keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,208 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import keras
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.models.classifier import Classifier
20
+ from keras_hub.src.models.distil_bert.distil_bert_backbone import (
21
+ DistilBertBackbone,
22
+ )
23
+ from keras_hub.src.models.distil_bert.distil_bert_backbone import (
24
+ distilbert_kernel_initializer,
25
+ )
26
+ from keras_hub.src.models.distil_bert.distil_bert_preprocessor import (
27
+ DistilBertPreprocessor,
28
+ )
29
+
30
+
31
+ @keras_hub_export("keras_hub.models.DistilBertClassifier")
32
+ class DistilBertClassifier(Classifier):
33
+ """An end-to-end DistilBERT model for classification tasks.
34
+
35
+ This model attaches a classification head to a
36
+ `keras_hub.model.DistilBertBackbone` instance, mapping from the backbone
37
+ outputs to logits suitable for a classification task. For usage of
38
+ this model with pre-trained weights, see the `from_preset()` constructor.
39
+
40
+ This model can optionally be configured with a `preprocessor` layer, in
41
+ which case it will automatically apply preprocessing to raw inputs during
42
+ `fit()`, `predict()`, and `evaluate()`. This is done by default when
43
+ creating the model with `from_preset()`.
44
+
45
+ Disclaimer: Pre-trained models are provided on an "as is" basis, without
46
+ warranties or conditions of any kind. The underlying model is provided by a
47
+ third party and subject to a separate license, available
48
+ [here](https://github.com/huggingface/transformers).
49
+
50
+ Args:
51
+ backbone: A `keras_hub.models.DistilBert` instance.
52
+ num_classes: int. Number of classes to predict.
53
+ preprocessor: A `keras_hub.models.DistilBertPreprocessor` or `None`. If
54
+ `None`, this model will not apply preprocessing, and inputs should
55
+ be preprocessed before calling the model.
56
+ activation: Optional `str` or callable. The
57
+ activation function to use on the model outputs. Set
58
+ `activation="softmax"` to return output probabilities.
59
+ Defaults to `None`.
60
+ hidden_dim: int. The size of the pooler layer.
61
+ dropout: float. The dropout probability value, applied after the first
62
+ dense layer.
63
+
64
+ Examples:
65
+
66
+ Raw string data.
67
+ ```python
68
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
69
+ labels = [0, 3]
70
+
71
+ # Use a shorter sequence length.
72
+ preprocessor = keras_hub.models.DistilBertPreprocessor.from_preset(
73
+ "distil_bert_base_en_uncased",
74
+ sequence_length=128,
75
+ )
76
+ # Pretrained classifier.
77
+ classifier = keras_hub.models.DistilBertClassifier.from_preset(
78
+ "distil_bert_base_en_uncased",
79
+ num_classes=4,
80
+ preprocessor=preprocessor,
81
+ )
82
+ classifier.fit(x=features, y=labels, batch_size=2)
83
+
84
+ # Re-compile (e.g., with a new learning rate)
85
+ classifier.compile(
86
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
87
+ optimizer=keras.optimizers.Adam(5e-5),
88
+ jit_compile=True,
89
+ )
90
+ # Access backbone programmatically (e.g., to change `trainable`).
91
+ classifier.backbone.trainable = False
92
+ # Fit again.
93
+ classifier.fit(x=features, y=labels, batch_size=2)
94
+ ```
95
+
96
+ Preprocessed integer data.
97
+ ```python
98
+ features = {
99
+ "token_ids": np.ones(shape=(2, 12), dtype="int32"),
100
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2)
101
+ }
102
+ labels = [0, 3]
103
+
104
+ # Pretrained classifier without preprocessing.
105
+ classifier = keras_hub.models.DistilBertClassifier.from_preset(
106
+ "distil_bert_base_en_uncased",
107
+ num_classes=4,
108
+ preprocessor=None,
109
+ )
110
+ classifier.fit(x=features, y=labels, batch_size=2)
111
+ ```
112
+
113
+ Custom backbone and vocabulary.
