keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,187 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import keras
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
+ from keras_hub.src.models.gpt2.gpt2_tokenizer import GPT2Tokenizer
21
+ from keras_hub.src.models.preprocessor import Preprocessor
22
+ from keras_hub.src.utils.keras_utils import (
23
+ convert_inputs_to_list_of_tensor_segments,
24
+ )
25
+
26
+
27
+ @keras_hub_export("keras_hub.models.GPT2Preprocessor")
28
+ class GPT2Preprocessor(Preprocessor):
29
+ """GPT2 preprocessing layer which tokenizes and packs inputs.
30
+
31
+ This preprocessing layer will do 2 things:
32
+
33
+ - Tokenize the inputs using the `tokenizer`.
34
+ - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`, that can
35
+ be passed directly to a `keras_hub.models.GPT2Backbone`.
36
+
37
+ This layer can be used directly with `tf.data.Dataset.map` to preprocess
38
+ string data in the `(x, y, sample_weight)` format used by
39
+ `keras.Model.fit`.
40
+
41
+ The call method of this layer accepts three arguments, `x`, `y`, and
42
+ `sample_weight`. `x` can be a python string or tensor representing a single
43
+ segment, a list of python strings representing a batch of single segments,
44
+ or a list of tensors representing multiple segments to be packed together.
45
+ `y` and `sample_weight` are both optional, can have any format, and will be
46
+ passed through unaltered.
47
+
48
+ `GPT2Preprocessor` forces the input to have only one segment, as GPT2 is
49
+ mainly used for generation tasks. For tasks having multi-segment inputs
50
+ like "glue/mnli", please use a model designed for classification purposes
51
+ such as BERT or RoBERTa.
52
+
53
+ Args:
54
+ tokenizer: A `keras_hub.models.GPT2Tokenizer` instance.
55
+ sequence_length: The length of the packed inputs.
56
+ add_start_token: If `True`, the preprocessor will prepend the tokenizer
57
+ start token to each input sequence.
58
+ add_end_token: If `True`, the preprocessor will append the tokenizer
59
+ end token to each input sequence.
60
+
61
+ Call arguments:
62
+ x: A string, `tf.Tensor` or list of python strings.
63
+ y: Any label data. Will be passed through unaltered.
64
+ sample_weight: Any label weight data. Will be passed through unaltered.
65
+ sequence_length: Pass to override the configured `sequence_length` of
66
+ the layer.
67
+
68
+ Examples:
69
+
70
+ Directly calling the layer on data.
71
+ ```python
72
+ preprocessor = keras_hub.models.GPT2Preprocessor.from_preset("gpt2_base_en")
73
+
74
+ # Tokenize and pack a single sentence.
75
+ preprocessor("The quick brown fox jumped.")
76
+
77
+ # Tokenize a batch of single sentences.
78
+ preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
79
+
80
+ # Custom vocabulary.
81
+ features = ["a quick fox.", "a fox quick."]
82
+ vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
83
+ merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
84
+ merges += ["Ġ f", "o x", "Ġf ox"]
85
+ tokenizer = keras_hub.models.GPT2Tokenizer(
86
+ vocabulary=vocab,
87
+ merges=merges,
88
+ )
89
+ preprocessor = keras_hub.models.GPT2Preprocessor(tokenizer=tokenizer)
90
+ preprocessor("The quick brown fox jumped.")
91
+ ```
92
+
93
+ Mapping with `tf.data.Dataset`.
94
+ ```python
95
+ preprocessor = keras_hub.models.GPT2Preprocessor.from_preset("gpt2_base_en")
96
+
97
+ text = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
98
+ label = tf.constant([1, 1])
99
+
100
+ # Map labeled single sentences.
101
+ ds = tf.data.Dataset.from_tensor_slices((text, label))
102
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
103
+
104
+ # Map unlabeled single sentences.
105
+ ds = tf.data.Dataset.from_tensor_slices(text)
106
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
107
+ ```
108
+ """
109
+
110
+ tokenizer_cls = GPT2Tokenizer
111
+
112
+ def __init__(
113
+ self,
114
+ tokenizer,
115
+ sequence_length=1024,
116
+ add_start_token=True,
117
+ add_end_token=True,
118
+ **kwargs,
119
+ ):
120
+ super().__init__(**kwargs)
121
+ self.tokenizer = tokenizer
122
+ self.packer = None
123
+ self.sequence_length = sequence_length
124
+ self.add_start_token = add_start_token
125
+ self.add_end_token = add_end_token
126
+
127
+ def build(self, input_shape):
128
+ # Defer packer creation to `build()` so that we can be sure tokenizer
129
+ # assets have loaded when restoring a saved model.
