keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +52 -0
- keras_hub/api/__init__.py +27 -0
- keras_hub/api/layers/__init__.py +47 -0
- keras_hub/api/metrics/__init__.py +24 -0
- keras_hub/api/models/__init__.py +249 -0
- keras_hub/api/samplers/__init__.py +29 -0
- keras_hub/api/tokenizers/__init__.py +35 -0
- keras_hub/src/__init__.py +13 -0
- keras_hub/src/api_export.py +53 -0
- keras_hub/src/layers/__init__.py +13 -0
- keras_hub/src/layers/modeling/__init__.py +13 -0
- keras_hub/src/layers/modeling/alibi_bias.py +143 -0
- keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
- keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
- keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
- keras_hub/src/layers/modeling/position_embedding.py +123 -0
- keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
- keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
- keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
- keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
- keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
- keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
- keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
- keras_hub/src/layers/preprocessing/__init__.py +13 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
- keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
- keras_hub/src/layers/preprocessing/random_swap.py +267 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
- keras_hub/src/metrics/__init__.py +13 -0
- keras_hub/src/metrics/bleu.py +394 -0
- keras_hub/src/metrics/edit_distance.py +197 -0
- keras_hub/src/metrics/perplexity.py +181 -0
- keras_hub/src/metrics/rouge_base.py +204 -0
- keras_hub/src/metrics/rouge_l.py +97 -0
- keras_hub/src/metrics/rouge_n.py +125 -0
- keras_hub/src/models/__init__.py +13 -0
- keras_hub/src/models/albert/__init__.py +20 -0
- keras_hub/src/models/albert/albert_backbone.py +267 -0
- keras_hub/src/models/albert/albert_classifier.py +202 -0
- keras_hub/src/models/albert/albert_masked_lm.py +129 -0
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/albert/albert_preprocessor.py +206 -0
- keras_hub/src/models/albert/albert_presets.py +70 -0
- keras_hub/src/models/albert/albert_tokenizer.py +119 -0
- keras_hub/src/models/backbone.py +311 -0
- keras_hub/src/models/bart/__init__.py +20 -0
- keras_hub/src/models/bart/bart_backbone.py +261 -0
- keras_hub/src/models/bart/bart_preprocessor.py +276 -0
- keras_hub/src/models/bart/bart_presets.py +74 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
- keras_hub/src/models/bart/bart_tokenizer.py +124 -0
- keras_hub/src/models/bert/__init__.py +23 -0
- keras_hub/src/models/bert/bert_backbone.py +227 -0
- keras_hub/src/models/bert/bert_classifier.py +183 -0
- keras_hub/src/models/bert/bert_masked_lm.py +131 -0
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/bert/bert_preprocessor.py +184 -0
- keras_hub/src/models/bert/bert_presets.py +147 -0
- keras_hub/src/models/bert/bert_tokenizer.py +112 -0
- keras_hub/src/models/bloom/__init__.py +20 -0
- keras_hub/src/models/bloom/bloom_attention.py +186 -0
- keras_hub/src/models/bloom/bloom_backbone.py +173 -0
- keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
- keras_hub/src/models/bloom/bloom_decoder.py +206 -0
- keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
- keras_hub/src/models/bloom/bloom_presets.py +121 -0
- keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
- keras_hub/src/models/causal_lm.py +383 -0
- keras_hub/src/models/classifier.py +109 -0
- keras_hub/src/models/csp_darknet/__init__.py +13 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
- keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
- keras_hub/src/models/deberta_v3/__init__.py +24 -0
- keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
- keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
- keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
- keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
- keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
- keras_hub/src/models/densenet/__init__.py +13 -0
- keras_hub/src/models/densenet/densenet_backbone.py +210 -0
- keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
- keras_hub/src/models/distil_bert/__init__.py +26 -0
- keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
- keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
- keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
- keras_hub/src/models/electra/__init__.py +20 -0
- keras_hub/src/models/electra/electra_backbone.py +247 -0
