are provided on an "as is" basis, without
|
41
|
+
warranties or conditions of any kind. The underlying model is provided by a
|
42
|
+
third party and subject to a separate license, available
|
43
|
+
[here](https://github.com/facebookresearch/fairseq/).
|
44
|
+
|
45
|
+
Args:
|
46
|
+
vocabulary_size: int. The size of the token vocabulary.
|
47
|
+
num_layers: int. The number of transformer decoder layers.
|
48
|
+
num_heads: int. The number of attention heads for each transformer.
|
49
|
+
The hidden size must be divisible by the number of attention heads.
|
50
|
+
hidden_dim: int. The hidden size of the transformer decoder layers.
|
51
|
+
intermediate_dim: int. The output dimension of the first Dense layer in
|
52
|
+
a two-layer feedforward network for each transformer decoder layer.
|
53
|
+
dropout: float. Dropout probability for the Transformer decoder.
|
54
|
+
max_sequence_length: int. The maximum sequence length that this decoder
|
55
|
+
can consume. If `None`, `max_sequence_length` uses the value from
|
56
|
+
sequence length. This determines the variable shape for positional
|
57
|
+
embeddings.
|
58
|
+
dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
|
59
|
+
for model computations and weights. Note that some computations,
|
60
|
+
such as softmax and layer normalization, will always be done at
|
61
|
+
float32 precision regardless of dtype.
|
62
|
+
|
63
|
+
Examples:
|
64
|
+
```python
|
65
|
+
input_data = {
|
66
|
+
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
|
67
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
|
68
|
+
}
|
69
|
+
|
70
|
+
# Pretrained OPT decoder
|
71
|
+
model = keras_hub.models.OPTBackbone.from_preset("opt_125m_en")
|
72
|
+
model(input_data)
|
73
|
+
|
74
|
+
# Randomly initialized OPT decoder model with a custom config
|
75
|
+
model = keras_hub.models.OPTBackbone(
|
76
|
+
vocabulary_size=50265,
|
77
|
+
num_layers=4,
|
78
|
+
num_heads=4,
|
79
|
+
hidden_dim=256,
|
80
|
+
intermediate_dim=512,
|
81
|
+
max_sequence_length=128,
|
82
|
+
)
|
83
|
+
model(input_data)
|
84
|
+
```
|
85
|
+
"""
|
86
|
+
|
87
|
+
def __init__(
|
88
|
+
self,
|
89
|
+
vocabulary_size,
|
90
|
+
num_layers,
|
91
|
+
num_heads,
|
92
|
+
hidden_dim,
|
93
|
+
intermediate_dim,
|
94
|
+
dropout=0.1,
|
95
|
+
max_sequence_length=2048,
|
96
|
+
dtype=None,
|
97
|
+
**kwargs,
|
98
|
+
):
|
99
|
+
# === Layers ===
|
100
|
+
self.embeddings = TokenAndPositionEmbedding(
|
101
|
+
vocabulary_size=vocabulary_size,
|
102
|
+
sequence_length=max_sequence_length,
|
103
|
+
embedding_dim=hidden_dim,
|
104
|
+
embeddings_initializer=opt_kernel_initializer(),
|
105
|
+
dtype=dtype,
|
106
|
+
name="embeddings",
|
107
|
+
)
|
108
|
+
self.token_embedding = self.embeddings.token_embedding
|
109
|
+
self.transformer_layers = []
|
110
|
+
for i in range(num_layers):
|
111
|
+
layer = TransformerDecoder(
|
112
|
+
intermediate_dim=intermediate_dim,
|
113
|
+
num_heads=num_heads,
|
114
|
+
dropout=dropout,
|
115
|
+
activation="relu",
|
116
|
+
layer_norm_epsilon=1e-5,
|
117
|
+
normalize_first=True,
|
118
|
+
kernel_initializer=opt_kernel_initializer(),
|
119
|
+
dtype=dtype,
|
120
|
+
name=f"transformer_layer_{i}",
|
121
|
+
)
|
122
|
+
self.transformer_layers.append(layer)
|
123
|
+
self.layer_norm = keras.layers.LayerNormalization(
|
124
|
+
axis=-1,
|
125
|
+
