keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +52 -0
- keras_hub/api/__init__.py +27 -0
- keras_hub/api/layers/__init__.py +47 -0
- keras_hub/api/metrics/__init__.py +24 -0
- keras_hub/api/models/__init__.py +249 -0
- keras_hub/api/samplers/__init__.py +29 -0
- keras_hub/api/tokenizers/__init__.py +35 -0
- keras_hub/src/__init__.py +13 -0
- keras_hub/src/api_export.py +53 -0
- keras_hub/src/layers/__init__.py +13 -0
- keras_hub/src/layers/modeling/__init__.py +13 -0
- keras_hub/src/layers/modeling/alibi_bias.py +143 -0
- keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
- keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
- keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
- keras_hub/src/layers/modeling/position_embedding.py +123 -0
- keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
- keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
- keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
- keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
- keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
- keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
- keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
- keras_hub/src/layers/preprocessing/__init__.py +13 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
- keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
- keras_hub/src/layers/preprocessing/random_swap.py +267 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
- keras_hub/src/metrics/__init__.py +13 -0
- keras_hub/src/metrics/bleu.py +394 -0
- keras_hub/src/metrics/edit_distance.py +197 -0
- keras_hub/src/metrics/perplexity.py +181 -0
- keras_hub/src/metrics/rouge_base.py +204 -0
- keras_hub/src/metrics/rouge_l.py +97 -0
- keras_hub/src/metrics/rouge_n.py +125 -0
- keras_hub/src/models/__init__.py +13 -0
- keras_hub/src/models/albert/__init__.py +20 -0
- keras_hub/src/models/albert/albert_backbone.py +267 -0
- keras_hub/src/models/albert/albert_classifier.py +202 -0
- keras_hub/src/models/albert/albert_masked_lm.py +129 -0
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/albert/albert_preprocessor.py +206 -0
- keras_hub/src/models/albert/albert_presets.py +70 -0
- keras_hub/src/models/albert/albert_tokenizer.py +119 -0
- keras_hub/src/models/backbone.py +311 -0
- keras_hub/src/models/bart/__init__.py +20 -0
- keras_hub/src/models/bart/bart_backbone.py +261 -0
- keras_hub/src/models/bart/bart_preprocessor.py +276 -0
- keras_hub/src/models/bart/bart_presets.py +74 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
- keras_hub/src/models/bart/bart_tokenizer.py +124 -0
- keras_hub/src/models/bert/__init__.py +23 -0
- keras_hub/src/models/bert/bert_backbone.py +227 -0
- keras_hub/src/models/bert/bert_classifier.py +183 -0
- keras_hub/src/models/bert/bert_masked_lm.py +131 -0
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/bert/bert_preprocessor.py +184 -0
- keras_hub/src/models/bert/bert_presets.py +147 -0
- keras_hub/src/models/bert/bert_tokenizer.py +112 -0
- keras_hub/src/models/bloom/__init__.py +20 -0
- keras_hub/src/models/bloom/bloom_attention.py +186 -0
- keras_hub/src/models/bloom/bloom_backbone.py +173 -0
- keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
- keras_hub/src/models/bloom/bloom_decoder.py +206 -0
- keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
- keras_hub/src/models/bloom/bloom_presets.py +121 -0
- keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
- keras_hub/src/models/causal_lm.py +383 -0
- keras_hub/src/models/classifier.py +109 -0
- keras_hub/src/models/csp_darknet/__init__.py +13 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
- keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
- keras_hub/src/models/deberta_v3/__init__.py +24 -0
- keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
- keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
- keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
- keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
- keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
- keras_hub/src/models/densenet/__init__.py +13 -0
- keras_hub/src/models/densenet/densenet_backbone.py +210 -0
- keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
- keras_hub/src/models/distil_bert/__init__.py +26 -0
- keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
- keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
- keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
- keras_hub/src/models/electra/__init__.py +20 -0