- keras_hub/src/models/electra/electra_preprocessor.py +154 -0
- keras_hub/src/models/electra/electra_presets.py +95 -0
- keras_hub/src/models/electra/electra_tokenizer.py +104 -0
- keras_hub/src/models/f_net/__init__.py +20 -0
- keras_hub/src/models/f_net/f_net_backbone.py +236 -0
- keras_hub/src/models/f_net/f_net_classifier.py +154 -0
- keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
- keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
- keras_hub/src/models/f_net/f_net_presets.py +43 -0
- keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
- keras_hub/src/models/falcon/__init__.py +20 -0
- keras_hub/src/models/falcon/falcon_attention.py +156 -0
- keras_hub/src/models/falcon/falcon_backbone.py +164 -0
- keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
- keras_hub/src/models/falcon/falcon_presets.py +30 -0
- keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
- keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
- keras_hub/src/models/feature_pyramid_backbone.py +73 -0
- keras_hub/src/models/gemma/__init__.py +20 -0
- keras_hub/src/models/gemma/gemma_attention.py +250 -0
- keras_hub/src/models/gemma/gemma_backbone.py +316 -0
- keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
- keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
- keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
- keras_hub/src/models/gemma/gemma_presets.py +248 -0
- keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
- keras_hub/src/models/gemma/rms_normalization.py +40 -0
- keras_hub/src/models/gpt2/__init__.py +20 -0
- keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
- keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
- keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
- keras_hub/src/models/image_classifier.py +90 -0
- keras_hub/src/models/llama/__init__.py +20 -0
- keras_hub/src/models/llama/llama_attention.py +225 -0
- keras_hub/src/models/llama/llama_backbone.py +188 -0
- keras_hub/src/models/llama/llama_causal_lm.py +327 -0
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
- keras_hub/src/models/llama/llama_decoder.py +246 -0
- keras_hub/src/models/llama/llama_layernorm.py +48 -0
- keras_hub/src/models/llama/llama_preprocessor.py +189 -0
- keras_hub/src/models/llama/llama_presets.py +80 -0
- keras_hub/src/models/llama/llama_tokenizer.py +84 -0
- keras_hub/src/models/llama3/__init__.py +20 -0
- keras_hub/src/models/llama3/llama3_backbone.py +84 -0
- keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
- keras_hub/src/models/llama3/llama3_presets.py +69 -0
- keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
- keras_hub/src/models/masked_lm.py +101 -0
- keras_hub/src/models/mistral/__init__.py +20 -0
- keras_hub/src/models/mistral/mistral_attention.py +238 -0
- keras_hub/src/models/mistral/mistral_backbone.py +203 -0
- keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
- keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
- keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
- keras_hub/src/models/mistral/mistral_presets.py +48 -0
- keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
- keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
- keras_hub/src/models/mix_transformer/__init__.py +13 -0
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
- keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
- keras_hub/src/models/opt/__init__.py +20 -0
- keras_hub/src/models/opt/opt_backbone.py +173 -0
- keras_hub/src/models/opt/opt_causal_lm.py +301 -0
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
- keras_hub/src/models/opt/opt_preprocessor.py +188 -0
- keras_hub/src/models/opt/opt_presets.py +72 -0
- keras_hub/src/models/opt/opt_tokenizer.py +116 -0
- keras_hub/src/models/pali_gemma/__init__.py +23 -0
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
- keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
- keras_hub/src/models/phi3/__init__.py +20 -0
- keras_hub/src/models/phi3/phi3_attention.py +260 -0
- keras_hub/src/models/phi3/phi3_backbone.py +224 -0
- keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/phi3/phi3_decoder.py +260 -0
- keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
- keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
- keras_hub/src/models/phi3/phi3_presets.py +50 -0
- keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
- keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
- keras_hub/src/models/preprocessor.py +207 -0
- keras_hub/src/models/resnet/__init__.py +13 -0
- keras_hub/src/models/resnet/resnet_backbone.py +612 -0
- keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