epsilon=1e-5,
|
126
|
+
dtype=dtype,
|
127
|
+
name="layer_norm",
|
128
|
+
)
|
129
|
+
|
130
|
+
# === Functional Model ===
|
131
|
+
token_id_input = keras.Input(
|
132
|
+
shape=(None,), dtype="int32", name="token_ids"
|
133
|
+
)
|
134
|
+
padding_mask_input = keras.Input(
|
135
|
+
shape=(None,), dtype="int32", name="padding_mask"
|
136
|
+
)
|
137
|
+
x = self.embeddings(token_id_input)
|
138
|
+
for transformer_layer in self.transformer_layers:
|
139
|
+
x = transformer_layer(x, decoder_padding_mask=padding_mask_input)
|
140
|
+
x = self.layer_norm(x)
|
141
|
+
super().__init__(
|
142
|
+
inputs={
|
143
|
+
"token_ids": token_id_input,
|
144
|
+
"padding_mask": padding_mask_input,
|
145
|
+
},
|
146
|
+
outputs=x,
|
147
|
+
dtype=dtype,
|
148
|
+
**kwargs,
|
149
|
+
)
|
150
|
+
|
151
|
+
# === Config ===
|
152
|
+
self.vocabulary_size = vocabulary_size
|
153
|
+
self.num_layers = num_layers
|
154
|
+
self.num_heads = num_heads
|
155
|
+
self.hidden_dim = hidden_dim
|
156
|
+
self.intermediate_dim = intermediate_dim
|
157
|
+
self.dropout = dropout
|
158
|
+
self.max_sequence_length = max_sequence_length
|
159
|
+
|
160
|
+
def get_config(self):
|
161
|
+
config = super().get_config()
|
162
|
+
config.update(
|
163
|
+
{
|
164
|
+
"vocabulary_size": self.vocabulary_size,
|
165
|
+
"num_layers": self.num_layers,
|
166
|
+
"num_heads": self.num_heads,
|
167
|
+
"hidden_dim": self.hidden_dim,
|
168
|
+
"intermediate_dim": self.intermediate_dim,
|
169
|
+
"dropout": self.dropout,
|
170
|
+
"max_sequence_length": self.max_sequence_length,
|
171
|
+
}
|
172
|
+
)
|
173
|
+
return config
|
@@ -0,0 +1,301 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
from keras import ops
|
17
|
+
|
18
|
+
from keras_hub.src.api_export import keras_hub_export
|
19
|
+
from keras_hub.src.models.causal_lm import CausalLM
|
20
|
+
from keras_hub.src.models.opt.opt_backbone import OPTBackbone
|
21
|
+
from keras_hub.src.models.opt.opt_causal_lm_preprocessor import (
|
22
|
+
OPTCausalLMPreprocessor,
|
23
|
+
)
|
24
|
+
from keras_hub.src.utils.tensor_utils import any_equal
|
25
|
+
|
26
|
+
|
27
|
+
@keras_hub_export("keras_hub.models.OPTCausalLM")
|
28
|
+
class OPTCausalLM(CausalLM):
|
29
|
+
"""An end-to-end OPT model for causal language modeling.
|
30
|
+
|
31
|
+
A causal language model (LM) predicts the next token based on previous
|
32
|
+
tokens. This task setup can be used to train the model unsupervised on
|
33
|
+
plain text input, or to autoregressively generate plain text similar to
|
34
|
+
the data used for training. This task can be used for pre-training or
|
35
|
+
fine-tuning a GPT-2 model, simply by calling `fit()`.
|
36
|
+
|
37
|
+
This model has a `generate()` method, which generates text based on a
|
38
|
+
prompt. The generation strategy used is controlled by an additional
|
39
|
+
`sampler` argument on `compile()`. You can recompile the model with
|
40
|
+
different `keras_hub.samplers` objects to control the generation. By
|
41
|
+
default, `"top_k"` sampling will be used.
|
42
|
+
|
43
|
+
This model can optionally be configured with a `preprocessor` layer, in
|
44
|
+
which case it will automatically apply preprocessing to string inputs during
|
45
|
+
`fit()`, `predict()`, `evaluate()` and `generate()`. This is done by default
|
46
|
+
when creating the model with `from_preset()`.