114
+ ```python
115
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
116
+ labels = [0, 3]
117
+ vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
118
+ vocab += ["The", "quick", "brown", "fox", "jumped", "."]
119
+ tokenizer = keras_hub.models.DistilBertTokenizer(
120
+ vocabulary=vocab,
121
+ )
122
+ preprocessor = keras_hub.models.DistilBertPreprocessor(
123
+ tokenizer=tokenizer,
124
+ sequence_length=128,
125
+ )
126
+ backbone = keras_hub.models.DistilBertBackbone(
127
+ vocabulary_size=30552,
128
+ num_layers=4,
129
+ num_heads=4,
130
+ hidden_dim=256,
131
+ intermediate_dim=512,
132
+ max_sequence_length=128,
133
+ )
134
+ classifier = keras_hub.models.DistilBertClassifier(
135
+ backbone=backbone,
136
+ preprocessor=preprocessor,
137
+ num_classes=4,
138
+ )
139
+ classifier.fit(x=features, y=labels, batch_size=2)
140
+ ```
141
+ """
142
+
143
+ backbone_cls = DistilBertBackbone
144
+ preprocessor_cls = DistilBertPreprocessor
145
+
146
+ def __init__(
147
+ self,
148
+ backbone,
149
+ num_classes,
150
+ preprocessor=None,
151
+ activation=None,
152
+ hidden_dim=None,
153
+ dropout=0.2,
154
+ **kwargs,
155
+ ):
156
+ # === Layers ===
157
+ self.backbone = backbone
158
+ self.preprocessor = preprocessor
159
+ hidden_dim = hidden_dim or backbone.hidden_dim
160
+ self.pooled_dense = keras.layers.Dense(
161
+ hidden_dim,
162
+ activation="relu",
163
+ kernel_initializer=distilbert_kernel_initializer(),
164
+ dtype=backbone.dtype_policy,
165
+ name="pooled_dense",
166
+ )
167
+ self.output_dropout = keras.layers.Dropout(
168
+ dropout,
169
+ dtype=backbone.dtype_policy,
170
+ name="output_dropout",
171
+ )
172
+ self.output_dense = keras.layers.Dense(
173
+ num_classes,
174
+ kernel_initializer=distilbert_kernel_initializer(),
175
+ activation=activation,
176
+ dtype=backbone.dtype_policy,
177
+ name="logits",
178
+ )
179
+
180
+ # === Functional Model ===
181
+ inputs = backbone.input
182
+ x = backbone(inputs)[:, backbone.cls_token_index, :]
183
+ x = self.pooled_dense(x)
184
+ x = self.output_dropout(x)
185
+ outputs = self.output_dense(x)
186
+ super().__init__(
187
+ inputs=inputs,
188
+ outputs=outputs,
189
+ **kwargs,
190
+ )
191
+
192
+ # === Config ===
193
+ self.num_classes = num_classes
194
+ self.activation = keras.activations.get(activation)
195
+ self.hidden_dim = hidden_dim
196
+ self.dropout = dropout
197
+
198
+ def get_config(self):
199
+ config = super().get_config()
200
+ config.update(
201
+ {
202
+ "num_classes": self.num_classes,
203
+ "activation": keras.activations.serialize(self.activation),
204
+ "hidden_dim": self.hidden_dim,
205
+ "dropout": self.dropout,
206
+ }
207
+ )
208
+ return config
@@ -0,0 +1,137 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import keras
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.layers.modeling.masked_lm_head import MaskedLMHead
20
+ from keras_hub.src.models.distil_bert.distil_bert_backbone import (
21
+ DistilBertBackbone,
22
+ )
23
+ from keras_hub.src.models.distil_bert.distil_bert_backbone import (
24
+ distilbert_kernel_initializer,
25
+ )
26
+ from keras_hub.src.models.distil_bert.distil_bert_masked_lm_preprocessor import (
27
+ DistilBertMaskedLMPreprocessor,
28
+ )
29
+ from keras_hub.src.models.masked_lm import MaskedLM
30
+
31
+
32
+ @keras_hub_export("keras_hub.models.DistilBertMaskedLM")
33
+ class DistilBertMaskedLM(MaskedLM):
34
+ """An end-to-end DistilBERT model for the masked language modeling task.