- keras_hub/src/models/roberta/__init__.py +20 -0
- keras_hub/src/models/roberta/roberta_backbone.py +184 -0
- keras_hub/src/models/roberta/roberta_classifier.py +209 -0
- keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
- keras_hub/src/models/roberta/roberta_presets.py +43 -0
- keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
- keras_hub/src/models/seq_2_seq_lm.py +54 -0
- keras_hub/src/models/t5/__init__.py +20 -0
- keras_hub/src/models/t5/t5_backbone.py +261 -0
- keras_hub/src/models/t5/t5_layer_norm.py +35 -0
- keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
- keras_hub/src/models/t5/t5_presets.py +95 -0
- keras_hub/src/models/t5/t5_tokenizer.py +100 -0
- keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
- keras_hub/src/models/task.py +419 -0
- keras_hub/src/models/vgg/__init__.py +13 -0
- keras_hub/src/models/vgg/vgg_backbone.py +158 -0
- keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
- keras_hub/src/models/vit_det/__init__.py +13 -0
- keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
- keras_hub/src/models/vit_det/vit_layers.py +565 -0
- keras_hub/src/models/whisper/__init__.py +20 -0
- keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
- keras_hub/src/models/whisper/whisper_backbone.py +305 -0
- keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
- keras_hub/src/models/whisper/whisper_decoder.py +141 -0
- keras_hub/src/models/whisper/whisper_encoder.py +106 -0
- keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
- keras_hub/src/models/whisper/whisper_presets.py +148 -0
- keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
- keras_hub/src/models/xlm_roberta/__init__.py +26 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
- keras_hub/src/models/xlnet/__init__.py +13 -0
- keras_hub/src/models/xlnet/relative_attention.py +459 -0
- keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
- keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
- keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
- keras_hub/src/samplers/__init__.py +13 -0
- keras_hub/src/samplers/beam_sampler.py +207 -0
- keras_hub/src/samplers/contrastive_sampler.py +231 -0
- keras_hub/src/samplers/greedy_sampler.py +50 -0
- keras_hub/src/samplers/random_sampler.py +77 -0
- keras_hub/src/samplers/sampler.py +237 -0
- keras_hub/src/samplers/serialization.py +97 -0
- keras_hub/src/samplers/top_k_sampler.py +92 -0
- keras_hub/src/samplers/top_p_sampler.py +113 -0
- keras_hub/src/tests/__init__.py +13 -0
- keras_hub/src/tests/test_case.py +608 -0
- keras_hub/src/tokenizers/__init__.py +13 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
- keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
- keras_hub/src/tokenizers/tokenizer.py +235 -0
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
- keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
- keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
- keras_hub/src/utils/__init__.py +13 -0
- keras_hub/src/utils/keras_utils.py +130 -0
- keras_hub/src/utils/pipeline_model.py +293 -0
- keras_hub/src/utils/preset_utils.py +621 -0
- keras_hub/src/utils/python_utils.py +21 -0
- keras_hub/src/utils/tensor_utils.py +206 -0
- keras_hub/src/utils/timm/__init__.py +13 -0
- keras_hub/src/utils/timm/convert.py +37 -0
- keras_hub/src/utils/timm/convert_resnet.py +171 -0
- keras_hub/src/utils/transformers/__init__.py +13 -0
- keras_hub/src/utils/transformers/convert.py +101 -0
- keras_hub/src/utils/transformers/convert_bert.py +173 -0
- keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
- keras_hub/src/utils/transformers/convert_gemma.py +187 -0
- keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
- keras_hub/src/utils/transformers/convert_llama3.py +136 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
- keras_hub/src/version_utils.py +23 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,190 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import keras
|
15
|
+
|
16
|
+
from keras_hub.src.api_export import keras_hub_export
|
17
|
+
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
18
|
+
from keras_hub.src.models.phi3.phi3_tokenizer import Phi3Tokenizer
|
19
|
+
from keras_hub.src.models.preprocessor import Preprocessor
|
20
|
+
from keras_hub.src.utils.keras_utils import (
|
21
|
+
convert_inputs_to_list_of_tensor_segments,
|
22
|
+
)
|
23
|
+
|
24
|
+
|
25
|
+
@keras_hub_export("keras_hub.models.Phi3Preprocessor")
|
26
|
+
class Phi3Preprocessor(Preprocessor):
|
27
|
+
"""A Phi3 preprocessing layer which tokenizes and packs inputs.
