keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,175 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import keras
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.layers.preprocessing.multi_segment_packer import (
20
+ MultiSegmentPacker,
21
+ )
22
+ from keras_hub.src.models.distil_bert.distil_bert_tokenizer import (
23
+ DistilBertTokenizer,
24
+ )
25
+ from keras_hub.src.models.preprocessor import Preprocessor
26
+ from keras_hub.src.utils.keras_utils import (
27
+ convert_inputs_to_list_of_tensor_segments,
28
+ )
29
+
30
+
31
+ @keras_hub_export("keras_hub.models.DistilBertPreprocessor")
32
+ class DistilBertPreprocessor(Preprocessor):
33
+ """A DistilBERT preprocessing layer which tokenizes and packs inputs.
34
+
35
+ This preprocessing layer will do three things:
36
+
37
+ 1. Tokenize any number of input segments using the `tokenizer`.
38
+ 2. Pack the inputs together using a `keras_hub.layers.MultiSegmentPacker`.
39
+ with the appropriate `"[CLS]"`, `"[SEP]"` and `"[PAD]"` tokens.
40
+ 3. Construct a dictionary of with keys `"token_ids"` and `"padding_mask"`,
41
+ that can be passed directly to a DistilBERT model.
42
+
43
+ This layer can be used directly with `tf.data.Dataset.map` to preprocess
44
+ string data in the `(x, y, sample_weight)` format used by
45
+ `keras.Model.fit`.
46
+
47
+ Args:
48
+ tokenizer: A `keras_hub.models.DistilBertTokenizer` instance.
49
+ sequence_length: The length of the packed inputs.
50
+ truncate: string. The algorithm to truncate a list of batched segments
51
+ to fit within `sequence_length`. The value can be either
52
+ `round_robin` or `waterfall`:
53
+ - `"round_robin"`: Available space is assigned one token at a
54
+ time in a round-robin fashion to the inputs that still need
55
+ some, until the limit is reached.
56
+ - `"waterfall"`: The allocation of the budget is done using a
57
+ "waterfall" algorithm that allocates quota in a
58
+ left-to-right manner and fills up the buckets until we run
59
+ out of budget. It supports an arbitrary number of segments.
60
+
61
+ Call arguments:
62
+ x: A tensor of single string sequences, or a tuple of multiple
63
+ tensor sequences to be packed together. Inputs may be batched or
64
+ unbatched. For single sequences, raw python inputs will be converted
65
+ to tensors. For multiple sequences, pass tensors directly.
66
+ y: Any label data. Will be passed through unaltered.
67
+ sample_weight: Any label weight data. Will be passed through unaltered.
68
+
69
+ Examples:
70
+
71
+ Directly calling the layer on data.
72
+ ```python
73
+ preprocessor = keras_hub.models.DistilBertPreprocessor.from_preset(
74
+ "distil_bert_base_en_uncased"
75
+ )
76
+ preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
77
+
78
+ # Custom vocabulary.
79
+ vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
80
+ vocab += ["The", "quick", "brown", "fox", "jumped", "."]
81
+ tokenizer = keras_hub.models.DistilBertTokenizer(vocabulary=vocab)
82
+ preprocessor = keras_hub.models.DistilBertPreprocessor(tokenizer)
83
+ preprocessor("The quick brown fox jumped.")
84
+ ```
85
+
86
+ Mapping with `tf.data.Dataset`.
87
+ ```python
88
+ preprocessor = keras_hub.models.DistilBertPreprocessor.from_preset(
89
+ "distil_bert_base_en_uncased"
90
+ )
91
+
92
+ first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
93
+ second = tf.constant(["The fox tripped.", "Oh look, a whale."])
94
+ label = tf.constant([1, 1])
95
+ # Map labeled single sentences.
96
+ ds = tf.data.Dataset.from_tensor_slices((first, label))
97
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
98
+
99
+
100
+ # Map unlabeled single sentences.
101
+ ds = tf.data.Dataset.from_tensor_slices(first)
102
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
103
+
104
+ # Map labeled sentence pairs.
105
+ ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
106
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
107
+ # Map unlabeled sentence pairs.
108
+ ds = tf.data.Dataset.from_tensor_slices((first, second))
109
+
110
+ # Watch out for tf.data's default unpacking of tuples here!
111
+ # Best to invoke the `preprocessor` directly in this case.