130
+ self.packer = StartEndPacker(
131
+ start_value=self.tokenizer.start_token_id,
132
+ end_value=self.tokenizer.end_token_id,
133
+ pad_value=self.tokenizer.pad_token_id,
134
+ sequence_length=self.sequence_length,
135
+ return_padding_mask=True,
136
+ )
137
+ self.built = True
138
+
139
+ def call(
140
+ self,
141
+ x,
142
+ y=None,
143
+ sample_weight=None,
144
+ sequence_length=None,
145
+ ):
146
+ x = convert_inputs_to_list_of_tensor_segments(x)
147
+ if len(x) != 1:
148
+ raise ValueError(
149
+ "GPT2 requires each input feature to contain only "
150
+ f"one segment, but received {len(x)}. If you are using GPT2 "
151
+ "for a multi-segment classification task, please refer to "
152
+ "classification models like BERT or RoBERTa."
153
+ )
154
+ sequence_length = sequence_length or self.sequence_length
155
+ token_ids, padding_mask = self.packer(
156
+ self.tokenizer(x[0]),
157
+ sequence_length=sequence_length,
158
+ add_start_value=self.add_start_token,
159
+ add_end_value=self.add_end_token,
160
+ )
161
+ x = {
162
+ "token_ids": token_ids,
163
+ "padding_mask": padding_mask,
164
+ }
165
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
166
+
167
+ def get_config(self):
168
+ config = super().get_config()
169
+ config.update(
170
+ {
171
+ "sequence_length": self.sequence_length,
172
+ "add_start_token": self.add_start_token,
173
+ "add_end_token": self.add_end_token,
174
+ }
175
+ )
176
+ return config
177
+
178
+ @property
179
+ def sequence_length(self):
180
+ """The padded length of model input sequences."""
181
+ return self._sequence_length
182
+
183
+ @sequence_length.setter
184
+ def sequence_length(self, value):
185
+ self._sequence_length = value
186
+ if self.packer is not None:
187
+ self.packer.sequence_length = value
@@ -0,0 +1,82 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """GPT-2 model preset configurations."""
15
+
16
+ # Metadata for loading pretrained model weights.
17
+ backbone_presets = {
18
+ "gpt2_base_en": {
19
+ "metadata": {
20
+ "description": (
21
+ "12-layer GPT-2 model where case is maintained. "
22
+ "Trained on WebText."
23
+ ),
24
+ "params": 124439808,
25
+ "official_name": "GPT-2",
26
+ "path": "gpt2",
27
+ "model_card": "https://github.com/openai/gpt-2/blob/master/model_card.md",
28
+ },
29
+ "kaggle_handle": "kaggle://keras/gpt2/keras/gpt2_base_en/2",
30
+ },
31
+ "gpt2_medium_en": {
32
+ "metadata": {
33
+ "description": (
34
+ "24-layer GPT-2 model where case is maintained. "
35
+ "Trained on WebText."
36
+ ),
37
+ "params": 354823168,
38
+ "official_name": "GPT-2",
39
+ "path": "gpt2",
40
+ "model_card": "https://github.com/openai/gpt-2/blob/master/model_card.md",
41
+ },
42
+ "kaggle_handle": "kaggle://keras/gpt2/keras/gpt2_medium_en/2",
43
+ },
44
+ "gpt2_large_en": {
45
+ "metadata": {
46
+ "description": (
47
+ "36-layer GPT-2 model where case is maintained. "
48
+ "Trained on WebText."
49
+ ),
50
+ "params": 774030080,
51
+ "official_name": "GPT-2",
52
+ "path": "gpt2",
53
+ "model_card": "https://github.com/openai/gpt-2/blob/master/model_card.md",
54
+ },
55
+ "kaggle_handle": "kaggle://keras/gpt2/keras/gpt2_large_en/2",
56
+ },
57
+ "gpt2_extra_large_en": {
58
+ "metadata": {
59
+ "description": (
60
+ "48-layer GPT-2 model where case is maintained. "
61
+ "Trained on WebText."
62
+ ),
63
+ "params": 1557611200,
64
+ "official_name": "GPT-2",
65
+ "path": "gpt2",
66
+ "model_card": "https://github.com/openai/gpt-2/blob/master/model_card.md",
67
+ },
68
+ "kaggle_handle": "kaggle://keras/gpt2/keras/gpt2_extra_large_en/2",
69
+ },
70
+ "gpt2_base_en_cnn_dailymail": {
71
+ "metadata": {
72
+ "description": (
73
+ "12-layer GPT-2 model where case is maintained. "
74
+ "Finetuned on the CNN/DailyMail summarization dataset."
