keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,262 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import keras
17
+ from absl import logging
18
+
19
+ from keras_hub.src.api_export import keras_hub_export
20
+ from keras_hub.src.models.bart.bart_preprocessor import BartPreprocessor
21
+ from keras_hub.src.utils.keras_utils import (
22
+ convert_inputs_to_list_of_tensor_segments,
23
+ )
24
+ from keras_hub.src.utils.tensor_utils import strip_to_ragged
25
+
26
+ try:
27
+ import tensorflow as tf
28
+ except ImportError:
29
+ tf = None
30
+
31
+
32
+ @keras_hub_export("keras_hub.models.BartSeq2SeqLMPreprocessor")
33
+ class BartSeq2SeqLMPreprocessor(BartPreprocessor):
34
+ """BART Seq2Seq LM preprocessor.
35
+
36
+ This layer is used as preprocessor for seq2seq tasks using the BART model.
37
+ This class subclasses `keras_hub.models.BartPreprocessor` and keeps most of
38
+ its functionality. It has two changes from the superclass:
39
+
40
+ 1. Sets the `y` (label) and `sample_weights` fields by shifting the
41
+ decoder input sequence one step towards the left. Both these fields are
42
+ inferred internally, and any passed values will be ignored.
43
+ 2. Drops the last token from the decoder input sequence as it does not have
44
+ a successor.
45
+
46
+ Args:
47
+ tokenizer: A `keras_hub.models.BartTokenizer` instance.
48
+ encoder_sequence_length: The length of the packed encoder inputs.
49
+ decoder_sequence_length: The length of the packed decoder inputs.
50
+
51
+ Call arguments:
52
+ x: A dictionary with `encoder_text` and `decoder_text` as its keys.
53
+ Each value in the dictionary should be a tensor of single string
54
+ sequences. Inputs may be batched or unbatched. Raw python inputs
55
+ will be converted to tensors.
56
+ y: Label data. Should always be `None` as the layer generates labels by
57
+ shifting the decoder input sequence one step to the left.
58
+ sample_weight: Label weights. Should always be `None` as the layer
59
+ generates label weights by shifting the padding mask one step to the
60
+ left.
61
+
62
+ Examples:
63
+
64
+ Directly calling the layer on data
65
+ ```python
66
+ preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
67
+
68
+ # Preprocess unbatched inputs.
69
+ inputs = {
70
+ "encoder_text": "The fox was sleeping.",
71
+ "decoder_text": "The fox was awake."
72
+ }
73
+ preprocessor(inputs)
74
+
75
+ # Preprocess batched inputs.
76
+ inputs = {
77
+ "encoder_text": ["The fox was sleeping.", "The lion was quiet."],
78
+ "decoder_text": ["The fox was awake.", "The lion was roaring."]
79
+ }
80
+ preprocessor(inputs)
81
+
82
+ # Custom vocabulary.
83
+ vocab = {
84
+ "<s>": 0,
85
+ "<pad>": 1,
86
+ "</s>": 2,
87
+ "Ġafter": 5,
88
+ "noon": 6,
89
+ "Ġsun": 7,
90
+ }
91
+ merges = ["Ġ a", "Ġ s", "Ġ n", "e r", "n o", "o n", "Ġs u", "Ġa f", "no on"]
92
+ merges += ["Ġsu n", "Ġaf t", "Ġaft er"]
93
+
94
+ tokenizer = keras_hub.models.BartTokenizer(
95
+ vocabulary=vocab,
96
+ merges=merges,
97
+ )
98
+ preprocessor = keras_hub.models.BartPreprocessor(
99
+ tokenizer=tokenizer,
100
+ encoder_sequence_length=20,
101
+ decoder_sequence_length=10,
102
+ )
103
+ inputs = {
104
+ "encoder_text": "The fox was sleeping.",
105
+ "decoder_text": "The fox was awake."
106
+ }
107
+ preprocessor(inputs)
108
+ ```
109
+
110
+ Mapping with `tf.data.Dataset`.