- keras_hub/src/models/electra/electra_backbone.py +247 -0
- keras_hub/src/models/electra/electra_preprocessor.py +154 -0
- keras_hub/src/models/electra/electra_presets.py +95 -0
- keras_hub/src/models/electra/electra_tokenizer.py +104 -0
- keras_hub/src/models/f_net/__init__.py +20 -0
- keras_hub/src/models/f_net/f_net_backbone.py +236 -0
- keras_hub/src/models/f_net/f_net_classifier.py +154 -0
- keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
- keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
- keras_hub/src/models/f_net/f_net_presets.py +43 -0
- keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
- keras_hub/src/models/falcon/__init__.py +20 -0
- keras_hub/src/models/falcon/falcon_attention.py +156 -0
- keras_hub/src/models/falcon/falcon_backbone.py +164 -0
- keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
- keras_hub/src/models/falcon/falcon_presets.py +30 -0
- keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
- keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
- keras_hub/src/models/feature_pyramid_backbone.py +73 -0
- keras_hub/src/models/gemma/__init__.py +20 -0
- keras_hub/src/models/gemma/gemma_attention.py +250 -0
- keras_hub/src/models/gemma/gemma_backbone.py +316 -0
- keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
- keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
- keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
- keras_hub/src/models/gemma/gemma_presets.py +248 -0
- keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
- keras_hub/src/models/gemma/rms_normalization.py +40 -0
- keras_hub/src/models/gpt2/__init__.py +20 -0
- keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
- keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
- keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
- keras_hub/src/models/image_classifier.py +90 -0
- keras_hub/src/models/llama/__init__.py +20 -0
- keras_hub/src/models/llama/llama_attention.py +225 -0
- keras_hub/src/models/llama/llama_backbone.py +188 -0
- keras_hub/src/models/llama/llama_causal_lm.py +327 -0
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
- keras_hub/src/models/llama/llama_decoder.py +246 -0
- keras_hub/src/models/llama/llama_layernorm.py +48 -0
- keras_hub/src/models/llama/llama_preprocessor.py +189 -0
- keras_hub/src/models/llama/llama_presets.py +80 -0
- keras_hub/src/models/llama/llama_tokenizer.py +84 -0
- keras_hub/src/models/llama3/__init__.py +20 -0
- keras_hub/src/models/llama3/llama3_backbone.py +84 -0
- keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
- keras_hub/src/models/llama3/llama3_presets.py +69 -0
- keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
- keras_hub/src/models/masked_lm.py +101 -0
- keras_hub/src/models/mistral/__init__.py +20 -0
- keras_hub/src/models/mistral/mistral_attention.py +238 -0
- keras_hub/src/models/mistral/mistral_backbone.py +203 -0
- keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
- keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
- keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
- keras_hub/src/models/mistral/mistral_presets.py +48 -0
- keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
- keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
- keras_hub/src/models/mix_transformer/__init__.py +13 -0
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
- keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
- keras_hub/src/models/opt/__init__.py +20 -0
- keras_hub/src/models/opt/opt_backbone.py +173 -0
- keras_hub/src/models/opt/opt_causal_lm.py +301 -0
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
- keras_hub/src/models/opt/opt_preprocessor.py +188 -0
- keras_hub/src/models/opt/opt_presets.py +72 -0
- keras_hub/src/models/opt/opt_tokenizer.py +116 -0
- keras_hub/src/models/pali_gemma/__init__.py +23 -0
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
- keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
- keras_hub/src/models/phi3/__init__.py +20 -0
- keras_hub/src/models/phi3/phi3_attention.py +260 -0
- keras_hub/src/models/phi3/phi3_backbone.py +224 -0
- keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/phi3/phi3_decoder.py +260 -0
- keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
- keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
- keras_hub/src/models/phi3/phi3_presets.py +50 -0
- keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
- keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
