keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,153 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Whisper Cached Multi-Head Attention layer."""
15
+
16
+ import collections
17
+ import string
18
+
19
+ import keras
20
+
21
+ from keras_hub.src.layers.modeling.cached_multi_head_attention import (
22
+ CachedMultiHeadAttention,
23
+ )
24
+
25
+
26
+ def _index_to_einsum_variable(i):
27
+ """Converts an index to a einsum variable name.
28
+
29
+ We simply map indices to lowercase characters, e.g. 0 -> 'a', 1 -> 'b'.
30
+ """
31
+ return string.ascii_lowercase[i]
32
+
33
+
34
+ def _build_proj_equation(free_dims, bound_dims, output_dims):
35
+ """Builds an einsum equation for projections inside multi-head attention."""
36
+ input_str = ""
37
+ kernel_str = ""
38
+ output_str = ""
39
+ bias_axes = ""
40
+ letter_offset = 0
41
+ for i in range(free_dims):
42
+ char = _index_to_einsum_variable(i + letter_offset)
43
+ input_str += char
44
+ output_str += char
45
+
46
+ letter_offset += free_dims
47
+ for i in range(bound_dims):
48
+ char = _index_to_einsum_variable(i + letter_offset)
49
+ input_str += char
50
+ kernel_str += char
51
+
52
+ letter_offset += bound_dims
53
+ for i in range(output_dims):
54
+ char = _index_to_einsum_variable(i + letter_offset)
55
+ kernel_str += char
56
+ output_str += char
57
+ bias_axes += char
58
+ equation = f"{input_str},{kernel_str}->{output_str}"
59
+
60
+ return equation, bias_axes, len(output_str)
61
+
62
+
63
+ def _get_output_shape(output_rank, known_last_dims):
64
+ return [None] * (output_rank - len(known_last_dims)) + list(known_last_dims)
65
+
66
+
67
+ @keras.saving.register_keras_serializable(package="keras_hub")
68
+ class WhisperCachedMultiHeadAttention(CachedMultiHeadAttention):
69
+ """Whisper Cached Multi-Head Attention layer.
70
+
71
+ Inherits from `keras_hub.layers.CachedMultiHeadAttention`, and overrides the
72
+ `build` method so that Q, V projection layers have bias
73
+ whereas K projection layer does not.
74
+ """
75
+
76
+ def build(
77
+ self,
78
+ query_shape,
79
+ value_shape,
80
+ key_shape=None,
81
+ ):
82
+ key_shape = value_shape if key_shape is None else key_shape
83
+ query_rank = len(query_shape)
84
+ value_rank = len(value_shape)
85
+ key_rank = len(key_shape)
86
+ einsum_equation, bias_axes, output_rank = _build_proj_equation(
87
+ query_rank - 1, bound_dims=1, output_dims=2
88
+ )
89
+ self._query_dense = keras.layers.EinsumDense(
90
+ einsum_equation,
91
+ output_shape=_get_output_shape(
92
+ output_rank - 1, [self._num_heads, self._key_dim]
93
+ ),
94
+ bias_axes=bias_axes if self._use_bias else None,
95
+ name="query",
96
+ **self._get_common_kwargs_for_sublayer(),
97
+ )
98
+ self._query_dense.build(query_shape)
99
+ einsum_equation, bias_axes, output_rank = _build_proj_equation(
100
+ key_rank - 1, bound_dims=1, output_dims=2
101
+ )
102
+ self._key_dense = keras.layers.EinsumDense(
103
+ einsum_equation,
104
+ output_shape=_get_output_shape(
105
+ output_rank - 1, [self._num_heads, self._key_dim]
106
+ ),
107
+ bias_axes=None,
108
+ name="key",
109
+ **self._get_common_kwargs_for_sublayer(),
110
+ )
111
+ self._key_dense.build(key_shape)
112
+ einsum_equation, bias_axes, output_rank = _build_proj_equation(
113
+ value_rank - 1, bound_dims=1, output_dims=2
114
+ )
115
+ self._value_dense = keras.layers.EinsumDense(
116
+ einsum_equation,
117
+ output_shape=_get_output_shape(
118
+ output_rank - 1, [self._num_heads, self._value_dim]
119
+ ),
120
+ bias_axes=bias_axes if self._use_bias else None,
121
+ name="value",
122
+ **self._get_common_kwargs_for_sublayer(),
123
+ )
124
+ self._value_dense.build(value_shape)
125
+
126
+ # Builds the attention computations for multi-head dot product
127
+ # attention. These computations could be wrapped into the keras
128
+ # attention layer once it supports multi-head einsum computations.