|
47
|
+
|
48
|
+
Disclaimer: Pre-trained models are provided on an "as is" basis, without
|
49
|
+
warranties or conditions of any kind. The underlying model is provided by a
|
50
|
+
third party and subject to a separate license, available
|
51
|
+
[here](https://github.com/facebookresearch/fairseq/).
|
52
|
+
|
53
|
+
Args:
|
54
|
+
backbone: A `keras_hub.models.OPTBackbone` instance.
|
55
|
+
preprocessor: A `keras_hub.models.OPTCausalLMPreprocessor` or `None`.
|
56
|
+
If `None`, this model will not apply preprocessing, and inputs
|
57
|
+
should be preprocessed before calling the model.
|
58
|
+
|
59
|
+
Examples:
|
60
|
+
|
61
|
+
Use `generate()` to do text generation.
|
62
|
+
```python
|
63
|
+
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_125m_en")
|
64
|
+
opt_lm.generate("I want to say", max_length=30)
|
65
|
+
|
66
|
+
# Generate with batched prompts.
|
67
|
+
opt_lm.generate(["This is a", "Where are you"], max_length=30)
|
68
|
+
```
|
69
|
+
|
70
|
+
Compile the `generate()` function with a custom sampler.
|
71
|
+
```python
|
72
|
+
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_125m_en")
|
73
|
+
opt_lm.compile(sampler="greedy")
|
74
|
+
opt_lm.generate("I want to say", max_length=30)
|
75
|
+
|
76
|
+
opt_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
|
77
|
+
opt_lm.generate("I want to say", max_length=30)
|
78
|
+
```
|
79
|
+
|
80
|
+
Use `generate()` without preprocessing.
|
81
|
+
```python
|
82
|
+
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
|
83
|
+
# Use `"padding_mask"` to indicate values that should not be overridden.
|
84
|
+
prompt = {
|
85
|
+
"token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
|
86
|
+
"padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
|
87
|
+
}
|
88
|
+
|
89
|
+
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
|
90
|
+
"opt_125m_en",
|
91
|
+
preprocessor=None,
|
92
|
+
)
|
93
|
+
opt_lm.generate(prompt)
|
94
|
+
```
|
95
|
+
|
96
|
+
Call `fit()` on a single batch.
|
97
|
+
```python
|
98
|
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
99
|
+
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_125m_en")
|
100
|
+
opt_lm.fit(x=features, batch_size=2)
|
101
|
+
```
|
102
|
+
|
103
|
+
Call `fit()` without preprocessing.
|
104
|
+
```python
|
105
|
+
x = {
|
106
|
+
"token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
|
107
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
|
108
|
+
}
|
109
|
+
y = np.array([[2, 3, 4, 5, 0]] * 2)
|
110
|
+
sw = np.array([[1, 1, 1, 1, 1]] * 2)
|
111
|
+
|
112
|
+
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
|
113
|
+
"opt_base_en",
|
114
|
+
preprocessor=None,
|
115
|
+
)
|
116
|
+
opt_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
|
117
|
+
```
|
118
|
+
|
119
|
+
Custom backbone and vocabulary.
|
120
|
+
```python
|
121
|
+
features = ["a quick fox.", "a fox quick."]
