keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +52 -0
- keras_hub/api/__init__.py +27 -0
- keras_hub/api/layers/__init__.py +47 -0
- keras_hub/api/metrics/__init__.py +24 -0
- keras_hub/api/models/__init__.py +249 -0
- keras_hub/api/samplers/__init__.py +29 -0
- keras_hub/api/tokenizers/__init__.py +35 -0
- keras_hub/src/__init__.py +13 -0
- keras_hub/src/api_export.py +53 -0
- keras_hub/src/layers/__init__.py +13 -0
- keras_hub/src/layers/modeling/__init__.py +13 -0
- keras_hub/src/layers/modeling/alibi_bias.py +143 -0
- keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
- keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
- keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
- keras_hub/src/layers/modeling/position_embedding.py +123 -0
- keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
- keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
- keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
- keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
- keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
- keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
- keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
- keras_hub/src/layers/preprocessing/__init__.py +13 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
- keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
- keras_hub/src/layers/preprocessing/random_swap.py +267 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
- keras_hub/src/metrics/__init__.py +13 -0
- keras_hub/src/metrics/bleu.py +394 -0
- keras_hub/src/metrics/edit_distance.py +197 -0
- keras_hub/src/metrics/perplexity.py +181 -0
- keras_hub/src/metrics/rouge_base.py +204 -0
- keras_hub/src/metrics/rouge_l.py +97 -0
- keras_hub/src/metrics/rouge_n.py +125 -0
- keras_hub/src/models/__init__.py +13 -0
- keras_hub/src/models/albert/__init__.py +20 -0
- keras_hub/src/models/albert/albert_backbone.py +267 -0
- keras_hub/src/models/albert/albert_classifier.py +202 -0
- keras_hub/src/models/albert/albert_masked_lm.py +129 -0
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/albert/albert_preprocessor.py +206 -0
- keras_hub/src/models/albert/albert_presets.py +70 -0
- keras_hub/src/models/albert/albert_tokenizer.py +119 -0
- keras_hub/src/models/backbone.py +311 -0
- keras_hub/src/models/bart/__init__.py +20 -0
- keras_hub/src/models/bart/bart_backbone.py +261 -0
- keras_hub/src/models/bart/bart_preprocessor.py +276 -0
- keras_hub/src/models/bart/bart_presets.py +74 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
- keras_hub/src/models/bart/bart_tokenizer.py +124 -0
- keras_hub/src/models/bert/__init__.py +23 -0
- keras_hub/src/models/bert/bert_backbone.py +227 -0
- keras_hub/src/models/bert/bert_classifier.py +183 -0
- keras_hub/src/models/bert/bert_masked_lm.py +131 -0
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/bert/bert_preprocessor.py +184 -0
- keras_hub/src/models/bert/bert_presets.py +147 -0
- keras_hub/src/models/bert/bert_tokenizer.py +112 -0
- keras_hub/src/models/bloom/__init__.py +20 -0
- keras_hub/src/models/bloom/bloom_attention.py +186 -0
- keras_hub/src/models/bloom/bloom_backbone.py +173 -0
- keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
- keras_hub/src/models/bloom/bloom_decoder.py +206 -0
- keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
- keras_hub/src/models/bloom/bloom_presets.py +121 -0
- keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
- keras_hub/src/models/causal_lm.py +383 -0
- keras_hub/src/models/classifier.py +109 -0
- keras_hub/src/models/csp_darknet/__init__.py +13 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
- keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
- keras_hub/src/models/deberta_v3/__init__.py +24 -0
- keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
- keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
- keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
- keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
- keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
- keras_hub/src/models/densenet/__init__.py +13 -0
- keras_hub/src/models/densenet/densenet_backbone.py +210 -0
- keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
- keras_hub/src/models/distil_bert/__init__.py +26 -0
- keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
- keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
- keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
- keras_hub/src/models/electra/__init__.py +20 -0
- keras_hub/src/models/electra/electra_backbone.py +247 -0
- keras_hub/src/models/electra/electra_preprocessor.py +154 -0
- keras_hub/src/models/electra/electra_presets.py +95 -0
- keras_hub/src/models/electra/electra_tokenizer.py +104 -0
- keras_hub/src/models/f_net/__init__.py +20 -0
- keras_hub/src/models/f_net/f_net_backbone.py +236 -0
- keras_hub/src/models/f_net/f_net_classifier.py +154 -0
- keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
- keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
- keras_hub/src/models/f_net/f_net_presets.py +43 -0
- keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
- keras_hub/src/models/falcon/__init__.py +20 -0
- keras_hub/src/models/falcon/falcon_attention.py +156 -0
- keras_hub/src/models/falcon/falcon_backbone.py +164 -0
- keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
- keras_hub/src/models/falcon/falcon_presets.py +30 -0
- keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
- keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