112
+ ds = ds.map(
113
+ lambda first, second: preprocessor(x=(first, second)),
114
+ num_parallel_calls=tf.data.AUTOTUNE,
115
+ )
116
+ ```
117
+ """
118
+
119
+ tokenizer_cls = DistilBertTokenizer
120
+
121
+ def __init__(
122
+ self,
123
+ tokenizer,
124
+ sequence_length=512,
125
+ truncate="round_robin",
126
+ **kwargs,
127
+ ):
128
+ super().__init__(**kwargs)
129
+ self.tokenizer = tokenizer
130
+ self.packer = None
131
+ self.sequence_length = sequence_length
132
+ self.truncate = truncate
133
+
134
+ def build(self, input_shape):
135
+ super().build(input_shape)
136
+ # Defer masker creation to `build()` so that we can be sure tokenizer
137
+ # assets have loaded when restoring a saved model.
138
+ self.packer = MultiSegmentPacker(
139
+ start_value=self.tokenizer.cls_token_id,
140
+ end_value=self.tokenizer.sep_token_id,
141
+ pad_value=self.tokenizer.pad_token_id,
142
+ truncate=self.truncate,
143
+ sequence_length=self.sequence_length,
144
+ )
145
+
146
+ def call(self, x, y=None, sample_weight=None):
147
+ x = convert_inputs_to_list_of_tensor_segments(x)
148
+ x = [self.tokenizer(segment) for segment in x]
149
+ token_ids, _ = self.packer(x)
150
+ x = {
151
+ "token_ids": token_ids,
152
+ "padding_mask": token_ids != self.tokenizer.pad_token_id,
153
+ }
154
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
155
+
156
+ def get_config(self):
157
+ config = super().get_config()
158
+ config.update(
159
+ {
160
+ "sequence_length": self.sequence_length,
161
+ "truncate": self.truncate,
162
+ }
163
+ )
164
+ return config
165
+
166
+ @property
167
+ def sequence_length(self):
168
+ """The padded length of model input sequences."""
169
+ return self._sequence_length
170
+
171
+ @sequence_length.setter
172
+ def sequence_length(self, value):
173
+ self._sequence_length = value
174
+ if self.packer is not None:
175
+ self.packer.sequence_length = value
@@ -0,0 +1,57 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """DistilBERT model preset configurations."""
15
+
16
+ backbone_presets = {
17
+ "distil_bert_base_en_uncased": {
18
+ "metadata": {
19
+ "description": (
20
+ "6-layer DistilBERT model where all input is lowercased. "
21
+ "Trained on English Wikipedia + BooksCorpus using BERT as the "
22
+ "teacher model."
23
+ ),
24
+ "params": 66362880,
25
+ "official_name": "DistilBERT",
26
+ "path": "distil_bert",
27
+ "model_card": "https://huggingface.co/distilbert-base-uncased",
28
+ },
29
+ "kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en_uncased/2",
30
+ },
31
+ "distil_bert_base_en": {
32
+ "metadata": {
33
+ "description": (
34
+ "6-layer DistilBERT model where case is maintained. "
35
+ "Trained on English Wikipedia + BooksCorpus using BERT as the "
36
+ "teacher model."
37
+ ),
38
+ "params": 65190912,
39
+ "official_name": "DistilBERT",
40
+ "path": "distil_bert",
41
+ "model_card": "https://huggingface.co/distilbert-base-cased",
42
+ },
43
+ "kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_en/2",
44
+ },
45
+ "distil_bert_base_multi": {
46
+ "metadata": {
47
+ "description": (
48
+ "6-layer DistilBERT model where case is maintained. Trained on Wikipedias of 104 languages"
49
+ ),
50
+ "params": 134734080,
51
+ "official_name": "DistilBERT",
52
+ "path": "distil_bert",
53
+ "model_card": "https://huggingface.co/distilbert-base-multilingual-cased",
54
+ },
55
+ "kaggle_handle": "kaggle://keras/distil_bert/keras/distil_bert_base_multi/2",
56
+ },
57
+ }
@@ -0,0 +1,114 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.tokenizers.word_piece_tokenizer import WordPieceTokenizer
18
+
19
+
20
+ @keras_hub_export("keras_hub.models.DistilBertTokenizer")
21
+ class DistilBertTokenizer(WordPieceTokenizer):
22
+ """A DistilBERT tokenizer using WordPiece subword segmentation.
23
+
24
+ This tokenizer class will tokenize raw strings into integer sequences and
25
+ is based on `keras_hub.tokenizers.WordPieceTokenizer`. Unlike the
26
+ underlying tokenizer, it will check for all special tokens needed by DistilBERT
27
+ models and provides a `from_preset()` method to automatically download
28
+ a matching vocabulary for a DistilBERT preset.