111
+ ```python
112
+ preprocessor = keras_hub.models.BartPreprocessor.from_preset("bart_base_en")
113
+
114
+ # Map single sentences.
115
+ features = {
116
+ "encoder_text": tf.constant(
117
+ ["The fox was sleeping.", "The lion was quiet."]
118
+ ),
119
+ "decoder_text": tf.constant(
120
+ ["The fox was awake.", "The lion was roaring."]
121
+ )
122
+ }
123
+ ds = tf.data.Dataset.from_tensor_slices(features)
124
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
125
+ ```
126
+ """
127
+
128
+ def call(
129
+ self,
130
+ x,
131
+ y=None,
132
+ sample_weight=None,
133
+ *,
134
+ encoder_sequence_length=None,
135
+ decoder_sequence_length=None,
136
+ # `sequence_length` is an alias for `decoder_sequence_length`
137
+ sequence_length=None,
138
+ ):
139
+ if y is not None or sample_weight is not None:
140
+ logging.warning(
141
+ "`BartSeq2SeqLMPreprocessor` infers `y` and `sample_weight` "
142
+ "from the provided input data, i.e., `x`. However, non-`None`"
143
+ "values have been passed for `y` or `sample_weight` or both. "
144
+ "These values will be ignored."
145
+ )
146
+
147
+ if encoder_sequence_length is None:
148
+ encoder_sequence_length = self.encoder_sequence_length
149
+ decoder_sequence_length = decoder_sequence_length or sequence_length
150
+ if decoder_sequence_length is None:
151
+ decoder_sequence_length = self.decoder_sequence_length
152
+
153
+ x = super().call(
154
+ x,
155
+ encoder_sequence_length=encoder_sequence_length,
156
+ decoder_sequence_length=decoder_sequence_length + 1,
157
+ )
158
+ decoder_token_ids = x.pop("decoder_token_ids")
159
+ decoder_padding_mask = x.pop("decoder_padding_mask")
160
+
161
+ # The last token does not have a next token. Hence, we truncate it.
162
+ x = {
163
+ **x,
164
+ "decoder_token_ids": decoder_token_ids[..., :-1],
165
+ "decoder_padding_mask": decoder_padding_mask[..., :-1],
166
+ }
167
+ # Target `y` will be the decoder input sequence shifted one step to the
168
+ # left (i.e., the next token).
169
+ y = decoder_token_ids[..., 1:]
170
+ sample_weight = decoder_padding_mask[..., 1:]
171
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
172
+
173
+ def generate_preprocess(
174
+ self,
175
+ x,
176
+ *,
177
+ encoder_sequence_length=None,
178
+ # `sequence_length` is an alias for `decoder_sequence_length`
179
+ decoder_sequence_length=None,
180
+ sequence_length=None,
181
+ ):
182
+ """Convert encoder and decoder input strings to integer token inputs for generation.
183
+
184
+ Similar to calling the layer for training, this method takes in a dict
185
+ containing `"encoder_text"` and `"decoder_text"`, with strings or tensor
186
+ strings for values, tokenizes and packs the input, and computes a
187
+ padding mask masking all inputs not filled in with a padded value.
188
+
189
+ Unlike calling the layer for training, this method does not compute
190
+ labels and will never append a tokenizer.end_token_id to the end of
191
+ the decoder sequence (as generation is expected to continue at the end
192
+ of the inputted decoder prompt).
193
+ """
194
+ if not self.built:
195
+ self.build(None)
196
+
197
+ if isinstance(x, dict):
198
+ encoder_text = x["encoder_text"]
199
+ decoder_text = x["decoder_text"]
200
+ else:
201
+ encoder_text = x
202
+ # Initialize empty prompt for the decoder.
203
+ decoder_text = tf.fill((tf.shape(encoder_text)[0],), "")
204
+
205
+ if encoder_sequence_length is None:
206
+ encoder_sequence_length = self.encoder_sequence_length
207
+ decoder_sequence_length = decoder_sequence_length or sequence_length
208
+ if decoder_sequence_length is None:
209
+ decoder_sequence_length = self.decoder_sequence_length
210
+
211
+ # Tokenize and pack the encoder inputs.