- keras_hub/src/models/feature_pyramid_backbone.py +73 -0
- keras_hub/src/models/gemma/__init__.py +20 -0
- keras_hub/src/models/gemma/gemma_attention.py +250 -0
- keras_hub/src/models/gemma/gemma_backbone.py +316 -0
- keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
- keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
- keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
- keras_hub/src/models/gemma/gemma_presets.py +248 -0
- keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
- keras_hub/src/models/gemma/rms_normalization.py +40 -0
- keras_hub/src/models/gpt2/__init__.py +20 -0
- keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
- keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
- keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
- keras_hub/src/models/image_classifier.py +90 -0
- keras_hub/src/models/llama/__init__.py +20 -0
- keras_hub/src/models/llama/llama_attention.py +225 -0
- keras_hub/src/models/llama/llama_backbone.py +188 -0
- keras_hub/src/models/llama/llama_causal_lm.py +327 -0
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
- keras_hub/src/models/llama/llama_decoder.py +246 -0
- keras_hub/src/models/llama/llama_layernorm.py +48 -0
- keras_hub/src/models/llama/llama_preprocessor.py +189 -0
- keras_hub/src/models/llama/llama_presets.py +80 -0
- keras_hub/src/models/llama/llama_tokenizer.py +84 -0
- keras_hub/src/models/llama3/__init__.py +20 -0
- keras_hub/src/models/llama3/llama3_backbone.py +84 -0
- keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
- keras_hub/src/models/llama3/llama3_presets.py +69 -0
- keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
- keras_hub/src/models/masked_lm.py +101 -0
- keras_hub/src/models/mistral/__init__.py +20 -0
- keras_hub/src/models/mistral/mistral_attention.py +238 -0
- keras_hub/src/models/mistral/mistral_backbone.py +203 -0
- keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
- keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
- keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
- keras_hub/src/models/mistral/mistral_presets.py +48 -0
- keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
- keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
- keras_hub/src/models/mix_transformer/__init__.py +13 -0
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
- keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
- keras_hub/src/models/opt/__init__.py +20 -0
- keras_hub/src/models/opt/opt_backbone.py +173 -0
- keras_hub/src/models/opt/opt_causal_lm.py +301 -0
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
- keras_hub/src/models/opt/opt_preprocessor.py +188 -0
- keras_hub/src/models/opt/opt_presets.py +72 -0
- keras_hub/src/models/opt/opt_tokenizer.py +116 -0
- keras_hub/src/models/pali_gemma/__init__.py +23 -0
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
- keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
- keras_hub/src/models/phi3/__init__.py +20 -0
- keras_hub/src/models/phi3/phi3_attention.py +260 -0
- keras_hub/src/models/phi3/phi3_backbone.py +224 -0
- keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/phi3/phi3_decoder.py +260 -0
- keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
- keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
- keras_hub/src/models/phi3/phi3_presets.py +50 -0
- keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
- keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
- keras_hub/src/models/preprocessor.py +207 -0
- keras_hub/src/models/resnet/__init__.py +13 -0
- keras_hub/src/models/resnet/resnet_backbone.py +612 -0
- keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
- keras_hub/src/models/roberta/__init__.py +20 -0
- keras_hub/src/models/roberta/roberta_backbone.py +184 -0
- keras_hub/src/models/roberta/roberta_classifier.py +209 -0
- keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
- keras_hub/src/models/roberta/roberta_presets.py +43 -0
- keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
- keras_hub/src/models/seq_2_seq_lm.py +54 -0
- keras_hub/src/models/t5/__init__.py +20 -0
- keras_hub/src/models/t5/t5_backbone.py +261 -0
- keras_hub/src/models/t5/t5_layer_norm.py +35 -0
- keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
- keras_hub/src/models/t5/t5_presets.py +95 -0
- keras_hub/src/models/t5/t5_tokenizer.py +100 -0
- keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
- keras_hub/src/models/task.py +419 -0
- keras_hub/src/models/vgg/__init__.py +13 -0
- keras_hub/src/models/vgg/vgg_backbone.py +158 -0
- keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
- keras_hub/src/models/vit_det/__init__.py +13 -0
- keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
- keras_hub/src/models/vit_det/vit_layers.py +565 -0
- keras_hub/src/models/whisper/__init__.py +20 -0
- keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
- keras_hub/src/models/whisper/whisper_backbone.py +305 -0
- keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
- keras_hub/src/models/whisper/whisper_decoder.py +141 -0
- keras_hub/src/models/whisper/whisper_encoder.py +106 -0
- keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
- keras_hub/src/models/whisper/whisper_presets.py +148 -0
- keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
- keras_hub/src/models/xlm_roberta/__init__.py +26 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
- keras_hub/src/models/xlnet/__init__.py +13 -0
- keras_hub/src/models/xlnet/relative_attention.py +459 -0
- keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
- keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
- keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
- keras_hub/src/samplers/__init__.py +13 -0
- keras_hub/src/samplers/beam_sampler.py +207 -0
- keras_hub/src/samplers/contrastive_sampler.py +231 -0
- keras_hub/src/samplers/greedy_sampler.py +50 -0
- keras_hub/src/samplers/random_sampler.py +77 -0
- keras_hub/src/samplers/sampler.py +237 -0
- keras_hub/src/samplers/serialization.py +97 -0
- keras_hub/src/samplers/top_k_sampler.py +92 -0
- keras_hub/src/samplers/top_p_sampler.py +113 -0
- keras_hub/src/tests/__init__.py +13 -0
- keras_hub/src/tests/test_case.py +608 -0
- keras_hub/src/tokenizers/__init__.py +13 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
- keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
- keras_hub/src/tokenizers/tokenizer.py +235 -0
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
- keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
- keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
- keras_hub/src/utils/__init__.py +13 -0
- keras_hub/src/utils/keras_utils.py +130 -0
- keras_hub/src/utils/pipeline_model.py +293 -0
- keras_hub/src/utils/preset_utils.py +621 -0
- keras_hub/src/utils/python_utils.py +21 -0
- keras_hub/src/utils/tensor_utils.py +206 -0
- keras_hub/src/utils/timm/__init__.py +13 -0
- keras_hub/src/utils/timm/convert.py +37 -0
- keras_hub/src/utils/timm/convert_resnet.py +171 -0
- keras_hub/src/utils/transformers/__init__.py +13 -0
- keras_hub/src/utils/transformers/convert.py +101 -0
- keras_hub/src/utils/transformers/convert_bert.py +173 -0
- keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
- keras_hub/src/utils/transformers/convert_gemma.py +187 -0
- keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
- keras_hub/src/utils/transformers/convert_llama3.py +136 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
- keras_hub/src/version_utils.py +23 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,448 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
import keras
|
17
|
+
from keras import ops
|
18
|
+
|
19
|
+
from keras_hub.src.api_export import keras_hub_export
|
20
|
+
from keras_hub.src.models.causal_lm import CausalLM
|
21
|
+
from keras_hub.src.models.gemma.gemma_backbone import GemmaBackbone
|
22
|
+
from keras_hub.src.models.gemma.gemma_causal_lm_preprocessor import (
|
23
|
+
GemmaCausalLMPreprocessor,
|
24
|
+
)
|
25
|
+
from keras_hub.src.utils.tensor_utils import any_equal
|
26
|
+
|
27
|
+
|
28
|
+
@keras_hub_export("keras_hub.models.GemmaCausalLM")
|
29
|
+
class GemmaCausalLM(CausalLM):
|
30
|
+
"""An end-to-end Gemma model for causal language modeling.
|
31
|
+
|
32
|
+
A causal language model (LM) predicts the next token based on previous
|
33
|
+
tokens. This task setup can be used to train the model unsupervised on
|
34
|
+
plain text input, or to autoregressively generate plain text similar to
|
35
|
+
the data used for training. This task can be used for pre-training or
|
36
|
+
fine-tuning a Gemma model, simply by calling `fit()`.
|
37
|
+
|
38
|
+
This model has a `generate()` method, which generates text based on a
|
39
|
+
prompt. The generation strategy used is controlled by an additional
|
40
|
+
`sampler` argument on `compile()`. You can recompile the model with
|
41
|
+
different `keras_hub.samplers` objects to control the generation. By
|
42
|
+
default, `"greedy"` sampling will be used.
|
43
|
+
|
44
|
+
This model can optionally be configured with a `preprocessor` layer, in
|
45
|
+
which case it will automatically apply preprocessing to string inputs during
|
46
|
+
`fit()`, `predict()`, `evaluate()` and `generate()`. This is done by default
|
47
|
+
when creating the model with `from_preset()`.
|
48
|
+
|
49
|
+
Args:
|
50
|
+
backbone: A `keras_hub.models.GemmaBackbone` instance.
|
51
|
+
preprocessor: A `keras_hub.models.GemmaCausalLMPreprocessor` or `None`.
|
52
|
+
If `None`, this model will not apply preprocessing, and inputs
|
53
|
+
should be preprocessed before calling the model.
|
54
|
+
|
55
|
+
Examples:
|
56
|
+
|
57
|
+
Use `generate()` to do text generation.
|
58
|
+
```python
|
59
|
+
gemma_lm = keras_hub.models.GemmaCausalLM.from_preset("gemma_2b_en")
|
60
|
+
gemma_lm.generate("I want to say", max_length=30)
|
61
|
+
|
62
|
+
# Generate with batched prompts.
|
63
|
+
gemma_lm.generate(["This is a", "Where are you"], max_length=30)
|
64
|
+
```
|
65
|
+
|
66
|
+
Compile the `generate()` function with a custom sampler.
|
67
|
+
```python
|
68
|
+
gemma_lm = keras_hub.models.GemmaCausalLM.from_preset("gemma_2b_en")
|
69
|
+
gemma_lm.compile(sampler="top_k")
|
70
|
+
gemma_lm.generate("I want to say", max_length=30)
|
71
|
+
|
72
|
+
gemma_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
|
73
|
+
gemma_lm.generate("I want to say", max_length=30)
|
74
|
+
```
|
75
|
+
|
76
|
+
Use `generate()` without preprocessing.
|
77
|
+
```python
|
78
|
+
prompt = {
|
79
|
+
# Token ids for "<bos> Keras is".
|
80
|
+
"token_ids": np.array([[2, 214064, 603, 0, 0, 0, 0]] * 2),
|
81
|
+
# Use `"padding_mask"` to indicate values that should not be overridden.
|
82
|
+
"padding_mask": np.array([[1, 1, 1, 0, 0, 0, 0]] * 2),
|
83
|
+
}
|
84
|
+
|
85
|
+
gemma_lm = keras_hub.models.GemmaCausalLM.from_preset(
|
86
|
+
"gemma_2b_en",
|
87
|
+
preprocessor=None,
|
88
|
+
)
|
89
|
+
gemma_lm.generate(prompt)
|
90
|
+
```
|
91
|
+
|
92
|
+
Call `fit()` on a single batch.