- keras_hub/src/models/preprocessor.py +207 -0
- keras_hub/src/models/resnet/__init__.py +13 -0
- keras_hub/src/models/resnet/resnet_backbone.py +612 -0
- keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
- keras_hub/src/models/roberta/__init__.py +20 -0
- keras_hub/src/models/roberta/roberta_backbone.py +184 -0
- keras_hub/src/models/roberta/roberta_classifier.py +209 -0
- keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
- keras_hub/src/models/roberta/roberta_presets.py +43 -0
- keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
- keras_hub/src/models/seq_2_seq_lm.py +54 -0
- keras_hub/src/models/t5/__init__.py +20 -0
- keras_hub/src/models/t5/t5_backbone.py +261 -0
- keras_hub/src/models/t5/t5_layer_norm.py +35 -0
- keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
- keras_hub/src/models/t5/t5_presets.py +95 -0
- keras_hub/src/models/t5/t5_tokenizer.py +100 -0
- keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
- keras_hub/src/models/task.py +419 -0
- keras_hub/src/models/vgg/__init__.py +13 -0
- keras_hub/src/models/vgg/vgg_backbone.py +158 -0
- keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
- keras_hub/src/models/vit_det/__init__.py +13 -0
- keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
- keras_hub/src/models/vit_det/vit_layers.py +565 -0
- keras_hub/src/models/whisper/__init__.py +20 -0
- keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
- keras_hub/src/models/whisper/whisper_backbone.py +305 -0
- keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
- keras_hub/src/models/whisper/whisper_decoder.py +141 -0
- keras_hub/src/models/whisper/whisper_encoder.py +106 -0
- keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
- keras_hub/src/models/whisper/whisper_presets.py +148 -0
- keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
- keras_hub/src/models/xlm_roberta/__init__.py +26 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
- keras_hub/src/models/xlnet/__init__.py +13 -0
- keras_hub/src/models/xlnet/relative_attention.py +459 -0
- keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
- keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
- keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
- keras_hub/src/samplers/__init__.py +13 -0
- keras_hub/src/samplers/beam_sampler.py +207 -0
- keras_hub/src/samplers/contrastive_sampler.py +231 -0
- keras_hub/src/samplers/greedy_sampler.py +50 -0
- keras_hub/src/samplers/random_sampler.py +77 -0
- keras_hub/src/samplers/sampler.py +237 -0
- keras_hub/src/samplers/serialization.py +97 -0
- keras_hub/src/samplers/top_k_sampler.py +92 -0
- keras_hub/src/samplers/top_p_sampler.py +113 -0
- keras_hub/src/tests/__init__.py +13 -0
- keras_hub/src/tests/test_case.py +608 -0
- keras_hub/src/tokenizers/__init__.py +13 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
- keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
- keras_hub/src/tokenizers/tokenizer.py +235 -0
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
- keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
- keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
- keras_hub/src/utils/__init__.py +13 -0
- keras_hub/src/utils/keras_utils.py +130 -0
- keras_hub/src/utils/pipeline_model.py +293 -0
- keras_hub/src/utils/preset_utils.py +621 -0
- keras_hub/src/utils/python_utils.py +21 -0
- keras_hub/src/utils/tensor_utils.py +206 -0
- keras_hub/src/utils/timm/__init__.py +13 -0
- keras_hub/src/utils/timm/convert.py +37 -0
- keras_hub/src/utils/timm/convert_resnet.py +171 -0
- keras_hub/src/utils/transformers/__init__.py +13 -0
- keras_hub/src/utils/transformers/convert.py +101 -0
- keras_hub/src/utils/transformers/convert_bert.py +173 -0
- keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
- keras_hub/src/utils/transformers/convert_gemma.py +187 -0
- keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
- keras_hub/src/utils/transformers/convert_llama3.py +136 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
- keras_hub/src/version_utils.py +23 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,103 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from keras_hub.src.api_export import keras_hub_export
|
16
|
+
from keras_hub.src.tokenizers.sentence_piece_tokenizer import (
|
17
|
+
SentencePieceTokenizer,
|
18
|
+
)
|
19
|
+
|
20
|
+
|
21
|
+
@keras_hub_export("keras_hub.models.GemmaTokenizer")
|
22
|
+
class GemmaTokenizer(SentencePieceTokenizer):
|
23
|
+
"""Gemma tokenizer layer based on SentencePiece.