129
+ self._build_attention(output_rank)
130
+
131
+ if self._output_shape:
132
+ if not isinstance(self._output_shape, collections.abc.Sized):
133
+ output_shape = [self._output_shape]
134
+ else:
135
+ output_shape = self._output_shape
136
+ else:
137
+ output_shape = [query_shape[-1]]
138
+ einsum_equation, bias_axes, output_rank = _build_proj_equation(
139
+ query_rank - 1, bound_dims=2, output_dims=len(output_shape)
140
+ )
141
+ self._output_dense = keras.layers.EinsumDense(
142
+ einsum_equation,
143
+ output_shape=_get_output_shape(output_rank - 1, output_shape),
144
+ bias_axes=bias_axes if self._use_bias else None,
145
+ name="attention_output",
146
+ **self._get_common_kwargs_for_sublayer(),
147
+ )
148
+ output_dense_input_shape = list(
149
+ self._query_dense.compute_output_shape(query_shape)
150
+ )
151
+ output_dense_input_shape[-1] = self._value_dim
152
+ self._output_dense.build(tuple(output_dense_input_shape))
153
+ self.built = True
@@ -0,0 +1,141 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Whisper decoder block."""
15
+
16
+
17
+ import keras
18
+
19
+ from keras_hub.src.layers.modeling.transformer_decoder import TransformerDecoder
20
+ from keras_hub.src.models.whisper.whisper_cached_multi_head_attention import (
21
+ WhisperCachedMultiHeadAttention,
22
+ )
23
+ from keras_hub.src.utils.keras_utils import clone_initializer
24
+
25
+
26
+ @keras.saving.register_keras_serializable(package="keras_hub")
27
+ class WhisperDecoder(TransformerDecoder):
28
+ """Whisper decoder.
29
+
30
+ Inherits from `keras_hub.layers.TransformerDecoder`, and overrides the
31
+ `build` method to use the
32
+ `keras_hub.models.whisper.whisper_multi_head_attention.WhisperMultiHeadAttention`
33
+ layer instead of `keras.layers.MultiHeadAttention` and
34
+ `keras_hub.models.whisper.whisper_cached_multi_head_attention.WhisperCachedMultiHeadAttention`
35
+ instead of `keras_hub.layers.cached_multi_head_attention.CachedMultiHeadAttention`.
36
+ """
37
+
38
+ def build(
39
+ self,
40
+ decoder_sequence_shape,
41
+ encoder_sequence_shape,
42
+ ):
43
+ self._decoder_sequence_shape = decoder_sequence_shape
44
+ self._encoder_sequence_shape = encoder_sequence_shape
45
+ # Infer the dimension of our hidden feature size from the build shape.
46
+ hidden_dim = decoder_sequence_shape[-1]
47
+ # Attention head size is `hidden_dim` over the number of heads.
48
+ head_dim = int(hidden_dim // self.num_heads)
49
+ if head_dim == 0:
50
+ raise ValueError(
51
+ "Attention `head_dim` computed cannot be zero. "
52
+ f"The `hidden_dim` value of {hidden_dim} has to be equal to "
53
+ f"or greater than `num_heads` value of {self.num_heads}."
54
+ )
55
+
56
+ # Self attention layers.