29
+
30
+ This tokenizer does not provide truncation or padding of inputs. It can be
31
+ combined with a `keras_hub.models.DistilBertPreprocessor` layer for input packing.
32
+
33
+ If input is a batch of strings (rank > 0), the layer will output a
34
+ `tf.RaggedTensor` where the last dimension of the output is ragged.
35
+
36
+ If input is a scalar string (rank == 0), the layer will output a dense
37
+ `tf.Tensor` with static shape `[None]`.
38
+
39
+ Args:
40
+ vocabulary: A list of strings or a string filename path. If
41
+ passing a list, each element of the list should be a single word
42
+ piece token string. If passing a filename, the file should be a
43
+ plain text file containing a single word piece token per line.
44
+ lowercase: If `True`, the input text will be first lowered before
45
+ tokenization.
46
+ special_tokens_in_strings: bool. A bool to indicate if the tokenizer
47
+ should expect special tokens in input strings that should be
48
+ tokenized and mapped correctly to their ids. Defaults to False.
49
+
50
+ Examples:
51
+
52
+ ```python
53
+ # Unbatched input.
54
+ tokenizer = keras_hub.models.DistilBertTokenizer.from_preset(
55
+ "distil_bert_base_en_uncased",
56
+ )
57
+ tokenizer("The quick brown fox jumped.")
58
+
59
+ # Batched input.
60
+ tokenizer(["The quick brown fox jumped.", "The fox slept."])
61
+
62
+ # Detokenization.
63
+ tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
64
+
65
+ # Custom vocabulary.
66
+ vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
67
+ vocab += ["The", "quick", "brown", "fox", "jumped", "."]
68
+ tokenizer = keras_hub.models.DistilBertTokenizer(vocabulary=vocab)
69
+ tokenizer("The quick brown fox jumped.")
70
+ ```
71
+ """
72
+
73
+ def __init__(
74
+ self,
75
+ vocabulary,
76
+ lowercase=False,
77
+ special_tokens_in_strings=False,
78
+ **kwargs,
79
+ ):
80
+ self.cls_token = "[CLS]"
81
+ self.sep_token = "[SEP]"
82
+ self.pad_token = "[PAD]"
83
+ self.mask_token = "[MASK]"
84
+ super().__init__(
85
+ vocabulary=vocabulary,
86
+ lowercase=lowercase,
87
+ special_tokens=[
88
+ self.cls_token,
89
+ self.sep_token,
90
+ self.pad_token,
91
+ self.mask_token,
92
+ ],
93
+ special_tokens_in_strings=special_tokens_in_strings,
94
+ **kwargs,
95
+ )
96
+
97
+ def set_vocabulary(self, vocabulary):
98
+ super().set_vocabulary(vocabulary)
99
+
100
+ if vocabulary is not None:
101
+ self.cls_token_id = self.token_to_id(self.cls_token)
102
+ self.sep_token_id = self.token_to_id(self.sep_token)
103
+ self.pad_token_id = self.token_to_id(self.pad_token)
104
+ self.mask_token_id = self.token_to_id(self.mask_token)
105
+ else:
106
+ self.cls_token_id = None
107
+ self.sep_token_id = None
108
+ self.pad_token_id = None
109
+ self.mask_token_id = None
110
+
111
+ def get_config(self):
112
+ config = super().get_config()
113
+ del config["special_tokens"] # Not configurable; set in __init__.
114
+ return config
@@ -0,0 +1,20 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from keras_hub.src.models.electra.electra_backbone import ElectraBackbone
16
+ from keras_hub.src.models.electra.electra_presets import backbone_presets
17
+ from keras_hub.src.models.electra.electra_tokenizer import ElectraTokenizer
18
+ from keras_hub.src.utils.preset_utils import register_presets
19
+
20
+ register_presets(backbone_presets, (ElectraBackbone, ElectraTokenizer))
@@ -0,0 +1,247 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import keras
16
+
17
+ from keras_hub.src.api_export import keras_hub_export
18
+ from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
19
+ from keras_hub.src.layers.modeling.reversible_embedding import (
20
+ ReversibleEmbedding,
21
+ )
22
+ from keras_hub.src.layers.modeling.transformer_encoder import TransformerEncoder
23
+ from keras_hub.src.models.backbone import Backbone
24
+ from keras_hub.src.utils.keras_utils import gelu_approximate
25
+
26
+
27
+ def electra_kernel_initializer(stddev=0.02):
28
+ return keras.initializers.TruncatedNormal(stddev=stddev)
29
+
30
+
31
+ @keras_hub_export("keras_hub.models.ElectraBackbone")
32
+ class ElectraBackbone(Backbone):
33
+ """A Electra encoder network.