|
24
|
+
|
25
|
+
This tokenizer class will tokenize raw strings into integer sequences and
|
26
|
+
is based on `keras_hub.tokenizers.SentencePieceTokenizer`. Unlike the
|
27
|
+
underlying tokenizer, it will check for all special tokens needed by
|
28
|
+
Gemma models and provides a `from_preset()` method to automatically
|
29
|
+
download a matching vocabulary for a Gemma preset.
|
30
|
+
|
31
|
+
If input is a batch of strings (rank > 0), the layer will output a
|
32
|
+
`tf.RaggedTensor` where the last dimension of the output is ragged.
|
33
|
+
|
34
|
+
If input is a scalar string (rank == 0), the layer will output a dense
|
35
|
+
`tf.Tensor` with static shape `[None]`.
|
36
|
+
|
37
|
+
Args:
|
38
|
+
proto: Either a `string` path to a SentencePiece proto file, or a
|
39
|
+
`bytes` object with a serialized SentencePiece proto. See the
|
40
|
+
[SentencePiece repository](https://github.com/google/sentencepiece)
|
41
|
+
for more details on the format.
|
42
|
+
|
43
|
+
Examples:
|
44
|
+
|
45
|
+
```python
|
46
|
+
# Unbatched input.
|
47
|
+
tokenizer = keras_hub.models.GemmaTokenizer.from_preset("gemma_2b_en")
|
48
|
+
tokenizer("The quick brown fox jumped.")
|
49
|
+
|
50
|
+
# Batched input.
|
51
|
+
tokenizer(["The quick brown fox jumped.", "The fox slept."])
|
52
|
+
|
53
|
+
# Detokenization.
|
54
|
+
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
|
55
|
+
|
56
|
+
# Custom vocabulary.
|
57
|
+
bytes_io = io.BytesIO()
|
58
|
+
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
|
59
|
+
sentencepiece.SentencePieceTrainer.train(
|
60
|
+
sentence_iterator=ds.as_numpy_iterator(),
|
61
|
+
model_writer=bytes_io,
|
62
|
+
vocab_size=8,
|
63
|
+
model_type="WORD",
|
64
|
+
pad_id=0,
|
65
|
+
bos_id=1,
|
66
|
+
eos_id=2,
|
67
|
+
unk_id=3,
|
68
|
+
pad_piece="<pad>",
|
69
|
+
bos_piece="<bos>",
|
70
|
+
eos_piece="<eos>",
|
71
|
+
unk_piece="<unk>",
|
72
|
+
)
|
73
|
+
tokenizer = keras_hub.models.GemmaTokenizer(
|
74
|
+
proto=bytes_io.getvalue(),
|
75
|
+
)
|
76
|
+
tokenizer("The quick brown fox jumped.")
|
77
|
+
```
|
78
|
+
"""
|
79
|
+
|
80
|
+
def __init__(self, proto, **kwargs):
|
81
|
+
self.start_token = "<bos>"
|
82
|
+
self.end_token = "<eos>"
|
83
|
+
self.pad_token = "<pad>"
|
84
|
+
|
85
|
+
super().__init__(proto=proto, **kwargs)
|
86
|
+
|
87
|
+
def set_proto(self, proto):
|
88
|
+
super().set_proto(proto)
|
89
|
+
if proto is not None:
|
90
|
+
for token in [self.end_token, self.pad_token]:
|
91
|
+
if token not in self.get_vocabulary():
|
92
|
+
raise ValueError(
|
93
|
+
f"Cannot find token `'{token}'` in the provided "
|
94
|
+
f"`vocabulary`. Please provide `'{token}'` in your "
|
95
|
+
"`vocabulary` or use a pretrained `vocabulary` name."