57
+ self._self_attention_layer = WhisperCachedMultiHeadAttention(
58
+ num_heads=self.num_heads,
59
+ key_dim=head_dim,
60
+ dropout=self.dropout,
61
+ kernel_initializer=clone_initializer(self.kernel_initializer),
62
+ bias_initializer=clone_initializer(self.bias_initializer),
63
+ dtype=self.dtype_policy,
64
+ name="self_attention",
65
+ )
66
+
67
+ self._self_attention_layer.build(
68
+ query_shape=decoder_sequence_shape,
69
+ value_shape=decoder_sequence_shape,
70
+ )
71
+ self._self_attention_layer_norm = keras.layers.LayerNormalization(
72
+ epsilon=self.layer_norm_epsilon,
73
+ dtype=self.dtype_policy,
74
+ name="self_attention_layer_norm",
75
+ )
76
+ self._self_attention_layer_norm.build(decoder_sequence_shape)
77
+ self._self_attention_dropout = keras.layers.Dropout(
78
+ rate=self.dropout,
79
+ dtype=self.dtype_policy,
80
+ name="self_attention_dropout",
81
+ )
82
+
83
+ self._cross_attention_layer = WhisperCachedMultiHeadAttention(
84
+ num_heads=self.num_heads,
85
+ key_dim=head_dim,
86
+ value_dim=head_dim,
87
+ dropout=self.dropout,
88
+ kernel_initializer=clone_initializer(self.kernel_initializer),
89
+ bias_initializer=clone_initializer(self.bias_initializer),
90
+ dtype=self.dtype_policy,
91
+ name="cross_attention",
92
+ )
93
+ self._cross_attention_layer.build(
94
+ query_shape=decoder_sequence_shape,
95
+ value_shape=encoder_sequence_shape,
96
+ )
97
+ self._cross_attention_layer_norm = keras.layers.LayerNormalization(
98
+ epsilon=self.layer_norm_epsilon,
99
+ dtype=self.dtype_policy,
100
+ name="cross_attention_layer_norm",
101
+ )
102
+ self._cross_attention_layer_norm.build(decoder_sequence_shape)
103
+ self._cross_attention_dropout = keras.layers.Dropout(
104
+ rate=self.dropout,
105
+ dtype=self.dtype_policy,
106
+ name="cross_attention_dropout",
107
+ )
108
+
109
+ # Feedforward layers.
110
+ self._feedforward_intermediate_dense = keras.layers.Dense(
111
+ self.intermediate_dim,
112
+ activation=self.activation,
113
+ kernel_initializer=clone_initializer(self.kernel_initializer),
114
+ bias_initializer=clone_initializer(self.bias_initializer),
115
+ dtype=self.dtype_policy,
116
+ name="feedforward_intermediate_dense",
117
+ )
118
+ self._feedforward_intermediate_dense.build(decoder_sequence_shape)
119
+ self._feedforward_output_dense = keras.layers.Dense(
120
+ hidden_dim,
121
+ kernel_initializer=clone_initializer(self.kernel_initializer),
122
+ bias_initializer=clone_initializer(self.bias_initializer),
123
+ dtype=self.dtype_policy,
124
+ name="feedforward_output_dense",
125
+ )
126
+ intermediate_shape = list(decoder_sequence_shape)
127
+ intermediate_shape[-1] = self.intermediate_dim
128
+ self._feedforward_output_dense.build(tuple(intermediate_shape))
129
+ self._feedforward_layer_norm = keras.layers.LayerNormalization(
130
+ epsilon=self.layer_norm_epsilon,
131
+ dtype=self.dtype_policy,
132
+ name="feedforward_layer_norm",
133
+ )
134
+ self._feedforward_layer_norm.build(decoder_sequence_shape)
135
+ self._feedforward_dropout = keras.layers.Dropout(
136
+ rate=self.dropout,
137
+ dtype=self.dtype_policy,
138
+ name="feedforward_dropout",
139
+ )
140
+ # Create layers based on input shape.
141
+ self.built = True
@@ -0,0 +1,106 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Whisper encoder block."""