35
+
36
+ This model will train DistilBERT on a masked language modeling task.
37
+ The model will predict labels for a number of masked tokens in the
38
+ input data. For usage of this model with pre-trained weights, see the
39
+ `from_preset()` constructor.
40
+
41
+ This model can optionally be configured with a `preprocessor` layer, in
42
+ which case inputs can be raw string features during `fit()`, `predict()`,
43
+ and `evaluate()`. Inputs will be tokenized and dynamically masked during
44
+ training and evaluation. This is done by default when creating the model
45
+ with `from_preset()`.
46
+
47
+ Disclaimer: Pre-trained models are provided on an "as is" basis, without
48
+ warranties or conditions of any kind. The underlying model is provided by a
49
+ third party and subject to a separate license, available
50
+ [here](https://github.com/huggingface/transformers).
51
+
52
+ Args:
53
+ backbone: A `keras_hub.models.DistilBertBackbone` instance.
54
+ preprocessor: A `keras_hub.models.DistilBertMaskedLMPreprocessor` or
55
+ `None`. If `None`, this model will not apply preprocessing, and
56
+ inputs should be preprocessed before calling the model.
57
+
58
+ Examples:
59
+
60
+ Raw string data.
61
+ ```python
62
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
63
+
64
+ # Pretrained language model.
65
+ masked_lm = keras_hub.models.DistilBertMaskedLM.from_preset(
66
+ "distil_bert_base_en_uncased",
67
+ )
68
+ masked_lm.fit(x=features, batch_size=2)
69
+
70
+ # Re-compile (e.g., with a new learning rate).
71
+ masked_lm.compile(
72
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
73
+ optimizer=keras.optimizers.Adam(5e-5),
74
+ jit_compile=True,
75
+ )
76
+ # Access backbone programmatically (e.g., to change `trainable`).
77
+ masked_lm.backbone.trainable = False
78
+ # Fit again.
79
+ masked_lm.fit(x=features, batch_size=2)
80
+ ```
81
+
82
+ Preprocessed integer data.
83
+ ```python
84
+ # Create preprocessed batch where 0 is the mask token.
85
+ features = {
86
+ "token_ids": np.array([[1, 2, 0, 4, 0, 6, 7, 8]] * 2),
87
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1]] * 2),
88
+ "mask_positions": np.array([[2, 4]] * 2)
89
+ }
90
+ # Labels are the original masked values.
91
+ labels = [[3, 5]] * 2
92
+
93
+ masked_lm = keras_hub.models.DistilBertMaskedLM.from_preset(
94
+ "distil_bert_base_en_uncased",
95
+ preprocessor=None,
96
+ )
97
+ masked_lm.fit(x=features, y=labels, batch_size=2)
98
+ ```
99
+ """
100
+
101
+ backbone_cls = DistilBertBackbone
102
+ preprocessor_cls = DistilBertMaskedLMPreprocessor
103
+
104
+ def __init__(
105
+ self,
106
+ backbone,
107
+ preprocessor=None,
108
+ **kwargs,
109
+ ):
110
+ # === Layers ===
111
+ self.backbone = backbone
112
+ self.preprocessor = preprocessor
113
+ self.masked_lm_head = MaskedLMHead(
114
+ vocabulary_size=backbone.vocabulary_size,
115
+ token_embedding=backbone.token_embedding,
116
+ intermediate_activation="gelu",
117
+ kernel_initializer=distilbert_kernel_initializer(),
118
+ dtype=backbone.dtype_policy,
119
+ name="mlm_head",
120
+ )
121
+
122
+ # === Functional Model ===
123
+ inputs = {
124
+ **backbone.input,
125
+ "mask_positions": keras.Input(
126
+ shape=(None,), dtype="int32", name="mask_positions"
127
+ ),
128
+ }
129
+ backbone_outputs = backbone(backbone.input)
130
+ outputs = self.masked_lm_head(
131
+ backbone_outputs, inputs["mask_positions"]
132
+ )
133
+ super().__init__(
134
+ inputs=inputs,
135
+ outputs=outputs,
136
+ **kwargs,
137
+ )
@@ -0,0 +1,194 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import keras
16
+ from absl import logging
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.layers.preprocessing.masked_lm_mask_generator import (
20
+ MaskedLMMaskGenerator,
21
+ )
22
+ from keras_hub.src.models.distil_bert.distil_bert_preprocessor import (
23
+ DistilBertPreprocessor,
24
+ )
25
+
26
+
27
+ @keras_hub_export("keras_hub.models.DistilBertMaskedLMPreprocessor")
28
+ class DistilBertMaskedLMPreprocessor(DistilBertPreprocessor):
29
+ """DistilBERT preprocessing for the masked language modeling task.