|
93
|
+
```python
|
94
|
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
95
|
+
gemma_lm = keras_hub.models.GemmaCausalLM.from_preset("gemma_2b_en")
|
96
|
+
gemma_lm.fit(x=features, batch_size=2)
|
97
|
+
```
|
98
|
+
|
99
|
+
Call `fit()` with LoRA fine-tuning enabled.
|
100
|
+
```python
|
101
|
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
102
|
+
gemma_lm = keras_hub.models.GemmaCausalLM.from_preset("gemma_2b_en")
|
103
|
+
gemma.backbone.enable_lora(rank=4)
|
104
|
+
gemma_lm.fit(x=features, batch_size=2)
|
105
|
+
```
|
106
|
+
|
107
|
+
Call `fit()` without preprocessing.
|
108
|
+
```python
|
109
|
+
x = {
|
110
|
+
# Token ids for "<bos> Keras is deep learning library<eos>"
|
111
|
+
"token_ids": np.array([[2, 214064, 603, 5271, 6044, 9581, 1, 0]] * 2),
|
112
|
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 0]] * 2),
|
113
|
+
}
|
114
|
+
y = np.array([[214064, 603, 5271, 6044, 9581, 3, 0, 0]] * 2)
|
115
|
+
sw = np.array([[1, 1, 1, 1, 1, 1, 0, 0]] * 2)
|
116
|
+
|
117
|
+
gemma_lm = keras_hub.models.GemmaCausalLM.from_preset(
|
118
|
+
"gemma_2b_en",
|
119
|
+
preprocessor=None,
|
120
|
+
)
|
121
|
+
gemma_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
|
122
|
+
```
|
123
|
+
|
124
|
+
Custom backbone and vocabulary.
|
125
|
+
```python
|
126
|
+
tokenizer = keras_hub.models.GemmaTokenizer(
|
127
|
+
proto="proto.spm",
|
128
|
+
)
|
129
|
+
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor(
|
130
|
+
tokenizer=tokenizer,
|
131
|
+
sequence_length=128,
|
132
|
+
)
|
133
|
+
backbone = keras_hub.models.GemmaBackbone(
|
134
|
+
vocabulary_size=30552,
|
135
|
+
num_layers=4,
|
136
|
+
num_heads=4,
|
137
|
+
hidden_dim=256,
|
138
|
+
intermediate_dim=512,
|
139
|
+
max_sequence_length=128,
|
140
|
+
)
|
141
|
+
gemma_lm = keras_hub.models.GemmaCausalLM(
|
142
|
+
backbone=backbone,
|
143
|
+
preprocessor=preprocessor,
|
144
|
+
)
|
145
|
+
gemma_lm.fit(x=features, batch_size=2)
|
146
|
+
```
|
147
|
+
"""
|
148
|
+
|
149
|
+
backbone_cls = GemmaBackbone
|
150
|
+
preprocessor_cls = GemmaCausalLMPreprocessor
|
151
|
+
|
152
|
+
def __init__(
|
153
|
+
self,
|
154
|
+
backbone,
|
155
|
+
preprocessor=None,
|
156
|
+
**kwargs,
|
157
|
+
):
|
158
|
+
# === Layers ===
|
159
|
+
self.backbone = backbone
|
160
|
+
self.preprocessor = preprocessor
|
161
|
+
|
162
|
+
# === Functional Model ===
|
163
|
+
inputs = backbone.input
|
164
|
+
hidden_states = backbone(inputs)
|
165
|
+
outputs = backbone.token_embedding(hidden_states, reverse=True)
|
166
|
+
super().__init__(
|
167
|
+
inputs=inputs,
|
168
|
+
outputs=outputs,
|
169
|
+
**kwargs,
|
170
|
+
)
|
171
|
+
|
172
|
+
def compile(
|
173
|
+
self,
|
174
|
+
optimizer="auto",
|
175
|
+
loss="auto",
|
176
|
+
*,
|
177
|
+
weighted_metrics="auto",
|
178
|
+
sampler="greedy",
|
179
|
+
**kwargs,
|
180
|
+
):
|
181
|
+
super().compile(
|
182
|
+
optimizer=optimizer,
|
183
|
+
loss=loss,
|
184
|
+
weighted_metrics=weighted_metrics,
|
185
|
+
sampler=sampler,
|
186
|
+
**kwargs,
|
187
|
+
)
|
188
|
+
|
189
|
+
def call_with_cache(
|
190
|
+
self,
|
191
|
+
token_ids,
|
192
|
+
cache,
|
193
|
+
cache_update_index,
|
194
|
+
):
|
195
|
+
"""Forward pass of `GemmaCausalLM` with cache.
|
196
|
+
|
197
|
+
`call_with_cache` adds an additional forward pass for the model for
|
198
|
+
autoregressive inference. Unlike calling the model directly, this method
|
199
|
+
allows caching previous key/value Tensors in multi-head attention layer,
|
200
|
+
and avoids recomputing the outputs of seen tokens.
|
201
|
+
|
202
|
+
Args:
|
203
|
+
token_ids: a dense int Tensor with shape `(batch_size, max_length)`.