75
+ ),
76
+ "params": 124439808,
77
+ "official_name": "GPT-2",
78
+ "path": "gpt2",
79
+ },
80
+ "kaggle_handle": "kaggle://keras/gpt2/keras/gpt2_base_en_cnn_dailymail/2",
81
+ },
82
+ }
@@ -0,0 +1,110 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.tokenizers.byte_pair_tokenizer import BytePairTokenizer
18
+
19
+
20
+ @keras_hub_export("keras_hub.models.GPT2Tokenizer")
21
+ class GPT2Tokenizer(BytePairTokenizer):
22
+ """A GPT-2 tokenizer using Byte-Pair Encoding subword segmentation.
23
+
24
+ This tokenizer class will tokenize raw strings into integer sequences and
25
+ is based on `keras_hub.tokenizers.BytePairTokenizer`. Unlike the
26
+ underlying tokenizer, it will check for all special tokens needed by GPT-2
27
+ models and provides a `from_preset()` method to automatically download
28
+ a matching vocabulary for a GPT-2 preset.
29
+
30
+ This tokenizer does not provide truncation or padding of inputs.
31
+
32
+ If input is a batch of strings (rank > 0), the layer will output a
33
+ `tf.RaggedTensor` where the last dimension of the output is ragged.
34
+
35
+ If input is a scalar string (rank == 0), the layer will output a dense
36
+ `tf.Tensor` with static shape `[None]`.
37
+
38
+ Args:
39
+ vocabulary: string or dict, maps token to integer ids. If it is a
40
+ string, it should be the file path to a json file.
41
+ merges: string or list, contains the merge rule. If it is a string,
42
+ it should be the file path to merge rules. The merge rule file
43
+ should have one merge rule per line. Every merge rule contains
44
+ merge entities separated by a space.
45
+
46
+ Examples:
47
+
48
+ ```python
49
+ # Unbatched input.
50
+ tokenizer = keras_hub.models.GPT2Tokenizer.from_preset("gpt2_base_en")
51
+ tokenizer("The quick brown fox jumped.")
52
+
53
+ # Batched input.
54
+ tokenizer(["The quick brown fox jumped.", "The fox slept."])
55
+
56
+ # Detokenization.
57
+ tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
58
+
59
+ # Custom vocabulary.
60
+ vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
61
+ merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
62
+ merges += ["Ġ f", "o x", "Ġf ox"]
63
+ tokenizer = keras_hub.models.GPT2Tokenizer(vocabulary=vocab, merges=merges)
64
+ tokenizer("a quick fox.")
65
+ ```
66
+ """
67
+
68
+ def __init__(
69
+ self,
70
+ vocabulary=None,
71
+ merges=None,
72
+ **kwargs,
73
+ ):
74
+ # GPT2 uses the same start as end token, i.e., "<|endoftext|>".
75
+ self.end_token = self.start_token = "<|endoftext|>"
76
+
77
+ super().__init__(
78
+ vocabulary=vocabulary,
79
+ merges=merges,
80
+ unsplittable_tokens=[self.end_token],
81
+ **kwargs,
82
+ )
83
+
84
+ def set_vocabulary_and_merges(self, vocabulary, merges):
85
+ super().set_vocabulary_and_merges(vocabulary, merges)
86
+
87
+ if vocabulary is not None:
88
+ # Check for necessary special tokens.
89
+ if self.end_token not in self.get_vocabulary():
90
+ raise ValueError(
91
+ f"Cannot find token `'{self.end_token}'` in the provided "
92
+ f"`vocabulary`. Please provide `'{self.end_token}'` in "
93
+ "your `vocabulary` or use a pretrained `vocabulary` name."
94
+ )
95
+
96
+ self.end_token_id = self.token_to_id(self.end_token)
97
+ self.start_token_id = self.end_token_id
98
+ self.pad_token_id = 0
99
+ else:
100
+ self.end_token_id = None
101
+ self.start_token_id = None
102
+ self.pad_token_id = None
103
+
104
+ def get_config(self):
105
+ config = super().get_config()
106
+ # In the constructor, we pass the list of special tokens to the
107
+ # `unsplittable_tokens` arg of the superclass' constructor. Hence, we
108
+ # delete it from the config here.
109
+ del config["unsplittable_tokens"]
110
+ return config
@@ -0,0 +1,13 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
@@ -0,0 +1,251 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import keras
16
+ from keras import ops
17
+
18
+ from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
19
+ from keras_hub.src.utils.keras_utils import clone_initializer
20
+
21
+
22
+ class GPTNeoXAttention(keras.layers.Layer):
23
+ """GPTNeoXAttention layer.