|
96
|
+
)
|
97
|
+
self.start_token_id = self.token_to_id(self.start_token)
|
98
|
+
self.end_token_id = self.token_to_id(self.end_token)
|
99
|
+
self.pad_token_id = self.token_to_id(self.pad_token)
|
100
|
+
else:
|
101
|
+
self.start_token_id = None
|
102
|
+
self.end_token_id = None
|
103
|
+
self.pad_token_id = None
|
@@ -0,0 +1,40 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import keras
|
16
|
+
from keras import ops
|
17
|
+
|
18
|
+
|
19
|
+
class RMSNormalization(keras.layers.Layer):
|
20
|
+
def __init__(self, epsilon=1e-6, **kwargs):
|
21
|
+
super().__init__(**kwargs)
|
22
|
+
self.epsilon = epsilon
|
23
|
+
|
24
|
+
def build(self, input_shape):
|
25
|
+
self.scale = self.add_weight(
|
26
|
+
name="scale",
|
27
|
+
trainable=True,
|
28
|
+
shape=(input_shape[-1],),
|
29
|
+
initializer="zeros",
|
30
|
+
)
|
31
|
+
self.built = True
|
32
|
+
|
33
|
+
def call(self, x):
|
34
|
+
# Always compute normalization in float32.
|
35
|
+
x = ops.cast(x, "float32")
|
36
|
+
scale = ops.cast(self.scale, "float32")
|
37
|
+
var = ops.mean(ops.square(x), axis=-1, keepdims=True)
|
38
|
+
normed_inputs = x * ops.reciprocal(ops.sqrt(var + self.epsilon))
|
39
|
+
normed_inputs = normed_inputs * (1 + scale)
|
40
|
+
return ops.cast(normed_inputs, self.compute_dtype)
|
@@ -0,0 +1,20 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from keras_hub.src.models.gpt2.gpt2_backbone import GPT2Backbone
|
16
|
+
from keras_hub.src.models.gpt2.gpt2_presets import backbone_presets
|
17
|
+
from keras_hub.src.models.gpt2.gpt2_tokenizer import GPT2Tokenizer
|
18
|
+
from keras_hub.src.utils.preset_utils import register_presets
|
19
|
+
|
20
|
+
register_presets(backbone_presets, (GPT2Backbone, GPT2Tokenizer))
|
@@ -0,0 +1,199 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
import keras
|
17
|
+
|
18
|
+
from keras_hub.src.api_export import keras_hub_export
|
19
|
+
from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
|
20
|
+
from keras_hub.src.layers.modeling.reversible_embedding import (
|
21
|
+
ReversibleEmbedding,
|
22
|
+
)
|
23
|
+
from keras_hub.src.layers.modeling.transformer_decoder import TransformerDecoder
|
24
|
+
from keras_hub.src.models.backbone import Backbone
|
25
|
+
from keras_hub.src.utils.keras_utils import gelu_approximate
|
26
|
+
|
27
|
+
|
28
|
+
def _gpt_2_kernel_initializer(stddev=0.02):
|
29
|
+
return keras.initializers.RandomNormal(stddev=stddev)
|
30
|
+
|
31
|
+
|
32
|
+
@keras_hub_export("keras_hub.models.GPT2Backbone")
|
33
|
+
class GPT2Backbone(Backbone):
|
34
|
+
"""GPT-2 core network with hyperparameters.
|
35
|
+
|
36
|
+
This network implements a Transformer-based decoder network,
|
37
|
+
Generative Pretrained Transformer-2 (GPT-2), as described in
|
38
|
+
["Language Models are Unsupervised Multitask Learners"](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf).
|
39
|
+
It includes the embedding lookups and transformer layers.