15
+
16
+
17
+ import keras
18
+
19
+ from keras_hub.src.layers.modeling.transformer_encoder import TransformerEncoder
20
+ from keras_hub.src.models.whisper.whisper_cached_multi_head_attention import (
21
+ WhisperCachedMultiHeadAttention,
22
+ )
23
+ from keras_hub.src.utils.keras_utils import clone_initializer
24
+
25
+
26
+ @keras.saving.register_keras_serializable(package="keras_hub")
27
+ class WhisperEncoder(TransformerEncoder):
28
+ """Whisper encoder.
29
+
30
+ Inherits from `keras_hub.layers.TransformerEncoder`, and overrides the
31
+ `_build` method to use the
32
+ `keras_hub.models.whisper.whisper_multi_head_attention.WhisperCachedMultiHeadAttention`
33
+ layer instead of `keras.layers.MultiHeadAttention`.
34
+ """
35
+
36
+ def build(self, inputs_shape):
37
+ # Infer the dimension of our hidden feature size from the build shape.
38
+ hidden_dim = inputs_shape[-1]
39
+ # Attention head size is `hidden_dim` over the number of heads.
40
+ key_dim = int(hidden_dim // self.num_heads)
41
+ if key_dim == 0:
42
+ raise ValueError(
43
+ "Attention `key_dim` computed cannot be zero. "
44
+ f"The `hidden_dim` value of {hidden_dim} has to be equal to "
45
+ f"or greater than `num_heads` value of {self.num_heads}."
46
+ )
47
+
48
+ # Self attention layers.
49
+ self._self_attention_layer = WhisperCachedMultiHeadAttention(
50
+ num_heads=self.num_heads,
51
+ key_dim=key_dim,
52
+ dropout=self.dropout,
53
+ kernel_initializer=clone_initializer(self.kernel_initializer),
54
+ bias_initializer=clone_initializer(self.bias_initializer),
55
+ dtype=self.dtype_policy,
56
+ name="self_attention_layer",
57
+ )
58
+ self._self_attention_layer.build(
59
+ query_shape=inputs_shape,
60
+ value_shape=inputs_shape,
61
+ )
62
+
63
+ self._self_attention_layer_norm = keras.layers.LayerNormalization(
64
+ epsilon=self.layer_norm_epsilon,
65
+ dtype=self.dtype_policy,
66
+ name="self_attention_layer_norm",
67
+ )
68
+ self._self_attention_layer_norm.build(inputs_shape)
69
+ self._self_attention_dropout = keras.layers.Dropout(
70
+ rate=self.dropout,
71
+ dtype=self.dtype_policy,
72
+ name="self_attention_dropout",
73
+ )
74
+
75
+ # Feedforward layers.
76
+ self._feedforward_layer_norm = keras.layers.LayerNormalization(
77
+ epsilon=self.layer_norm_epsilon,
78
+ dtype=self.dtype_policy,
79
+ name="feedforward_layer_norm",
80
+ )
81
+ self._feedforward_layer_norm.build(inputs_shape)
82
+ self._feedforward_intermediate_dense = keras.layers.Dense(
83
+ self.intermediate_dim,
84
+ activation=self.activation,
85
+ kernel_initializer=clone_initializer(self.kernel_initializer),
86
+ bias_initializer=clone_initializer(self.bias_initializer),
87
+ dtype=self.dtype_policy,
88
+ name="feedforward_intermediate_dense",
89
+ )
90
+ self._feedforward_intermediate_dense.build(inputs_shape)
91
+ self._feedforward_output_dense = keras.layers.Dense(
92
+ hidden_dim,
93
+ kernel_initializer=clone_initializer(self.kernel_initializer),
94
+ bias_initializer=clone_initializer(self.bias_initializer),
95
+ dtype=self.dtype_policy,
96
+ name="feedforward_output_dense",
97
+ )
98
+ intermediate_shape = list(inputs_shape)
99
+ intermediate_shape[-1] = self.intermediate_dim
100
+ self._feedforward_output_dense.build(tuple(intermediate_shape))
101
+ self._feedforward_dropout = keras.layers.Dropout(
102
+ rate=self.dropout,
103
+ dtype=self.dtype_policy,
104
+ name="feedforward_dropout",
105
+ )
106
+ self.built = True