212
+ # TODO: Remove `[0]` once we have shifted to `MultiSegmentPacker`.
213
+ encoder_text = convert_inputs_to_list_of_tensor_segments(encoder_text)[
214
+ 0
215
+ ]
216
+ encoder_token_ids = self.tokenizer(encoder_text)
217
+ encoder_token_ids, encoder_padding_mask = self.encoder_packer(
218
+ encoder_token_ids,
219
+ sequence_length=encoder_sequence_length,
220
+ )
221
+
222
+ # Tokenize and pack the decoder inputs.
223
+ decoder_text = convert_inputs_to_list_of_tensor_segments(decoder_text)[
224
+ 0
225
+ ]
226
+ decoder_token_ids = self.tokenizer(decoder_text)
227
+ decoder_token_ids, decoder_padding_mask = self.decoder_packer(
228
+ decoder_token_ids,
229
+ sequence_length=decoder_sequence_length,
230
+ add_end_value=False,
231
+ )
232
+
233
+ return {
234
+ "encoder_token_ids": encoder_token_ids,
235
+ "encoder_padding_mask": encoder_padding_mask,
236
+ "decoder_token_ids": decoder_token_ids,
237
+ "decoder_padding_mask": decoder_padding_mask,
238
+ }
239
+
240
+ def generate_postprocess(
241
+ self,
242
+ x,
243
+ ):
244
+ """Convert integer token output to strings for generation.
245
+
246
+ This method reverses `generate_preprocess()`, by first removing all
247
+ padding and start/end tokens, and then converting the integer sequence
248
+ back to a string.
249
+ """
250
+ if not self.built:
251
+ self.build(None)
252
+
253
+ token_ids, padding_mask = (
254
+ x["decoder_token_ids"],
255
+ x["decoder_padding_mask"],
256
+ )
257
+ ids_to_strip = (
258
+ self.tokenizer.start_token_id,
259
+ self.tokenizer.end_token_id,
260
+ )
261
+ token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
262
+ return self.tokenizer.detokenize(token_ids)
@@ -0,0 +1,124 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
18
+
19
+
20
+ @keras_hub_export("keras_hub.models.BartTokenizer")
21
+ class BartTokenizer(BytePairTokenizer):
22
+ """A BART tokenizer using Byte-Pair Encoding subword segmentation.
23
+
24
+ This tokenizer class will tokenize raw strings into integer sequences and
25
+ is based on `keras_hub.tokenizers.BytePairTokenizer`. Unlike the
26
+ underlying tokenizer, it will check for all special tokens needed by BART
27
+ models and provides a `from_preset()` method to automatically download
28
+ a matching vocabulary for a BART preset.
29
+
30
+ This tokenizer does not provide truncation or padding of inputs. It can be
31
+ combined with a `keras_hub.models.BartPreprocessor` layer for input
32
+ packing.
33
+
34
+ If input is a batch of strings (rank > 0), the layer will output a
35
+ `tf.RaggedTensor` where the last dimension of the output is ragged.
36
+
37
+ If input is a scalar string (rank == 0), the layer will output a dense
38
+ `tf.Tensor` with static shape `[None]`.
39
+
40
+ Args:
41
+ vocabulary: string or dict, maps token to integer ids. If it is a
42
+ string, it should be the file path to a json file.
43
+ merges: string or list, contains the merge rule. If it is a string,
44
+ it should be the file path to merge rules. The merge rule file
45
+ should have one merge rule per line. Every merge rule contains
46
+ merge entities separated by a space.
47
+
48
+ Examples:
49
+
50
+ ```python
51
+ # Unbatched input.
52
+ tokenizer = keras_hub.models.BartTokenizer.from_preset(
53
+ "bart_base_en",
54
+ )
55
+ tokenizer("The quick brown fox jumped.")