|
28
|
+
|
29
|
+
This preprocessing layer will do three things:
|
30
|
+
|
31
|
+
1. Tokenize any number of input segments using the `tokenizer`.
|
32
|
+
2. Pack the inputs together using a `keras_hub.layers.StartEndPacker`.
|
33
|
+
with the appropriate tokens.
|
34
|
+
3. Construct a dictionary with keys `"token_ids"`, and `"padding_mask"`
|
35
|
+
that can be passed directly to `keras_hub.models.Phi3Backbone`.
|
36
|
+
|
37
|
+
This layer can be used directly with `tf.data.Dataset.map` to preprocess
|
38
|
+
string data in the `(x, y, sample_weight)` format used by
|
39
|
+
`keras.Model.fit`.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
tokenizer: A `keras_hub.models.Phi3Tokenizer` instance.
|
43
|
+
sequence_length: The length of the packed inputs.
|
44
|
+
add_start_token: If `True`, the preprocessor will prepend the tokenizer
|
45
|
+
start token to each input sequence. Default is `True`.
|
46
|
+
add_end_token: If `True`, the preprocessor will append the tokenizer
|
47
|
+
end token to each input sequence. Default is `False`.
|
48
|
+
|
49
|
+
Call arguments:
|
50
|
+
x: A tensor of single string sequences, or a tuple of multiple
|
51
|
+
tensor sequences to be packed together. Inputs may be batched or
|
52
|
+
unbatched. For single sequences, raw python inputs will be converted
|
53
|
+
to tensors. For multiple sequences, pass tensors directly.
|
54
|
+
y: Any label data. Will be passed through unaltered.
|
55
|
+
sample_weight: Any label weight data. Will be passed through unaltered.
|
56
|
+
sequence_length: Pass to override the configured `sequence_length` of
|
57
|
+
the layer.
|
58
|
+
|
59
|
+
Examples:
|
60
|
+
|
61
|
+
Directly calling the from_preset().
|
62
|
+
```python
|
63
|
+
preprocessor = keras_hub.models.Phi3Preprocessor.from_preset(
|
64
|
+
""
|
65
|
+
)
|
66
|
+
|
67
|
+
# Tokenize and pack a single sentence.
|
68
|
+
preprocessor("The quick brown fox jumped.")
|
69
|
+
|
70
|
+
# Tokenize and a batch of single sentences.
|
71
|
+
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
|
72
|
+
|
73
|
+
# Preprocess a batch of sentence pairs.
|
74
|
+
# When handling multiple sequences, always convert to tensors first!
|
75
|
+
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
|
76
|
+
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
|
77
|
+
preprocessor((first, second))
|
78
|
+
```
|
79
|
+
|
80
|
+
Mapping with `tf.data.Dataset`.
|
81
|
+
```python
|
82
|
+
preprocessor = keras_hub.models.Phi3Preprocessor.from_preset(
|
83
|
+
"phi3_mini_4k_instruct_en"
|
84
|
+
)
|
85
|
+
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
|
86
|
+
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
|
87
|
+
label = tf.constant([1, 1])
|
88
|
+
|
89
|
+
# Map labeled single sentences.
|
90
|
+
ds = tf.data.Dataset.from_tensor_slices((first, label))
|
91
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
92
|
+
|
93
|
+
# Map unlabeled single sentences.
|
94
|
+
ds = tf.data.Dataset.from_tensor_slices(first)
|
95
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
96
|
+
|
97
|
+
# Map labeled sentence pairs.
|
98
|
+
ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
|
99
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
100
|
+
|
101
|
+
# Map unlabeled sentence pairs.
|
102
|
+
ds = tf.data.Dataset.from_tensor_slices((first, second))