|
40
|
+
|
41
|
+
The default constructor gives a fully customizable, randomly initialized
|
42
|
+
GPT-2 model with any number of layers, heads, and embedding
|
43
|
+
dimensions. To load preset architectures and weights, use the `from_preset`
|
44
|
+
constructor.
|
45
|
+
|
46
|
+
Disclaimer: Pre-trained models are provided on an "as is" basis, without
|
47
|
+
warranties or conditions of any kind. The underlying model is provided by a
|
48
|
+
third party and subject to a separate license, available
|
49
|
+
[here](https://github.com/openai/gpt-2).
|
50
|
+
|
51
|
+
Args:
|
52
|
+
vocabulary_size: int. The size of the token vocabulary.
|
53
|
+
num_layers: int. The number of transformer layers.
|
54
|
+
num_heads: int. The number of attention heads for each transformer.
|
55
|
+
The hidden size must be divisible by the number of attention heads.
|
56
|
+
hidden_dim: int. The size of the transformer encoding and pooler layers.
|
57
|
+
intermediate_dim: int. The output dimension of the first Dense layer in
|
58
|
+
a two-layer feedforward network for each transformer.
|
59
|
+
dropout: float. Dropout probability for the Transformer encoder.
|
60
|
+
max_sequence_length: int. The maximum sequence length that this encoder
|
61
|
+
can consume. If `None`, `max_sequence_length` uses the value from
|
62
|
+
sequence length. This determines the variable shape for positional
|
63
|
+
embeddings.
|
64
|
+
dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
|
65
|
+
for the models computations and weights. Note that some
|
66
|
+
computations, such as softmax and layer normalization will always
|
67
|
+
be done a float32 precision regardless of dtype.
|
68
|
+
|
69
|
+
Example:
|
70
|
+
```python
|
71
|
+
input_data = {
|
72
|
+
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
|
73
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
|
74
|
+
}
|
75
|
+
|
76
|
+
# Pretrained GPT-2 decoder.
|
77
|
+
model = keras_hub.models.GPT2Backbone.from_preset("gpt2_base_en")
|
78
|
+
model(input_data)
|
79
|
+
|
80
|
+
# Randomly initialized GPT-2 decoder with custom config.
|
81
|
+
model = keras_hub.models.GPT2Backbone(
|
82
|
+
vocabulary_size=50257,
|
83
|
+
num_layers=12,
|
84
|
+
num_heads=12,
|
85
|
+
hidden_dim=768,
|
86
|
+
intermediate_dim=3072,
|
87
|
+
max_sequence_length=1024,
|
88
|
+
)
|
89
|
+
model(input_data)
|
90
|
+
```
|
91
|
+
"""
|
92
|
+
|
93
|
+
def __init__(
|
94
|
+
self,
|
95
|
+
vocabulary_size,
|
96
|
+
num_layers,
|
97
|
+
num_heads,
|
98
|
+
hidden_dim,
|
99
|
+
intermediate_dim,
|
100
|
+
dropout=0.1,
|
101
|
+
max_sequence_length=1024,
|
102
|
+
dtype=None,
|
103
|
+
**kwargs,
|
104
|
+
):
|
105
|
+
# === Layers ===
|
106
|
+
self.token_embedding = ReversibleEmbedding(
|
107
|
+
input_dim=vocabulary_size,
|
108
|
+
output_dim=hidden_dim,
|
109
|
+
embeddings_initializer=_gpt_2_kernel_initializer(stddev=0.01),
|
110
|
+
dtype=dtype,
|
111
|
+
name="token_embedding",
|
112
|
+
)
|
113
|
+
self.position_embedding = PositionEmbedding(