34
+
35
+ This network implements a bidirectional Transformer-based encoder as
36
+ described in ["Electra: Pre-training Text Encoders as Discriminators Rather
37
+ Than Generators"](https://arxiv.org/abs/2003.10555). It includes the
38
+ embedding lookups and transformer layers, but not the masked language model
39
+ or classification task networks.
40
+
41
+ The default constructor gives a fully customizable, randomly initialized
42
+ ELECTRA encoder with any number of layers, heads, and embedding
43
+ dimensions. To load preset architectures and weights, use the
44
+ `from_preset()` constructor.
45
+
46
+ Disclaimer: Pre-trained models are provided on an "as is" basis, without
47
+ warranties or conditions of any kind. The underlying model is provided by a
48
+ third party and subject to a separate license, available
49
+ [here](https://huggingface.co/docs/transformers/model_doc/electra#overview).
50
+
51
+ Args:
52
+ vocabulary_size: int. The size of the token vocabulary.
53
+ num_layers: int. The number of transformer layers.
54
+ num_heads: int. The number of attention heads for each transformer.
55
+ The hidden size must be divisible by the number of attention heads.
56
+ hidden_dim: int. The size of the transformer encoding and pooler layers.
57
+ embedding_dim: int. The size of the token embeddings.
58
+ intermediate_dim: int. The output dimension of the first Dense layer in
59
+ a two-layer feedforward network for each transformer.
60
+ dropout: float. Dropout probability for the Transformer encoder.
61
+ max_sequence_length: int. The maximum sequence length that this encoder
62
+ can consume. If None, `max_sequence_length` uses the value from
63
+ sequence length. This determines the variable shape for positional
64
+ embeddings.
65
+ dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
66
+ for model computations and weights. Note that some computations,
67
+ such as softmax and layer normalization, will always be done at
68
+ float32 precision regardless of dtype.
69
+
70
+ Example:
71
+ ```python
72
+ input_data = {
73
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
74
+ "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]]),
75
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
76
+ }
77
+
78
+ # Pre-trained ELECTRA encoder.
79
+ model = keras_hub.models.ElectraBackbone.from_preset(
80
+ "electra_base_discriminator_en"
81
+ )
82
+ model(input_data)
83
+
84
+ # Randomly initialized Electra encoder
85
+ backbone = keras_hub.models.ElectraBackbone(
86
+ vocabulary_size=1000,
87
+ num_layers=2,
88
+ num_heads=2,
89
+ hidden_dim=32,
90
+ intermediate_dim=64,
91
+ dropout=0.1,
92
+ max_sequence_length=512,
93
+ )
94
+ # Returns sequence and pooled outputs.
95
+ sequence_output, pooled_output = backbone(input_data)
96
+ ```
97
+ """
98
+
99
+ def __init__(
100
+ self,
101
+ vocab_size,
102
+ num_layers,
103
+ num_heads,
104
+ hidden_dim,
105
+ embedding_dim,
106
+ intermediate_dim,
107
+ dropout=0.1,
108
+ max_sequence_length=512,
109
+ num_segments=2,
110
+ dtype=None,
111
+ **kwargs,
112
+ ):
113
+ # === Layers ===
114
+ self.token_embedding = ReversibleEmbedding(
115
+ input_dim=vocab_size,
116
+ output_dim=embedding_dim,
117
+ embeddings_initializer=electra_kernel_initializer(),
118
+ dtype=dtype,
119
+ name="token_embedding",
120
+ )
121
+ self.position_embedding = PositionEmbedding(
122
+ initializer=electra_kernel_initializer(),
123
+ sequence_length=max_sequence_length,
124
+ dtype=dtype,
125
+ name="position_embedding",
126
+ )
127
+ self.segment_embedding = keras.layers.Embedding(
128
+ input_dim=num_segments,
129
+ output_dim=embedding_dim,
130
+ embeddings_initializer=electra_kernel_initializer(),
131
+ dtype=dtype,
132
+ name="segment_embedding",