30
+
31
+ This preprocessing layer will prepare inputs for a masked language modeling
32
+ task. It is primarily intended for use with the
33
+ `keras_hub.models.DistilBertMaskedLM` task model. Preprocessing will occur in
34
+ multiple steps.
35
+
36
+ 1. Tokenize any number of input segments using the `tokenizer`.
37
+ 2. Pack the inputs together using a `keras_hub.layers.MultiSegmentPacker`.
38
+ with the appropriate `"[CLS]"`, `"[SEP]"` and `"[PAD]"` tokens.
39
+ 3. Randomly select non-special tokens to mask, controlled by
40
+ `mask_selection_rate`.
41
+ 4. Construct a `(x, y, sample_weight)` tuple suitable for training with a
42
+ `keras_hub.models.DistilBertMaskedLM` task model.
43
+
44
+ Args:
45
+ tokenizer: A `keras_hub.models.DistilBertTokenizer` instance.
46
+ sequence_length: int. The length of the packed inputs.
47
+ truncate: string. The algorithm to truncate a list of batched segments
48
+ to fit within `sequence_length`. The value can be either
49
+ `round_robin` or `waterfall`:
50
+ - `"round_robin"`: Available space is assigned one token at a
51
+ time in a round-robin fashion to the inputs that still need
52
+ some, until the limit is reached.
53
+ - `"waterfall"`: The allocation of the budget is done using a
54
+ "waterfall" algorithm that allocates quota in a
55
+ left-to-right manner and fills up the buckets until we run
56
+ out of budget. It supports an arbitrary number of segments.
57
+ mask_selection_rate: float. The probability an input token will be
58
+ dynamically masked.
59
+ mask_selection_length: int. The maximum number of masked tokens
60
+ in a given sample.
61
+ mask_token_rate: float. The probability the a selected token will be
62
+ replaced with the mask token.
63
+ random_token_rate: float. The probability the a selected token will be
64
+ replaced with a random token from the vocabulary. A selected token
65
+ will be left as is with probability
66
+ `1 - mask_token_rate - random_token_rate`.
67
+
68
+ Call arguments:
69
+ x: A tensor of single string sequences, or a tuple of multiple
70
+ tensor sequences to be packed together. Inputs may be batched or
71
+ unbatched. For single sequences, raw python inputs will be converted
72
+ to tensors. For multiple sequences, pass tensors directly.
73
+ y: Label data. Should always be `None` as the layer generates labels.
74
+ sample_weight: Label weights. Should always be `None` as the layer
75
+ generates label weights.
76
+
77
+ Examples:
78
+
79
+ Directly calling the layer on data.
80
+ ```python
81
+ preprocessor = keras_hub.models.DistilBertMaskedLMPreprocessor.from_preset(
82
+ "distil_bert_base_en_uncased"
83
+ )
84
+
85
+ # Tokenize and mask a single sentence.
86
+ preprocessor("The quick brown fox jumped.")
87
+
88
+ # Tokenize and mask a batch of single sentences.
89
+ preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
90
+
91
+ # Tokenize and mask sentence pairs.
92
+ # In this case, always convert input to tensors before calling the layer.