24
+
25
+ This is an implementation of attention layer as described in the
26
+ paper ["GPT-NeoX-20B: An Open-Source Autoregressive Language Model"](https://arxiv.org/abs/2204.06745).
27
+ Effectively, this layer implements Multi-Head Self Attention with a rotary
28
+ embedding for encoding position information.
29
+
30
+ Args:
31
+ num_heads: int. Number of attention heads.
32
+ hidden_dim: int. Hidden dimension of the input, i.e., `hidden_states`.
33
+ bucket_size: int. The size of the relative position
34
+ buckets. Generally equal to `max_sequence_length // 2`.
35
+ dropout: float. Dropout probability.
36
+ kernel_initializer: string or `keras.initializers` initializer.
37
+ The kernel initializer for the dense layers.
38
+ bias_initializer: string or `keras.initializers` initializer.
39
+ The bias initializer for the dense layers.
40
+ rotary_percentage: float. The percentage by which query, key, value
41
+ matrices are to be rotated.
42
+ rotary_max_wavelength: int. The maximum angular wavelength of the
43
+ sine/cosine curves, for rotary embeddings.
44
+ max_sequence_length: int. The maximum input sequence length.
45
+ """
46
+
47
+ def __init__(
48
+ self,
49
+ num_heads,
50
+ hidden_dim,
51
+ dropout=0.0,
52
+ kernel_initializer="glorot_uniform",
53
+ bias_initializer="zeros",
54
+ rotary_percentage=0.25,
55
+ rotary_max_wavelength=10000,
56
+ max_sequence_length=512,
57
+ **kwargs,
58
+ ):
59
+ super().__init__(**kwargs)
60
+ self.num_heads = num_heads
61
+ self.hidden_dim = hidden_dim
62
+ self.rotary_percentage = rotary_percentage
63
+ self.dropout = dropout
64
+ self.attn_head_size = hidden_dim // num_heads
65
+ self.rotary_max_wavelength = rotary_max_wavelength
66
+ self.rotary_dim = int(self.attn_head_size * rotary_percentage)
67
+ self.rotary_embedding_layer = RotaryEmbedding(
68
+ max_wavelength=rotary_max_wavelength,
69
+ dtype=self.dtype_policy,
70
+ )
71
+ self.kernel_initializer = keras.initializers.get(kernel_initializer)
72
+ self.bias_initializer = keras.initializers.get(bias_initializer)
73
+ self.max_sequence_length = max_sequence_length
74
+
75
+ def build(self, input_shape):
76
+ self._qkv_dense = keras.layers.EinsumDense(
77
+ equation="abc,cde->abde",
78
+ output_shape=(None, self.num_heads, 3 * self.attn_head_size),
79
+ bias_axes="de",
80
+ **self._get_common_kwargs_for_sublayer(use_bias=True),
81
+ dtype=self.dtype_policy,
82
+ name="query_key_value",
83
+ )
84
+ self._qkv_dense.build(input_shape)
85
+
86
+ self._attn_dropout_layer = keras.layers.Dropout(
87
+ self.dropout,
88
+ dtype=self.dtype_policy,
89
+ name="attention_dropout",
90
+ )
91
+
92
+ self._softmax = keras.layers.Softmax(
93
+ axis=-1,
94
+ dtype="float32",
95
+ name="attention_softmax",
96
+ )
97
+
98
+ # Output.