56
+
57
+ # Batched input.
58
+ tokenizer(["The quick brown fox jumped.", "The fox slept."])
59
+
60
+ # Detokenization.
61
+ tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
62
+
63
+ # Custom vocabulary.
64
+ vocab = {"<s>": 0, "<pad>": 1, "</s>": 2, "<mask>": 3}
65
+ vocab = {**vocab, "a": 4, "Ġquick": 5, "Ġfox": 6}
66
+ merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
67
+ merges += ["Ġ f", "o x", "Ġf ox"]
68
+ tokenizer = keras_hub.models.BartTokenizer(
69
+ vocabulary=vocab,
70
+ merges=merges,
71
+ )
72
+ tokenizer("The quick brown fox jumped.")
73
+ ```
74
+ """
75
+
76
+ def __init__(
77
+ self,
78
+ vocabulary=None,
79
+ merges=None,
80
+ **kwargs,
81
+ ):
82
+ self.start_token = "<s>"
83
+ self.pad_token = "<pad>"
84
+ self.end_token = "</s>"
85
+
86
+ super().__init__(
87
+ vocabulary=vocabulary,
88
+ merges=merges,
89
+ unsplittable_tokens=[
90
+ self.start_token,
91
+ self.pad_token,
92
+ self.end_token,
93
+ ],
94
+ **kwargs,
95
+ )
96
+
97
+ def set_vocabulary_and_merges(self, vocabulary, merges):
98
+ super().set_vocabulary_and_merges(vocabulary, merges)
99
+
100
+ if vocabulary is not None:
101
+ # Check for necessary special tokens.
102
+ for token in [self.start_token, self.pad_token, self.end_token]:
103
+ if token not in self.vocabulary:
104
+ raise ValueError(
105
+ f"Cannot find token `'{token}'` in the provided "
106
+ f"`vocabulary`. Please provide `'{token}'` in your "
107
+ "`vocabulary` or use a pretrained `vocabulary` name."
108
+ )
109
+
110
+ self.start_token_id = self.token_to_id(self.start_token)
111
+ self.pad_token_id = self.token_to_id(self.pad_token)
112
+ self.end_token_id = self.token_to_id(self.end_token)
113
+ else:
114
+ self.start_token_id = None
115
+ self.pad_token_id = None
116
+ self.end_token_id = None
117
+
118
+ def get_config(self):
119
+ config = super().get_config()
120
+ # In the constructor, we pass the list of special tokens to the
121
+ # `unsplittable_tokens` arg of the superclass' constructor. Hence, we
122
+ # delete it from the config here.
123
+ del config["unsplittable_tokens"]
124
+ return config
@@ -0,0 +1,23 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from keras_hub.src.models.bert.bert_backbone import BertBackbone
16
+ from keras_hub.src.models.bert.bert_classifier import BertClassifier
17
+ from keras_hub.src.models.bert.bert_presets import backbone_presets
18
+ from keras_hub.src.models.bert.bert_presets import classifier_presets
19
+ from keras_hub.src.models.bert.bert_tokenizer import BertTokenizer
20
+ from keras_hub.src.utils.preset_utils import register_presets
21
+
22
+ register_presets(backbone_presets, (BertBackbone, BertTokenizer))
23
+ register_presets(classifier_presets, (BertClassifier, BertTokenizer))
@@ -0,0 +1,227 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import keras
16
+
17
+ from keras_hub.src.api_export import keras_hub_export
18
+ from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
19
+ from keras_hub.src.layers.modeling.reversible_embedding import (
20
+ ReversibleEmbedding,
21
+ )
22
+ from keras_hub.src.layers.modeling.transformer_encoder import TransformerEncoder
23
+ from keras_hub.src.models.backbone import Backbone
24
+ from keras_hub.src.utils.keras_utils import gelu_approximate
25
+
26
+
27
+ def bert_kernel_initializer(stddev=0.02):
28
+ return keras.initializers.TruncatedNormal(stddev=stddev)
29
+
30
+
31
+ @keras_hub_export("keras_hub.models.BertBackbone")
32
+ class BertBackbone(Backbone):
33
+ """A BERT encoder network.