|
103
|
+
|
104
|
+
# Watch out for tf.data's default unpacking of tuples here!
|
105
|
+
# Best to invoke the `preprocessor` directly in this case.
|
106
|
+
ds = ds.map(
|
107
|
+
lambda first, second: preprocessor(x=(first, second)),
|
108
|
+
num_parallel_calls=tf.data.AUTOTUNE,
|
109
|
+
)
|
110
|
+
```
|
111
|
+
"""
|
112
|
+
|
113
|
+
tokenizer_cls = Phi3Tokenizer
|
114
|
+
|
115
|
+
def __init__(
|
116
|
+
self,
|
117
|
+
tokenizer,
|
118
|
+
sequence_length=1024,
|
119
|
+
add_start_token=True,
|
120
|
+
add_end_token=False,
|
121
|
+
**kwargs,
|
122
|
+
):
|
123
|
+
super().__init__(**kwargs)
|
124
|
+
self.tokenizer = tokenizer
|
125
|
+
self.packer = None
|
126
|
+
self.add_start_token = add_start_token
|
127
|
+
self.add_end_token = add_end_token
|
128
|
+
self.sequence_length = sequence_length
|
129
|
+
|
130
|
+
def build(self, input_shape):
|
131
|
+
# Defer packer creation to `build()` so that we can be sure tokenizer
|
132
|
+
# assets have loaded when restoring a saved model.
|
133
|
+
self.packer = StartEndPacker(
|
134
|
+
start_value=self.tokenizer.start_token_id,
|
135
|
+
end_value=self.tokenizer.end_token_id,
|
136
|
+
pad_value=self.tokenizer.pad_token_id,
|
137
|
+
sequence_length=self.sequence_length,
|
138
|
+
return_padding_mask=True,
|
139
|
+
)
|
140
|
+
self.built = True
|
141
|
+
|
142
|
+
def get_config(self):
|
143
|
+
config = super().get_config()
|
144
|
+
config.update(
|
145
|
+
{
|
146
|
+
"sequence_length": self.sequence_length,
|
147
|
+
"add_start_token": self.add_start_token,
|
148
|
+
"add_end_token": self.add_end_token,
|
149
|
+
}
|
150
|
+
)
|
151
|
+
return config
|
152
|
+
|
153
|
+
def call(
|
154
|
+
self,
|
155
|
+
x,
|
156
|
+
y=None,
|
157
|
+
sample_weight=None,
|
158
|
+
sequence_length=None,
|
159
|
+
):
|
160
|
+
x = convert_inputs_to_list_of_tensor_segments(x)
|
161
|
+
if len(x) != 1:
|
162
|
+
raise ValueError(
|
163
|
+
"Phi3 requires each input feature to contain only "
|
164
|
+
f"one segment, but received {len(x)}. If you are using Phi3"
|
165
|
+
" for a multi-segment classification task, please refer to "
|
166
|
+
"classification models like BERT or RoBERTa."
|
167
|
+
)
|
168
|
+
sequence_length = sequence_length or self.sequence_length
|
169
|
+
token_ids, padding_mask = self.packer(
|
170
|
+
self.tokenizer(x[0]),
|
171
|
+
sequence_length=sequence_length,
|
172
|
+
add_start_value=self.add_start_token,
|
173
|
+
add_end_value=self.add_end_token,
|
174
|
+
)
|
175
|
+
x = {
|
176
|
+
"token_ids": token_ids,
|
177
|
+
"padding_mask": padding_mask,
|
178
|
+
}
|
179
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
180
|
+
|
181
|
+
@property
|
182
|
+
def sequence_length(self):
|
183
|
+
"""The padded length of model input sequences."""
|
184
|
+
return self._sequence_length
|
185
|
+
|
186
|
+
@sequence_length.setter
|
187
|
+
def sequence_length(self, value):
|
188
|
+
self._sequence_length = value
|
189
|
+
if self.packer is not None:
|
190
|
+
self.packer.sequence_length = value
|
@@ -0,0 +1,50 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
"""Phi-3 model preset configurations."""
|
15
|
+
|
16
|
+
# Metadata for loading pretrained model weights.
|
17
|
+
backbone_presets = {
|
18
|
+
"phi3_mini_4k_instruct_en": {
|
19
|
+
"metadata": {
|
20
|
+
"description": (
|
21
|
+
"3.8 billion parameters, 32 layers, 4k context length, Phi-3 "
|
22
|
+
"model. The model was trained using the Phi-3 datasets. This "
|
23
|
+
"dataset includes both synthetic data and filtered publicly "
|
24
|
+
"available website data, with an emphasis on high-quality and "
|
25
|
+
"reasoning-dense properties."