93
+ first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
94
+ second = tf.constant(["The fox tripped.", "Oh look, a whale."])
95
+ preprocessor((first, second))
96
+ ```
97
+
98
+ Mapping with `tf.data.Dataset`.
99
+ ```python
100
+ preprocessor = keras_hub.models.DistilBertMaskedLMPreprocessor.from_preset(
101
+ "distil_bert_base_en_uncased"
102
+ )
103
+
104
+ first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
105
+ second = tf.constant(["The fox tripped.", "Oh look, a whale."])
106
+
107
+ # Map single sentences.
108
+ ds = tf.data.Dataset.from_tensor_slices(first)
109
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
110
+
111
+ # Map sentence pairs.
112
+ ds = tf.data.Dataset.from_tensor_slices((first, second))
113
+ # Watch out for tf.data's default unpacking of tuples here!
114
+ # Best to invoke the `preprocessor` directly in this case.
115
+ ds = ds.map(
116
+ lambda first, second: preprocessor(x=(first, second)),
117
+ num_parallel_calls=tf.data.AUTOTUNE,
118
+ )
119
+ ```
120
+ """
121
+
122
+ def __init__(
123
+ self,
124
+ tokenizer,
125
+ sequence_length=512,
126
+ truncate="round_robin",
127
+ mask_selection_rate=0.15,
128
+ mask_selection_length=96,
129
+ mask_token_rate=0.8,
130
+ random_token_rate=0.1,
131
+ **kwargs,
132
+ ):
133
+ super().__init__(
134
+ tokenizer,
135
+ sequence_length=sequence_length,
136
+ truncate=truncate,
137
+ **kwargs,
138
+ )
139
+ self.mask_selection_rate = mask_selection_rate
140
+ self.mask_selection_length = mask_selection_length
141
+ self.mask_token_rate = mask_token_rate
142
+ self.random_token_rate = random_token_rate
143
+ self.masker = None
144
+
145
+ def build(self, input_shape):
146
+ super().build(input_shape)
147
+ # Defer masker creation to `build()` so that we can be sure tokenizer
148
+ # assets have loaded when restoring a saved model.
149
+ self.masker = MaskedLMMaskGenerator(
150
+ mask_selection_rate=self.mask_selection_rate,
151
+ mask_selection_length=self.mask_selection_length,
152
+ mask_token_rate=self.mask_token_rate,
153
+ random_token_rate=self.random_token_rate,
154
+ vocabulary_size=self.tokenizer.vocabulary_size(),
155
+ mask_token_id=self.tokenizer.mask_token_id,
156
+ unselectable_token_ids=[
157
+ self.tokenizer.cls_token_id,
158
+ self.tokenizer.sep_token_id,
159
+ self.tokenizer.pad_token_id,
160
+ ],
161
+ )
162
+
163
+ def call(self, x, y=None, sample_weight=None):
164
+ if y is not None or sample_weight is not None:
165
+ logging.warning(
166
+ f"{self.__class__.__name__} generates `y` and `sample_weight` "
167
+ "based on your input data, but your data already contains `y` "
168
+ "or `sample_weight`. Your `y` and `sample_weight` will be "
169
+ "ignored."
170
+ )
171
+
172
+ x = super().call(x)
173
+ token_ids, padding_mask = x["token_ids"], x["padding_mask"]
174
+ masker_outputs = self.masker(token_ids)
175
+ x = {
176
+ "token_ids": masker_outputs["token_ids"],
177
+ "padding_mask": padding_mask,
178
+ "mask_positions": masker_outputs["mask_positions"],
179
+ }
180
+ y = masker_outputs["mask_ids"]
181
+ sample_weight = masker_outputs["mask_weights"]
182
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
183
+
184
+ def get_config(self):
185
+ config = super().get_config()
186
+ config.update(
187
+ {
188
+ "mask_selection_rate": self.mask_selection_rate,
189
+ "mask_selection_length": self.mask_selection_length,
190
+ "mask_token_rate": self.mask_token_rate,
191
+ "random_token_rate": self.random_token_rate,
192
+ }
193
+ )
194
+ return config