34
+
35
+ This class implements a bi-directional Transformer-based encoder as
36
+ described in ["BERT: Pre-training of Deep Bidirectional Transformers for
37
+ Language Understanding"](https://arxiv.org/abs/1810.04805). It includes the
38
+ embedding lookups and transformer layers, but not the masked language model
39
+ or next sentence prediction heads.
40
+
41
+ The default constructor gives a fully customizable, randomly initialized
42
+ BERT encoder with any number of layers, heads, and embedding dimensions. To
43
+ load preset architectures and weights, use the `from_preset()` constructor.
44
+
45
+ Disclaimer: Pre-trained models are provided on an "as is" basis, without
46
+ warranties or conditions of any kind.
47
+
48
+ Args:
49
+ vocabulary_size: int. The size of the token vocabulary.
50
+ num_layers: int. The number of transformer layers.
51
+ num_heads: int. The number of attention heads for each transformer.
52
+ The hidden size must be divisible by the number of attention heads.
53
+ hidden_dim: int. The size of the transformer encoding and pooler layers.
54
+ intermediate_dim: int. The output dimension of the first Dense layer in
55
+ a two-layer feedforward network for each transformer.
56
+ dropout: float. Dropout probability for the Transformer encoder.
57
+ max_sequence_length: int. The maximum sequence length that this encoder
58
+ can consume. If None, `max_sequence_length` uses the value from
59
+ sequence length. This determines the variable shape for positional
60
+ embeddings.
61
+ num_segments: int. The number of types that the 'segment_ids' input can
62
+ take.
63
+ dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
64
+ for model computations and weights. Note that some computations,
65
+ such as softmax and layer normalization, will always be done at
66
+ float32 precision regardless of dtype.
67
+
68
+ Examples:
69
+ ```python
70
+ input_data = {
71
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
72
+ "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]]),
73
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
74
+ }
75
+
76
+ # Pretrained BERT encoder.
77
+ model = keras_hub.models.BertBackbone.from_preset("bert_base_en_uncased")
78
+ model(input_data)
79
+
80
+ # Randomly initialized BERT encoder with a custom config.
81
+ model = keras_hub.models.BertBackbone(
82
+ vocabulary_size=30552,
83
+ num_layers=4,
84
+ num_heads=4,
85
+ hidden_dim=256,
86
+ intermediate_dim=512,
87
+ max_sequence_length=128,
88
+ )
89
+ model(input_data)
90
+ ```
91
+ """
92
+
93
+ def __init__(
94
+ self,
95
+ vocabulary_size,
96
+ num_layers,
97
+ num_heads,
98
+ hidden_dim,
99
+ intermediate_dim,
100
+ dropout=0.1,
101
+ max_sequence_length=512,
102
+ num_segments=2,
103
+ dtype=None,
104
+ **kwargs,
105
+ ):
106
+ # === Layers ===
107
+ self.token_embedding = ReversibleEmbedding(
108
+ input_dim=vocabulary_size,
109
+ output_dim=hidden_dim,
110
+ embeddings_initializer=bert_kernel_initializer(),
111
+ dtype=dtype,
112
+ name="token_embedding",
113
+ )
114
+ self.position_embedding = PositionEmbedding(
115
+ initializer=bert_kernel_initializer(),
116
+ sequence_length=max_sequence_length,
117
+ dtype=dtype,
118
+ name="position_embedding",
119
+ )
120
+ self.segment_embedding = keras.layers.Embedding(
121
+ input_dim=num_segments,
122
+ output_dim=hidden_dim,
123