|
204
|
+
cache: a dense float Tensor, the cache of key and value.
|
205
|
+
cache_update_index: int, or int Tensor. The index of current inputs in the
|
206
|
+
whole sequence.
|
207
|
+
|
208
|
+
Returns:
|
209
|
+
A (logits, hidden_states, cache) tuple. Where `logits` is the
|
210
|
+
language model logits for the input token_ids, `hidden_states` is
|
211
|
+
the final hidden representation of the input tokens, and `cache` is
|
212
|
+
the decoding cache.
|
213
|
+
"""
|
214
|
+
x = self.backbone.token_embedding(token_ids)
|
215
|
+
x = x * ops.cast(ops.sqrt(self.backbone.hidden_dim), x.dtype)
|
216
|
+
# Each decoder layer has a cache; we update them separately.
|
217
|
+
caches = []
|
218
|
+
for i, transformer_layer in enumerate(self.backbone.transformer_layers):
|
219
|
+
current_cache = cache[:, i, ...]
|
220
|
+
x, next_cache = transformer_layer(
|
221
|
+
x,
|
222
|
+
cache=current_cache,
|
223
|
+
cache_update_index=cache_update_index,
|
224
|
+
)
|
225
|
+
caches.append(next_cache)
|
226
|
+
|
227
|
+
cache = ops.stack(caches, axis=1)
|
228
|
+
hidden_states = x = self.backbone.layer_norm(x)
|
229
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
230
|
+
return logits, hidden_states, cache
|
231
|
+
|
232
|
+
def _build_cache(self, token_ids):
|
233
|
+
"""Build an empty cache for use with `call_with_cache()`."""
|
234
|
+
batch_size = ops.shape(token_ids)[0]
|
235
|
+
max_length = ops.shape(token_ids)[1]
|
236
|
+
num_layers = self.backbone.num_layers
|
237
|
+
num_heads = self.backbone.num_key_value_heads
|
238
|
+
head_dim = self.backbone.head_dim
|
239
|
+
shape = [batch_size, num_layers, 2, max_length, num_heads, head_dim]
|
240
|
+
cache = ops.zeros(shape, dtype=self.compute_dtype)
|
241
|
+
# Seed the cache.
|
242
|
+
_, hidden_states, cache = self.call_with_cache(token_ids, cache, 0)
|
243
|
+
return hidden_states, cache
|
244
|
+
|
245
|
+
def generate_step(
|
246
|
+
self,
|
247
|
+
inputs,
|
248
|
+
stop_token_ids=None,
|
249
|
+
):
|
250
|
+
"""A compilable generation function for a single batch of inputs.
|
251
|
+
|
252
|
+
This function represents the inner, XLA-compilable, generation function
|
253
|
+
for a single batch of inputs. Inputs should have the same structure as
|
254
|
+
model inputs, a dictionary with keys `"token_ids"` and `"padding_mask"`.
|
255
|
+
|
256
|
+
Args:
|
257
|
+
inputs: A dictionary with two keys `"token_ids"` and
|
258
|
+
`"padding_mask"` and batched tensor values.
|
259
|
+
stop_token_ids: Tuple of id's of end token's to stop on. If all
|
260
|
+
sequences have produced a new stop token, generation
|
261
|
+
will stop.
|
262
|
+
"""
|
263
|
+
token_ids, padding_mask = inputs["token_ids"], inputs["padding_mask"]
|
264
|
+
# Create and seed cache with a single forward pass.
|
265
|
+
hidden_states, cache = self._build_cache(token_ids)
|
266
|
+
# Compute the lengths of all user inputted tokens ids.
|
267
|
+
row_lengths = ops.sum(ops.cast(padding_mask, "int32"), axis=-1)
|
268
|
+
# Start at the first index that has no user inputted id.
|
269
|
+
index = ops.min(row_lengths)
|
270
|
+
|
271
|
+
def next(prompt, cache, index):
|
272
|
+
# The cache index is the index of our previous token.
|
273
|
+
cache_update_index = index - 1
|
274
|
+
batch_size = ops.shape(prompt)[0]
|
275
|
+
prompt = ops.slice(prompt, [0, cache_update_index], [batch_size, 1])
|
276
|
+
logits, hidden_states, cache = self.call_with_cache(
|
277
|
+
prompt,
|
278
|
+
cache,
|
279
|
+
cache_update_index,
|
280
|
+
)
|
281
|
+
return (
|
282
|
+
ops.squeeze(logits, axis=1),
|
283
|
+
ops.squeeze(hidden_states, axis=1),
|
284
|
+
cache,
|
285
|
+
)
|
286
|
+
|
287
|
+
token_ids = self.sampler(
|
288
|
+
next=next,
|
289
|
+
prompt=token_ids,
|
290
|
+
cache=cache,
|
291
|
+
index=index,
|
292
|
+
mask=padding_mask,
|
293
|
+
stop_token_ids=stop_token_ids,
|
294
|
+
hidden_states=hidden_states,
|
295
|
+
model=self,
|
296
|
+
)
|
297
|
+
|
298
|
+
# Compute an output padding mask with the token ids we updated.
|
299
|
+
if stop_token_ids is not None:
|
300
|
+
# Build a mask of `stop_token_ids` locations not in the original
|
301
|
+
# prompt (not in locations where `padding_mask` is True).
|
302
|
+
end_locations = any_equal(
|
303
|
+
token_ids, stop_token_ids, ops.logical_not(padding_mask)
|
304
|
+
)
|
305
|
+
|
306
|
+
end_locations = ops.cast(end_locations, "int32")
|
307
|
+
# Use cumsum to get ones in all locations after end_locations.
|
308
|
+
cumsum = ops.cast(ops.cumsum(end_locations, axis=-1), "int32")
|
309
|
+
overflow = cumsum - end_locations
|
310
|
+
# Our padding mask is the inverse of these overflow locations.
|
311
|
+
padding_mask = ops.logical_not(ops.cast(overflow, "bool"))
|
312
|
+
else:
|
313
|
+
# Without early stopping, all locations will have been updated.
|
314
|
+
padding_mask = ops.ones_like(token_ids, dtype="bool")
|
315
|
+
return {
|
316
|
+
"token_ids": token_ids,
|
317
|
+
"padding_mask": padding_mask,
|
318
|
+
}
|
319
|
+
|
320
|
+
def score(
|
321
|
+
self,
|
322
|
+
token_ids,
|
323
|
+
padding_mask=None,
|
324
|
+
scoring_mode="logits",
|
325
|
+
layer_intercept_fn=None,
|
326
|
+
target_ids=None,
|
327
|
+
):
|
328
|
+
"""Score a generation represented by the provided token ids.
|
329
|
+
|
330
|
+
Args:
|
331
|
+
token_ids: A <int>[batch_size, num_tokens] tensor containing tokens
|
332
|
+
to score. Typically, this tensor captures the output from a call
|
333
|
+
to `GemmaCausalLM.generate()`, i.e., tokens for both the input
|
334
|
+
text and the model-generated text.
|
335
|
+
padding_mask: A <bool>[batch_size, num_tokens] tensor indicating the
|
336
|
+
tokens that should be preserved during generation. This is an
|
337
|
+
artifact required by the GemmaBackbone and isn't influential on
|
338
|
+
the computation of this function. If omitted, this function uses
|
339
|
+
`keras.ops.ones()` to create a tensor of the appropriate shape.
|
340
|
+
scoring_mode: The type of scores to return, either "logits" or
|
341
|
+
"loss", both will be per input token.
|
342
|
+
layer_intercept_fn: An optional function for augmenting activations
|
343
|
+
with additional computation, for example, as part of
|
344
|
+
interpretability research. This function will be passed the
|
345
|
+
activations as its first parameter and a numeric index
|
346
|
+
associated with that backbone layer. _This index _is not_ an
|
347
|
+
index into `self.backbone.layers`_. The index -1 accompanies the
|
348
|
+
embeddings returned by calling `self.backbone.token_embedding()`
|
349
|
+
on `token_ids` in the forward direction. All subsequent indexes
|
350
|
+
will be 0-based indices for the activations returned by each of
|
351
|
+
the Transformers layers in the backbone. This function must
|
352
|
+
return a <float>[batch_size, num_tokens, hidden_dims] tensor
|
353
|
+
that can be passed as an input to the next layer in the model.
|
354
|
+
target_ids: An <bool>[batch_size, num_tokens] tensor containing the
|
355
|
+
predicted tokens against which the loss should be computed. If a
|
356
|
+
span of tokens is provided (sequential truthy values along
|
357
|
+
axis=1 in the tensor), the loss will be computed as the
|
358
|
+
aggregate across those tokens.
|
359
|
+
|
360
|
+
Raises:
|
361
|
+
ValueError: If an unsupported scoring_mode is provided, or if the
|
362
|
+
target_ids are not provided when using ScoringMode.LOSS.
|
363
|
+
|
364
|
+
Returns:
|
365
|
+
The per-token scores as a tensor of size
|
366
|
+
<float>[batch_size, num_tokens, vocab_size] in "logits" mode, or
|
367
|
+
<float>[batch_size, num_tokens] in "loss" mode.
|
368
|
+
|
369
|
+
Example:
|
370
|
+
|
371
|
+
Compute gradients between embeddings and loss scores with TensorFlow:
|
372
|
+
```python
|
373
|
+
gemma_lm = keras_hub.models.GemmaCausalLM.from_preset(
|
374
|
+
"gemma_2b_en"
|
375
|
+
)
|
376
|
+
generations = gemma_lm.generate(
|
377
|
+
["This is a", "Where are you"],
|
378
|
+
max_length=30
|
379
|
+
)
|
380
|
+
preprocessed = gemma_lm.preprocessor.generate_preprocess(generations)
|
381
|
+
generation_ids = preprocessed["token_ids"]
|
382
|
+
padding_mask = preprocessed["padding_mask"]
|
383
|
+
target_ids = keras.ops.roll(generation_ids, shift=-1, axis=1)
|
384
|
+
|
385
|
+
embeddings = None
|
386
|
+
with tf.GradientTape(watch_accessed_variables=True) as tape:
|
387
|
+
def layer_intercept_fn(x, i):
|
388
|
+
if i == -1:
|
389
|
+
nonlocal embeddings, tape
|
390
|
+
embeddings = x
|
391
|
+
tape.watch(embeddings)
|
392
|
+
return x
|
393
|
+
|
394
|
+
losses = gemma_lm.score(
|
395
|
+
token_ids=generation_ids,
|
396
|
+
padding_mask=padding_mask,
|
397
|
+
scoring_mode="loss",
|
398
|
+
layer_intercept_fn=layer_intercept_fn,
|
399
|
+
target_ids=target_ids,
|
400
|
+
)
|
401
|
+
|
402
|
+
grads = tape.gradient(losses, embeddings)
|
403
|
+
```
|
404
|
+
"""
|
405
|
+
if scoring_mode not in ("logits", "loss"):
|
406
|
+
raise ValueError(
|
407
|
+
"Unsupported scoring_mode. Must be one of 'logits' or 'loss'."