99
+ self._output_dense = keras.layers.EinsumDense(
100
+ equation="abc,cd->abd",
101
+ output_shape=(None, self.hidden_dim),
102
+ bias_axes="d",
103
+ **self._get_common_kwargs_for_sublayer(use_bias=True),
104
+ dtype=self.dtype_policy,
105
+ name="attention_output",
106
+ )
107
+
108
+ self._output_dense.build(input_shape)
109
+ self.built = True
110
+
111
+ def _get_common_kwargs_for_sublayer(self, use_bias=True):
112
+ common_kwargs = {}
113
+
114
+ kernel_initializer = clone_initializer(self.kernel_initializer)
115
+ bias_initializer = clone_initializer(self.bias_initializer)
116
+
117
+ common_kwargs["kernel_initializer"] = kernel_initializer
118
+ if use_bias:
119
+ common_kwargs["bias_initializer"] = bias_initializer
120
+
121
+ return common_kwargs
122
+
123
+ def _masked_softmax(self, attention_scores, attention_mask=None):
124
+ if attention_mask is not None:
125
+ mask_expansion_axis = -3
126
+ for _ in range(
127
+ len(attention_scores.shape) - len(attention_mask.shape)
128
+ ):
129
+ attention_mask = ops.expand_dims(
130
+ attention_mask, axis=mask_expansion_axis
131
+ )
132
+ return self._softmax(attention_scores, attention_mask)
133
+
134
+ def _compute_attention(
135
+ self, query, key, value, attention_mask=None, training=None
136
+ ):
137
+ attention_scores = ops.einsum("aecd,abcd->acbe", key, query)
138
+
139
+ norm_factor = ops.sqrt(
140
+ ops.convert_to_tensor(self.attn_head_size, self.compute_dtype)
141
+ )
142
+
143
+ attention_scores /= norm_factor
144
+
145
+ attention_scores = self._masked_softmax(
146
+ attention_scores, attention_mask
147
+ )
148
+ attention_scores = self._attn_dropout_layer(
149
+ attention_scores, training=training
150
+ )
151
+ attention_output = ops.einsum(
152
+ "acbe,aecd->abcd", attention_scores, value
153
+ )
154
+
155
+ return attention_output
156
+
157
+ def call(
158
+ self,
159
+ hidden_states,
160
+ attention_mask=None,
161
+ cache=None,
162
+ cache_update_index=None,
163
+ training=None,
164
+ ):
165
+ query_key_value = self._qkv_dense(hidden_states)
166
+
167
+ query = query_key_value[..., : self.attn_head_size]
168
+
169
+ if cache is not None:
170
+ key_cache = cache[:, 0, ...]
171
+ value_cache = cache[:, 1, ...]
172
+ if cache_update_index is None:
173
+ key = key_cache
174
+ value = value_cache
175
+ else:
176
+ key_update = query_key_value[
177
+ ..., self.attn_head_size : 2 * self.attn_head_size
178
+ ]
179
+ value_update = query_key_value[..., 2 * self.attn_head_size :]
180
+ start = [0, cache_update_index, 0, 0]
181
+ key = ops.slice_update(key_cache, start, key_update)
182
+ value = ops.slice_update(value_cache, start, value_update)
183
+ cache = ops.stack((key, value), axis=1)
184
+ else:
185
+ if cache_update_index is not None:
186
+ raise ValueError(
187
+ "`cache_update_index` should not be set if `cache` is "
188
+ f"`None`. Received: cache={cache}, "
189
+ f"cache_update_index={cache_update_index}"
190
+ )
191
+ key = query_key_value[
192
+ ..., self.attn_head_size : 2 * self.attn_head_size
193
+ ]
194
+ value = query_key_value[..., 2 * self.attn_head_size :]
195
+
196
+ query_rot, query_pass = (
197
+ query[..., : self.rotary_dim],
198
+ query[..., self.rotary_dim :],
199
+ )
200
+ key_rot, key_pass = (
201
+ key[..., : self.rotary_dim],
202
+ key[..., self.rotary_dim :],
203
+ )
204
+
205
+ query_rot = self.rotary_embedding_layer(query_rot)
206
+ key_rot = self.rotary_embedding_layer(key_rot)
207
+
208
+ query = ops.concatenate((query_rot, query_pass), axis=-1)
209
+ key = ops.concatenate((key_rot, key_pass), axis=-1)
210
+
211
+ attention_output = self._compute_attention(
212
+ query=query,
213
+ key=key,
214
+ value=value,
215
+ attention_mask=attention_mask,
216
+ training=training,
217
+ )
218
+
219
+ # Reshape `attention_output` to `(batch_size, sequence_length, hidden_dim)`.
220
+ attention_output = ops.reshape(
221
+ attention_output,
222
+ [
223
+ ops.shape(attention_output)[0],
224
+ ops.shape(attention_output)[1],
225
+ self.hidden_dim,
226
+ ],
227
+ )
228
+
229
+ attention_output = self._output_dense(attention_output)
230
+
231
+ return attention_output, cache
232
+
233
+ def get_config(self):
234
+ config = super().get_config()
235
+ config.update(
236
+ {
237
+ "num_heads": self.num_heads,
238
+ "hidden_dim": self.hidden_dim,
239
+ "dropout": self.dropout,
240
+ "kernel_initializer": keras.initializers.serialize(
241
+ self.kernel_initializer
242
+ ),
243
+ "bias_initializer": keras.initializers.serialize(
244
+ self.bias_initializer
245
+ ),
246
+ "rotary_percentage": self.rotary_percentage,
247
+ "rotary_max_wavelength": self.rotary_max_wavelength,
248
+ "max_sequence_length": self.max_sequence_length,
249
+ }
250
+ )
251
+ return config