133
+ )
134
+ self.embeddings_add = keras.layers.Add(
135
+ dtype=dtype,
136
+ name="embeddings_add",
137
+ )
138
+ self.embeddings_layer_norm = keras.layers.LayerNormalization(
139
+ axis=-1,
140
+ epsilon=1e-12,
141
+ dtype=dtype,
142
+ name="embeddings_layer_norm",
143
+ )
144
+ self.embeddings_dropout = keras.layers.Dropout(
145
+ dropout,
146
+ dtype=dtype,
147
+ name="embeddings_dropout",
148
+ )
149
+ if hidden_dim != embedding_dim:
150
+ self.embeddings_projection = keras.layers.Dense(
151
+ hidden_dim,
152
+ kernel_initializer=electra_kernel_initializer(),
153
+ dtype=dtype,
154
+ name="embeddings_projection",
155
+ )
156
+ self.transformer_layers = []
157
+ for i in range(num_layers):
158
+ layer = TransformerEncoder(
159
+ num_heads=num_heads,
160
+ intermediate_dim=intermediate_dim,
161
+ activation=gelu_approximate,
162
+ dropout=dropout,
163
+ layer_norm_epsilon=1e-12,
164
+ kernel_initializer=electra_kernel_initializer(),
165
+ dtype=dtype,
166
+ name=f"transformer_layer_{i}",
167
+ )
168
+ self.transformer_layers.append(layer)
169
+ self.pooled_dense = keras.layers.Dense(
170
+ hidden_dim,
171
+ kernel_initializer=electra_kernel_initializer(),
172
+ activation="tanh",
173
+ dtype=dtype,
174
+ name="pooled_dense",
175
+ )
176
+
177
+ # === Functional Model ===
178
+ token_id_input = keras.Input(
179
+ shape=(None,), dtype="int32", name="token_ids"
180
+ )
181
+ segment_id_input = keras.Input(
182
+ shape=(None,), dtype="int32", name="segment_ids"
183
+ )
184
+ padding_mask_input = keras.Input(
185
+ shape=(None,), dtype="int32", name="padding_mask"
186
+ )
187
+ # Embed tokens, positions, and segment ids.
188
+ tokens = self.token_embedding(token_id_input)
189
+ positions = self.position_embedding(tokens)
190
+ segments = self.segment_embedding(segment_id_input)
191
+ # Add all embeddings together.
192
+ x = self.embeddings_add((tokens, positions, segments))
193
+ x = self.embeddings_layer_norm(x)
194
+ x = self.embeddings_dropout(x)
195
+ if hidden_dim != embedding_dim:
196
+ x = self.embeddings_projection(x)
197
+ # Apply successive transformer encoder blocks.
198
+ for transformer_layer in self.transformer_layers:
199
+ x = transformer_layer(x, padding_mask=padding_mask_input)
200
+ # Index of classification token in the vocabulary
201
+ cls_token_index = 0
202
+ sequence_output = x
203
+ # Construct the two ELECTRA outputs. The pooled output is a dense layer on
204
+ # top of the [CLS] token.
205
+ pooled_output = self.pooled_dense(x[:, cls_token_index, :])
206
+ super().__init__(
207
+ inputs={
208
+ "token_ids": token_id_input,
209
+ "segment_ids": segment_id_input,
210
+ "padding_mask": padding_mask_input,
211
+ },
212
+ outputs={
213
+ "sequence_output": sequence_output,
214
+ "pooled_output": pooled_output,
215
+ },
216
+ dtype=dtype,
217
+ **kwargs,
218
+ )
219
+
220
+ # === Config ===
221
+ self.vocab_size = vocab_size
222
+ self.num_layers = num_layers
223
+ self.num_heads = num_heads
224
+ self.hidden_dim = hidden_dim
225
+ self.embedding_dim = embedding_dim
226
+ self.intermediate_dim = intermediate_dim
227
+ self.dropout = dropout
228
+ self.max_sequence_length = max_sequence_length
229
+ self.num_segments = num_segments
230
+ self.cls_token_index = cls_token_index
231
+
232
+ def get_config(self):
233
+ config = super().get_config()
234
+ config.update(
235
+ {
236
+ "vocab_size": self.vocab_size,
237
+ "num_layers": self.num_layers,
238
+ "num_heads": self.num_heads,
239
+ "hidden_dim": self.hidden_dim,
240
+ "embedding_dim": self.embedding_dim,
241
+ "intermediate_dim": self.intermediate_dim,
242
+ "dropout": self.dropout,
243
+ "max_sequence_length": self.max_sequence_length,
244
+ "num_segments": self.num_segments,
245
+ }
246
+ )
247
+ return config