|
408
|
+
)
|
409
|
+
|
410
|
+
if scoring_mode == "loss" and target_ids is None:
|
411
|
+
raise ValueError(
|
412
|
+
"Cannot compute loss without targets. Please provide target "
|
413
|
+
"token ids via the target_ids parameter."
|
414
|
+
)
|
415
|
+
|
416
|
+
batch_shape = ops.shape(token_ids)[:2]
|
417
|
+
assert len(batch_shape) == 2
|
418
|
+
|
419
|
+
if padding_mask is None:
|
420
|
+
padding_mask = ops.ones(shape=batch_shape)
|
421
|
+
|
422
|
+
if layer_intercept_fn is None:
|
423
|
+
|
424
|
+
def default_layer_intercept_fn(x, unused_i):
|
425
|
+
return x
|
426
|
+
|
427
|
+
layer_intercept_fn = default_layer_intercept_fn
|
428
|
+
|
429
|
+
token_embeddings = self.backbone.token_embedding(token_ids)
|
430
|
+
x = layer_intercept_fn(token_embeddings, -1)
|
431
|
+
|
432
|
+
x = token_embeddings * ops.cast(
|
433
|
+
ops.sqrt(self.backbone.hidden_dim), dtype=self.compute_dtype
|
434
|
+
)
|
435
|
+
for i, transformer_layer in enumerate(self.backbone.transformer_layers):
|
436
|
+
x = transformer_layer(x, padding_mask=padding_mask)
|
437
|
+
x = layer_intercept_fn(x, i)
|
438
|
+
x = self.backbone.layer_norm(x)
|
439
|
+
logits = self.backbone.token_embedding(x, reverse=True)
|
440
|
+
|
441
|
+
if scoring_mode == "logits":
|
442
|
+
return logits
|
443
|
+
|
444
|
+
per_token_loss_fn = keras.losses.SparseCategoricalCrossentropy(
|
445
|
+
from_logits=True, reduction="none"
|
446
|
+
)
|
447
|
+
per_token_loss = per_token_loss_fn(target_ids, logits)
|
448
|
+
return per_token_loss
|
@@ -0,0 +1,167 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import keras
|
16
|
+
from absl import logging
|
17
|
+
|
18
|
+
from keras_hub.src.api_export import keras_hub_export
|
19
|
+
from keras_hub.src.models.gemma.gemma_preprocessor import GemmaPreprocessor
|
20
|
+
from keras_hub.src.utils.keras_utils import (
|
21
|
+
convert_inputs_to_list_of_tensor_segments,
|
22
|
+
)
|
23
|
+
from keras_hub.src.utils.tensor_utils import strip_to_ragged
|
24
|
+
|
25
|
+
|
26
|
+
@keras_hub_export("keras_hub.models.GemmaCausalLMPreprocessor")
|
27
|
+
class GemmaCausalLMPreprocessor(GemmaPreprocessor):
|
28
|
+
"""Gemma Causal LM preprocessor.
|
29
|
+
|
30
|
+
This preprocessing layer is meant for use with
|
31
|
+
`keras_hub.models.GemmaCausalLM`. By default, it will take in batches of
|
32
|
+
strings, and return outputs in a `(x, y, sample_weight)` format, where the
|
33
|
+
`y` label is the next token id in the `x` sequence.
|
34
|
+
|
35
|
+
For use with generation, the layer also exposes two methods
|
36
|
+
`generate_preprocess()` and `generate_postprocess()`. When this preprocessor
|
37
|
+
is attached to a `keras_hub.models.GemmaCausalLM` instance, these methods
|
38
|
+
will be called implicitly in `generate()`. They can also be called
|
39
|
+
standalone (e.g. to precompute preprocessing inputs for generation in a
|
40
|
+
separate process).
|
41
|
+
|
42
|
+
Args:
|
43
|
+
tokenizer: A `keras_hub.models.GemmaTokenizer` instance.
|
44
|
+
sequence_length: The length of the packed inputs.
|
45
|
+
add_start_token: If `True`, the preprocessor will prepend the tokenizer
|
46
|
+
start token to each input sequence.
|
47
|
+
add_end_token: If `True`, the preprocessor will append the tokenizer
|
48
|
+
end token to each input sequence.
|
49
|
+
|
50
|
+
Call arguments:
|
51
|
+
x: A string, `tf.Tensor` or list of python strings.
|
52
|
+
y: Label data. Should always be `None` as the layer generates labels.
|
53
|
+
sample_weight: Label weights. Should always be `None` as the layer
|
54
|
+
generates label weights.
|
55
|
+
sequence_length: Pass to override the configured `sequence_length` of
|
56
|
+
the layer.