|
122
|
+
vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
|
123
|
+
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
|
124
|
+
merges += ["Ġ f", "o x", "Ġf ox"]
|
125
|
+
|
126
|
+
tokenizer = keras_hub.models.OPTTokenizer(
|
127
|
+
vocabulary=vocab,
|
128
|
+
merges=merges,
|
129
|
+
)
|
130
|
+
preprocessor = keras_hub.models.OPTCausalLMPreprocessor(
|
131
|
+
tokenizer=tokenizer,
|
132
|
+
sequence_length=128,
|
133
|
+
)
|
134
|
+
model = keras_hub.models.OPTBackbone(
|
135
|
+
vocabulary_size=50265,
|
136
|
+
num_layers=4,
|
137
|
+
num_heads=4,
|
138
|
+
hidden_dim=256,
|
139
|
+
intermediate_dim=512,
|
140
|
+
max_sequence_length=128,
|
141
|
+
)
|
142
|
+
opt_lm = keras_hub.models.OPTCausalLM(
|
143
|
+
backbone=backbone,
|
144
|
+
preprocessor=preprocessor,
|
145
|
+
)
|
146
|
+
opt_lm.fit(x=features, batch_size=2)
|
147
|
+
```
|
148
|
+
"""
|
149
|
+
|
150
|
+
backbone_cls = OPTBackbone
|
151
|
+
preprocessor_cls = OPTCausalLMPreprocessor
|
152
|
+
|
153
|
+
def __init__(
|
154
|
+
self,
|
155
|
+
backbone,
|
156
|
+
preprocessor=None,
|
157
|
+
**kwargs,
|
158
|
+
):
|
159
|
+
# === Layers ===
|
160
|
+
self.backbone = backbone
|
161
|
+
self.preprocessor = preprocessor
|
162
|
+
|
163
|
+
# === Functional Model ===
|
164
|
+
inputs = backbone.input
|
165
|
+
hidden_states = backbone(inputs)
|
166
|
+
outputs = backbone.token_embedding(hidden_states, reverse=True)
|
167
|
+
super().__init__(
|
168
|
+
inputs=inputs,
|
169
|
+
outputs=outputs,
|
170
|
+
**kwargs,
|
171
|
+
)
|
172
|
+
|
173
|
+
def call_with_cache(
|
174
|
+
self,
|
175
|
+
token_ids,
|
176
|
+
cache,
|
177
|
+
cache_update_index,
|
178
|
+
):
|
179
|
+
"""Forward pass of `OPTCausalLM` with cache.
|
180
|
+
|
181
|
+
`call_with_cache` adds an additional forward pass for the model for
|
182
|
+
autoregressive inference. Unlike calling the model directly, this method
|
183
|
+
allows caching previous key/value Tensors in multi-head attention layer,
|
184
|
+
and avoids recomputing the outputs of seen tokens.
|
185
|
+
|
186
|
+
Args:
|
187
|
+
token_ids: a dense int Tensor with shape `(batch_size, max_length)`.
|
188
|
+
cache: a dense float Tensor, the cache of key and value.
|
189
|
+
cache_update_index: int, or int Tensor. The index of current inputs in the
|
190
|
+
whole sequence.
|
191
|
+
|
192
|
+
Returns:
|
193
|
+
A (logits, hidden_states, cache) tuple. Where `logits` is the
|
194
|
+
language model logits for the input token_ids, `hidden_states` is
|
195
|
+
the final hidden representation of the input tokens, and `cache` is
|
196
|
+
the decoding cache.
|
197
|
+
"""
|
198
|
+
x = self.backbone.embeddings(token_ids, start_index=cache_update_index)
|
199
|
+
# Each decoder layer has a cache; we update them separately.
|
200
|
+
caches = []
|
201
|
+
for i, transformer_layer in enumerate(self.backbone.transformer_layers):
|
202
|
+
current_cache = cache[:, i, ...]
|
203
|
+
x, next_cache = transformer_layer(
|
204
|
+
x,
|
205
|
+
self_attention_cache=current_cache,
|
206
|
+
self_attention_cache_update_index=cache_update_index,
|
207
|
+
)
|
208
|
+
caches.append(next_cache)
|
209
|
+
cache = ops.stack(caches, axis=1)
|
210
|
+
x = self.backbone.layer_norm(x)
|
211
|
+
hidden_states = x
|
212
|
+
logits = self.backbone.token_embedding(hidden_states, reverse=True)
|
213
|
+
return logits, hidden_states, cache
|
214
|
+
|
215
|
+
def _build_cache(self, token_ids):
|
216
|
+
"""Build an empty cache for use with `call_with_cache()`."""