|
114
|
+
initializer=_gpt_2_kernel_initializer(stddev=0.02),
|
115
|
+
sequence_length=max_sequence_length,
|
116
|
+
dtype=dtype,
|
117
|
+
name="position_embedding",
|
118
|
+
)
|
119
|
+
self.embeddings_add = keras.layers.Add(
|
120
|
+
dtype=dtype,
|
121
|
+
name="embeddings_add",
|
122
|
+
)
|
123
|
+
self.embeddings_dropout = keras.layers.Dropout(
|
124
|
+
dropout,
|
125
|
+
dtype=dtype,
|
126
|
+
name="embeddings_dropout",
|
127
|
+
)
|
128
|
+
self.transformer_layers = []
|
129
|
+
for i in range(num_layers):
|
130
|
+
self.transformer_layers.append(
|
131
|
+
TransformerDecoder(
|
132
|
+
intermediate_dim=intermediate_dim,
|
133
|
+
num_heads=num_heads,
|
134
|
+
dropout=dropout,
|
135
|
+
layer_norm_epsilon=1e-05,
|
136
|
+
activation=gelu_approximate,
|
137
|
+
kernel_initializer=_gpt_2_kernel_initializer(stddev=0.02),
|
138
|
+
normalize_first=True,
|
139
|
+
dtype=dtype,
|
140
|
+
name=f"transformer_layer_{i}",
|
141
|
+
)
|
142
|
+
)
|
143
|
+
self.layer_norm = keras.layers.LayerNormalization(
|
144
|
+
axis=-1,
|
145
|
+
epsilon=1e-05,
|
146
|
+
dtype=dtype,
|
147
|
+
name="layer_norm",
|
148
|
+
)
|
149
|
+
|
150
|
+
# === Functional Model ===
|
151
|
+
token_id_input = keras.Input(
|
152
|
+
shape=(None,), dtype="int32", name="token_ids"
|
153
|
+
)
|
154
|
+
padding_mask_input = keras.Input(
|
155
|
+
shape=(None,), dtype="int32", name="padding_mask"
|
156
|
+
)
|
157
|
+
# Embed inputs.
|
158
|
+
tokens = self.token_embedding(token_id_input)
|
159
|
+
positions = self.position_embedding(tokens)
|
160
|
+
x = self.embeddings_add((tokens, positions))
|
161
|
+
x = self.embeddings_dropout(x)
|
162
|
+
# Apply transformer layers.
|
163
|
+
for transformer_layer in self.transformer_layers:
|
164
|
+
x = transformer_layer(x, decoder_padding_mask=padding_mask_input)
|
165
|
+
sequence_output = self.layer_norm(x)
|
166
|
+
# Instantiate using the Functional constructor.
|
167
|
+
super().__init__(
|
168
|
+
inputs={
|
169
|
+
"token_ids": token_id_input,
|
170
|
+
"padding_mask": padding_mask_input,
|
171
|
+
},
|
172
|
+
outputs=sequence_output,
|
173
|
+
dtype=dtype,
|
174
|
+
**kwargs,
|
175
|
+
)
|
176
|
+
|
177
|
+
# === Config ===
|
178
|
+
self.vocabulary_size = vocabulary_size
|
179
|
+
self.num_layers = num_layers
|
180
|
+
self.num_heads = num_heads
|
181
|
+
self.hidden_dim = hidden_dim
|
182
|
+
self.intermediate_dim = intermediate_dim
|
183
|
+
self.dropout = dropout
|
184
|
+
self.max_sequence_length = max_sequence_length
|
185
|
+
|
186
|
+
def get_config(self):
|
187
|
+
config = super().get_config()
|
188
|
+
config.update(
|
189
|
+
{
|
190
|
+
"vocabulary_size": self.vocabulary_size,
|
191
|
+
"num_layers": self.num_layers,
|
192
|
+
"num_heads": self.num_heads,
|
193
|
+
"hidden_dim": self.hidden_dim,
|
194
|
+
"intermediate_dim": self.intermediate_dim,
|
195
|
+
"dropout": self.dropout,
|
196
|
+
"max_sequence_length": self.max_sequence_length,
|
197
|
+
}
|
198
|
+
)
|
199
|
+
return config
|