+ embeddings_initializer=bert_kernel_initializer(),
124
+ dtype=dtype,
125
+ name="segment_embedding",
126
+ )
127
+ self.embeddings_add = keras.layers.Add(
128
+ dtype=dtype,
129
+ name="embeddings_add",
130
+ )
131
+ self.embeddings_layer_norm = keras.layers.LayerNormalization(
132
+ axis=-1,
133
+ epsilon=1e-12,
134
+ dtype=dtype,
135
+ name="embeddings_layer_norm",
136
+ )
137
+ self.embeddings_dropout = keras.layers.Dropout(
138
+ dropout,
139
+ dtype=dtype,
140
+ name="embeddings_dropout",
141
+ )
142
+ self.transformer_layers = []
143
+ for i in range(num_layers):
144
+ layer = TransformerEncoder(
145
+ num_heads=num_heads,
146
+ intermediate_dim=intermediate_dim,
147
+ activation=gelu_approximate,
148
+ dropout=dropout,
149
+ layer_norm_epsilon=1e-12,
150
+ kernel_initializer=bert_kernel_initializer(),
151
+ dtype=dtype,
152
+ name=f"transformer_layer_{i}",
153
+ )
154
+ self.transformer_layers.append(layer)
155
+ self.pooled_dense = keras.layers.Dense(
156
+ hidden_dim,
157
+ kernel_initializer=bert_kernel_initializer(),
158
+ activation="tanh",
159
+ dtype=dtype,
160
+ name="pooled_dense",
161
+ )
162
+
163
+ # === Functional Model ===
164
+ token_id_input = keras.Input(
165
+ shape=(None,), dtype="int32", name="token_ids"
166
+ )
167
+ segment_id_input = keras.Input(
168
+ shape=(None,), dtype="int32", name="segment_ids"
169
+ )
170
+ padding_mask_input = keras.Input(
171
+ shape=(None,), dtype="int32", name="padding_mask"
172
+ )
173
+ # Embed tokens, positions, and segment ids.
174
+ tokens = self.token_embedding(token_id_input)
175
+ positions = self.position_embedding(tokens)
176
+ segments = self.segment_embedding(segment_id_input)
177
+ # Sum, normalize and apply dropout to embeddings.
178
+ x = self.embeddings_add((tokens, positions, segments))
179
+ x = self.embeddings_layer_norm(x)
180
+ x = self.embeddings_dropout(x)
181
+ for transformer_layer in self.transformer_layers:
182
+ x = transformer_layer(x, padding_mask=padding_mask_input)
183
+ # Construct the two BERT outputs. The pooled output is a dense layer on
184
+ # top of the [CLS] token.
185
+ sequence_output = x
186
+ cls_token_index = 0
187
+ pooled_output = self.pooled_dense(x[:, cls_token_index, :])
188
+ super().__init__(
189
+ inputs={
190
+ "token_ids": token_id_input,
191
+ "segment_ids": segment_id_input,
192
+ "padding_mask": padding_mask_input,
193
+ },
194
+ outputs={
195
+ "sequence_output": sequence_output,
196
+ "pooled_output": pooled_output,
197
+ },
198
+ dtype=dtype,
199
+ **kwargs,
200
+ )
201
+
202
+ # === Config ===
203
+ self.vocabulary_size = vocabulary_size
204
+ self.num_layers = num_layers
205
+ self.num_heads = num_heads
206
+ self.hidden_dim = hidden_dim
207
+ self.intermediate_dim = intermediate_dim
208
+ self.dropout = dropout
209
+ self.max_sequence_length = max_sequence_length
210
+ self.num_segments = num_segments
211
+ self.cls_token_index = cls_token_index
212
+
213
+ def get_config(self):
214
+ config = super().get_config()
215
+ config.update(
216
+ {
217
+ "vocabulary_size": self.vocabulary_size,
218
+ "num_layers": self.num_layers,
219
+ "num_heads": self.num_heads,
220
+ "hidden_dim": self.hidden_dim,
221
+ "intermediate_dim": self.intermediate_dim,
222
+ "dropout": self.dropout,
223
+ "max_sequence_length": self.max_sequence_length,
224
+ "num_segments": self.num_segments,
225
+ }
226
+ )
227
+ return config