|
217
|
+
batch_size = ops.shape(token_ids)[0]
|
218
|
+
max_length = ops.shape(token_ids)[1]
|
219
|
+
num_layers = self.backbone.num_layers
|
220
|
+
num_heads = self.backbone.num_heads
|
221
|
+
head_dim = self.backbone.hidden_dim // self.backbone.num_heads
|
222
|
+
shape = [batch_size, num_layers, 2, max_length, num_heads, head_dim]
|
223
|
+
cache = ops.zeros(shape, dtype=self.compute_dtype)
|
224
|
+
# Seed the cache.
|
225
|
+
_, hidden_states, cache = self.call_with_cache(token_ids, cache, 0)
|
226
|
+
return hidden_states, cache
|
227
|
+
|
228
|
+
def generate_step(
|
229
|
+
self,
|
230
|
+
inputs,
|
231
|
+
stop_token_ids=None,
|
232
|
+
):
|
233
|
+
"""A compilable generation function for a single batch of inputs.
|
234
|
+
|
235
|
+
This function represents the inner, XLA-compilable, generation function
|
236
|
+
for a single batch of inputs. Inputs should have the same structure as
|
237
|
+
model inputs, a dictionary with keys `"token_ids"` and `"padding_mask"`.
|
238
|
+
|
239
|
+
Args:
|
240
|
+
inputs: A dictionary with two keys `"token_ids"` and
|
241
|
+
`"padding_mask"` and batched tensor values.
|
242
|
+
stop_token_ids: Tuple of id's of end token's to stop on. If all
|
243
|
+
sequences have produced a new stop token, generation
|
244
|
+
will stop.
|
245
|
+
"""
|
246
|
+
token_ids, padding_mask = inputs["token_ids"], inputs["padding_mask"]
|
247
|
+
# Create and seed cache with a single forward pass.
|
248
|
+
hidden_states, cache = self._build_cache(token_ids)
|
249
|
+
# Compute the lengths of all user inputted tokens ids.
|
250
|
+
row_lengths = ops.sum(ops.cast(padding_mask, "int32"), axis=-1)
|
251
|
+
# Start at the first index that has no user inputted id.
|
252
|
+
index = ops.min(row_lengths)
|
253
|
+
|
254
|
+
def next(prompt, cache, index):
|
255
|
+
# The cache index is the index of our previous token.
|
256
|
+
cache_update_index = index - 1
|
257
|
+
batch_size = ops.shape(prompt)[0]
|
258
|
+
prompt = ops.slice(prompt, [0, cache_update_index], [batch_size, 1])
|
259
|
+
logits, hidden_states, cache = self.call_with_cache(
|
260
|
+
prompt,
|
261
|
+
cache,
|
262
|
+
cache_update_index,
|
263
|
+
)
|
264
|
+
return (
|
265
|
+
ops.squeeze(logits, axis=1),
|
266
|
+
ops.squeeze(hidden_states, axis=1),
|
267
|
+
cache,
|
268
|
+
)
|
269
|
+
|
270
|
+
token_ids = self.sampler(
|
271
|
+
next=next,
|
272
|
+
prompt=token_ids,
|
273
|
+
cache=cache,
|
274
|
+
index=index,
|
275
|
+
mask=padding_mask,
|
276
|
+
stop_token_ids=stop_token_ids,
|
277
|
+
hidden_states=hidden_states,
|
278
|
+
model=self,
|
279
|
+
)
|
280
|
+
|
281
|
+
# Compute an output padding mask with the token ids we updated.
|
282
|
+
if stop_token_ids is not None:
|
283
|
+
# Build a mask of stop token locations not in the original
|
284
|
+
# prompt (not in locations where `padding_mask` is True).
|
285
|
+
end_locations = any_equal(
|
286
|
+
token_ids, stop_token_ids, ops.logical_not(padding_mask)
|
287
|
+
)
|
288
|
+
|
289
|
+
end_locations = ops.cast(end_locations, "int32")
|
290
|
+
# Use cumsum to get ones in all locations after end_locations.
|
291
|
+
cumsum = ops.cast(ops.cumsum(end_locations, axis=-1), "int32")
|
292
|
+
overflow = cumsum - end_locations
|
293
|
+
# Our padding mask is the inverse of these overflow locations.
|
294
|
+
padding_mask = ops.logical_not(ops.cast(overflow, "bool"))
|
295
|
+
else:
|
296
|
+
# Without early stopping, all locations will have been updated.
|
297
|
+
padding_mask = ops.ones_like(token_ids, dtype="bool")
|
298
|
+
return {
|
299
|
+
"token_ids": token_ids,
|
300
|
+
"padding_mask": padding_mask,
|
301
|
+
}
|
@@ -0,0 +1,177 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import keras
|
16
|
+
from absl import logging
|
17
|
+
|
18
|
+
from keras_hub.src.api_export import keras_hub_export
|
19
|
+
from keras_hub.src.models.opt.opt_preprocessor import OPTPreprocessor
|
20
|
+
from keras_hub.src.utils.keras_utils import (
|
21
|
+
convert_inputs_to_list_of_tensor_segments,
|
22
|
+
)
|
23
|
+
from keras_hub.src.utils.tensor_utils import strip_to_ragged
|
24
|
+
|
25
|
+
|
26
|
+
@keras_hub_export("keras_hub.models.OPTCausalLMPreprocessor")
|
27
|
+
class OPTCausalLMPreprocessor(OPTPreprocessor):
|
28
|
+
"""OPT Causal LM preprocessor.
|
29
|
+
|
30
|
+
This preprocessing layer is primarily meant to be used with
|
31
|
+
`keras_hub.models.OPTCausalLM`. By default, it will take in batches of
|
32
|
+
strings, and return outputs in a `(x, y, sample_weight)` format, where the
|
33
|
+
`y` label is the next token id in the `x` sequence. For use with generation,
|
34
|
+
pass `return_labels=False` in which case the output will simply be the
|
35
|
+
encoded string features.
|
36
|
+
|
37
|
+
Args:
|
38
|
+
tokenizer: A `keras_hub.models.OPTTokenizer` instance.
|
39
|
+
sequence_length: The length of the packed inputs.
|
40
|
+
add_start_token: If `True`, the preprocessor will prepend the tokenizer
|
41
|
+
start token to each input sequence.
|
42
|
+
add_end_token: If `True`, the preprocessor will append the tokenizer
|
43
|
+
end token to each input sequence.
|
44
|
+
|
45
|
+
Call arguments:
|
46
|
+
x: A string, `tf.Tensor` or list of python strings.
|
47
|
+
y: Label data. Should always be `None` as the layer generates labels.
|
48
|
+
sample_weight: Label weights. Should always be `None` as the layer
|
49
|
+
generates label weights.
|
50
|
+
sequence_length: Pass to override the configured `sequence_length` of
|
51
|
+
the layer.
|
52
|
+
add_start_token: Pass to override the configured value of
|
53
|
+
`add_start_token` on the layer.
|
54
|
+
add_end_token: Pass to override the configured value of
|
55
|
+
`add_end_token` on the layer.
|
56
|
+
return_labels: If `True`, the output `"token_ids"` will be offset by one
|
57
|
+
and returned as labels. If `False` only features will be returned.
|
58
|
+
|
59
|
+
Examples:
|
60
|
+
```python
|
61
|
+
# Load the preprocessor from a preset.
|
62
|
+
preprocessor = keras_hub.models.OPTCausalLMPreprocessor.from_preset(
|
63
|
+
"opt_125m_en"
|
64
|
+
)
|
65
|
+
|
66
|
+
# Tokenize and pack a single sentence.
|
67
|
+
sentence = tf.constant("League of legends")
|
68
|
+
preprocessor(sentence)
|
69
|
+
# Same output.
|
70
|
+
preprocessor("League of legends")
|
71
|
+
|
72
|
+
# Tokenize a batch of sentences.
|
73
|
+
sentences = tf.constant(["Taco tuesday", "Fish taco please!"])
|
74
|
+
preprocessor(sentences)
|
75
|
+
# Same output.
|
76
|
+
preprocessor(["Taco tuesday", "Fish taco please!"])