|
57
|
+
|
58
|
+
Examples:
|
59
|
+
```python
|
60
|
+
# Load the preprocessor from a preset.
|
61
|
+
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
|
62
|
+
"gemma_2b_en"
|
63
|
+
)
|
64
|
+
|
65
|
+
# Tokenize and pack a single sentence.
|
66
|
+
preprocessor("The quick brown fox jumped.")
|
67
|
+
|
68
|
+
# Tokenize a batch of sentences.
|
69
|
+
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
|
70
|
+
|
71
|
+
# Apply tokenization to a `tf.data.Dataset`.
|
72
|
+
features = tf.constant(["The quick brown fox.", "Call me Ishmael."])
|
73
|
+
ds = tf.data.Dataset.from_tensor_slices(features)
|
74
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
75
|
+
|
76
|
+
# Prepare tokens for generation (no end token).
|
77
|
+
preprocessor.generate_preprocess(["The quick brown fox jumped."])
|
78
|
+
|
79
|
+
# Map generation outputs back to strings.
|
80
|
+
preprocessor.generate_postprocess({
|
81
|
+
'token_ids': np.array([[2, 714, 4320, 8426, 25341, 32292, 235265, 0]]),
|
82
|
+
'padding_mask': np.array([[ 1, 1, 1, 1, 1, 1, 1, 0]]),
|
83
|
+
})
|
84
|
+
```
|
85
|
+
"""
|
86
|
+
|
87
|
+
def call(
|
88
|
+
self,
|
89
|
+
x,
|
90
|
+
y=None,
|
91
|
+
sample_weight=None,
|
92
|
+
sequence_length=None,
|
93
|
+
):
|
94
|
+
if y is not None or sample_weight is not None:
|
95
|
+
logging.warning(
|
96
|
+
"`GemmaCausalLMPreprocessor` generates `y` and `sample_weight` "
|
97
|
+
"based on your input data, but your data already contains `y` "
|
98
|
+
"or `sample_weight`. Your `y` and `sample_weight` will be "
|
99
|
+
"ignored."
|
100
|
+
)
|
101
|
+
sequence_length = sequence_length or self.sequence_length
|
102
|
+
|
103
|
+
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
104
|
+
x = self.tokenizer(x)
|
105
|
+
# Pad with one extra token to account for the truncation below.
|
106
|
+
token_ids, padding_mask = self.packer(
|
107
|
+
x,
|
108
|
+
sequence_length=sequence_length + 1,
|
109
|
+
add_start_value=self.add_start_token,
|
110
|
+
add_end_value=self.add_end_token,
|
111
|
+
)
|
112
|
+
# The last token does not have a next token, so we truncate it out.
|
113
|
+
x = {
|
114
|
+
"token_ids": token_ids[..., :-1],
|
115
|
+
"padding_mask": padding_mask[..., :-1],
|
116
|
+
}
|
117
|
+
# Target `y` will be the next token.
|
118
|
+
y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:]
|
119
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
120
|
+
|
121
|
+
def generate_preprocess(
|
122
|
+
self,
|
123
|
+
x,
|
124
|
+
sequence_length=None,
|
125
|
+
):
|
126
|
+
"""Convert strings to integer token input for generation.
|
127
|
+
|
128
|
+
Similar to calling the layer for training, this method takes in strings
|
129
|
+
or tensor strings, tokenizes and packs the input, and computes a padding
|
130
|
+
mask masking all inputs not filled in with a padded value.
|
131
|
+
|
132
|
+
Unlike calling the layer for training, this method does not compute
|
133
|
+
labels and will never append a `tokenizer.end_token_id` to the end of
|
134
|
+
the sequence (as generation is expected to continue at the end of the
|
135
|
+
inputted prompt).
|
136
|
+
"""
|
137
|
+
if not self.built:
|
138
|
+
self.build(None)
|
139
|
+
|
140
|
+
x = convert_inputs_to_list_of_tensor_segments(x)[0]
|
141
|
+
x = self.tokenizer(x)
|
142
|
+
token_ids, padding_mask = self.packer(
|
143
|
+
x, sequence_length=sequence_length, add_end_value=False
|
144
|
+
)
|
145
|
+
return {
|
146
|
+
"token_ids": token_ids,
|
147
|
+
"padding_mask": padding_mask,
|
148
|
+
}
|
149
|
+
|
150
|
+
def generate_postprocess(self, x):
|
151
|
+
"""Convert integer token output to strings for generation.
|
152
|
+
|
153
|
+
This method reverses `generate_preprocess()`, by first removing all
|
154
|
+
padding and start/end tokens, and then converting the integer sequence
|
155
|
+
back to a string.
|
156
|
+
"""
|
157
|
+
if not self.built:
|
158
|
+
self.build(None)
|
159
|
+
|
160
|
+
token_ids, padding_mask = x["token_ids"], x["padding_mask"]
|
161
|
+
ids_to_strip = (
|
162
|
+
self.tokenizer.start_token_id,
|
163
|
+
self.tokenizer.end_token_id,
|
164
|
+
self.tokenizer.pad_token_id,
|
165
|
+
)
|
166
|
+
token_ids = strip_to_ragged(token_ids, padding_mask, ids_to_strip)
|
167
|
+
return self.tokenizer.detokenize(token_ids)
|