|
77
|
+
|
78
|
+
# Map a dataset to preprocess a single sentence.
|
79
|
+
features = tf.constant(
|
80
|
+
[
|
81
|
+
"Avatar 2 is amazing!",
|
82
|
+
"Well, I am not sure.",
|
83
|
+
]
|
84
|
+
)
|
85
|
+
labels = tf.constant([1, 0])
|
86
|
+
ds = tf.data.Dataset.from_tensor_slices((features, labels))
|
87
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
88
|
+
|
89
|
+
# Map a dataset to preprocess unlabled sentences.
|
90
|
+
ds = tf.data.Dataset.from_tensor_slices(features)
|
91
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
92
|
+
```
|
93
|
+
"""
|
94
|
+
|
95
|
+
def call(
|
96
|
+
self,
|
97
|
+
x,
|
98
|
+
y=None,
|
99
|
+
sample_weight=None,
|
100
|
+
sequence_length=None,
|
101
|
+
):
|
102
|
+
if y is not None or sample_weight is not None:
|
103
|
+
logging.warning(
|
104
|
+
"`GPT2CausalLMPreprocessor` generates `y` and `sample_weight` "
|
105
|
+
"based on your input data, but your data already contains `y` "
|
106
|
+
"or `sample_weight`. Your `y` and `sample_weight` will be "
|
107
|
+
"ignored."
|
108
|
+
)
|
109
|
+
sequence_length = sequence_length or self.sequence_length
|
110
|
+
|
111
|
+
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
112
|
+
x = self.tokenizer(x)
|
113
|
+
# Pad with one extra token to account for the truncation below.
|
114
|
+
token_ids, padding_mask = self.packer(
|
115
|
+
x,
|
116
|
+
sequence_length=sequence_length + 1,
|
117
|
+
add_start_value=self.add_start_token,
|
118
|
+
add_end_value=self.add_end_token,
|
119
|
+
)
|
120
|
+
# The last token does not have a next token, so we truncate it out.
|
121
|
+
x = {
|
122
|
+
"token_ids": token_ids[..., :-1],
|
123
|
+
"padding_mask": padding_mask[..., :-1],
|
124
|
+
}
|
125
|
+
# Target `y` will be the next token.
|
126
|
+
y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
|
127
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
128
|
+
|
129
|
+
def generate_preprocess(
|
130
|
+
self,
|
131
|
+
x,
|
132
|
+
sequence_length=None,
|
133
|
+
):
|
134
|
+
"""Convert strings to integer token input for generation.
|
135
|
+
|
136
|
+
Similar to calling the layer for training, this method takes in strings
|
137
|
+
or tensor strings, tokenizes and packs the input, and computes a padding
|
138
|
+
mask masking all inputs not filled in with a padded value.
|
139
|
+
|
140
|
+
Unlike calling the layer for training, this method does not compute
|
141
|
+
labels and will never append a `tokenizer.end_token_id` to the end of
|
142
|
+
the sequence (as generation is expected to continue at the end of the
|
143
|
+
inputted prompt).
|
144
|
+
"""
|
145
|
+
if not self.built:
|
146
|
+
self.build(None)
|
147
|
+
|
148
|
+
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
149
|
+
x = self.tokenizer(x)
|
150
|
+
token_ids, padding_mask = self.packer(
|
151
|
+
x, sequence_length=sequence_length, add_end_value=False
|
152
|
+
)
|
153
|
+
return {
|
154
|
+
"token_ids": token_ids,
|
155
|
+
"padding_mask": padding_mask,
|
156
|
+
}
|
157
|
+
|
158
|
+
def generate_postprocess(
|
159
|
+
self,
|
160
|
+
x,
|
161
|
+
):
|
162
|
+
"""Convert integer token output to strings for generation.
|
163
|
+
|
164
|
+
This method reverses `generate_preprocess()`, by first removing all
|
165
|
+
padding and start/end tokens, and then converting the integer sequence
|
166
|
+
back to a string.
|
167
|
+
"""
|
168
|
+
if not self.built:
|
169
|
+
self.build(None)
|
170
|
+
|
171
|
+
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
|
172
|
+
ids_to_strip = (
|
173
|
+
self.tokenizer.end_token_id,
|
174
|
+
self.tokenizer.pad_token_id,
|
175
|
+
)
|
176
|
+
token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
|
177
|
+
return self.tokenizer.detokenize(token_ids)
|