|
26
|
+
),
|
27
|
+
"params": 3821079552,
|
28
|
+
"official_name": "Phi-3",
|
29
|
+
"path": "phi3",
|
30
|
+
"model_card": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
|
31
|
+
},
|
32
|
+
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_4k_instruct_en",
|
33
|
+
},
|
34
|
+
"phi3_mini_128k_instruct_en": {
|
35
|
+
"metadata": {
|
36
|
+
"description": (
|
37
|
+
"3.8 billion parameters, 32 layers, 128k context length, Phi-3 "
|
38
|
+
"model. The model was trained using the Phi-3 datasets. This "
|
39
|
+
"dataset includes both synthetic data and filtered publicly "
|
40
|
+
"available website data, with an emphasis on high-quality and "
|
41
|
+
"reasoning-dense properties."
|
42
|
+
),
|
43
|
+
"params": 3821079552,
|
44
|
+
"official_name": "Phi-3",
|
45
|
+
"path": "phi3",
|
46
|
+
"model_card": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct",
|
47
|
+
},
|
48
|
+
"kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_128k_instruct_en",
|
49
|
+
},
|
50
|
+
}
|
@@ -0,0 +1,137 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import math
|
15
|
+
|
16
|
+
from keras import ops
|
17
|
+
|
18
|
+
from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
|
19
|
+
|
20
|
+
|
21
|
+
class Phi3SuScaledRotaryEmbedding(RotaryEmbedding):
|
22
|
+
"""SuRotary positional encoding layer.
|
23
|
+
|
24
|
+
Args:
|
25
|
+
inverese_freq_short_factor List[float]: List of factors used to adjust
|
26
|
+
rope frequencies when the `rope_scaling_type` is `"su"`. List must
|
27
|
+
be of length `hidden_dim//num_query_heads//2`. It is used when
|
28
|
+
`sequence_length` is smaller than `original_max_sequence_length`.
|
29
|
+
inverese_freq_long_factor List[float]: List of factors used to adjust
|
30
|
+
rope frequencies when the `rope_scaling_type` is `"su"`. List must
|
31
|
+
be of length `hidden_dim//num_query_heads//2`. It is used when
|
32
|
+
`sequence_length` is larger than `original_max_sequence_length`.
|
33
|
+
max_sequence_length: int. The maximum sequence length that this
|
34
|
+
model might ever be used with.
|
35
|
+
pretraining_sequence_length: int. The maximum sequence length that
|
36
|
+
this model was pretrained with.
|
37
|
+
max_wavelength: int. The maximum angular wavelength of the sine/cosine
|
38
|
+
curves.
|
39
|
+
|
40
|
+
Call arguments:
|
41
|
+
inputs: The tensor inputs to apply the embedding to. This can have
|
42
|
+
any shape, but must contain both a sequence and feature axis. The
|
43
|
+
rotary embedding will be applied to `inputs` and returned.
|
44
|
+
start_index: An integer or integer tensor. The starting position to
|
45
|
+
compute the rotary embedding from. This is useful during cached
|
46
|
+
decoding, where each position is predicted separately in a loop.
|
47
|
+
|
48
|
+
References:
|
49
|
+
- [Phi-3-mini-128k-instruct original implementation](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/blob/0693e0b867d29e7318280ddd3ff9d5e66698f488/modeling_phi3.py#L142)
|
50
|
+
"""
|
51
|
+
|
52
|
+
def __init__(
|
53
|
+
self,
|
54
|
+
inverese_freq_short_factor,
|
55
|
+
inverese_freq_long_factor,
|
56
|
+
max_sequence_length=4096,
|
57
|
+
pretraining_sequence_length=4096,
|
58
|
+
max_wavelength=10000,
|
59
|
+
**kwargs
|
60
|
+
):
|
61
|
+
super().__init__(max_wavelength=max_wavelength, **kwargs)
|
62
|
+
self.max_sequence_length = max_sequence_length
|
63
|
+
self.pretraining_sequence_length = pretraining_sequence_length
|
64
|
+
|
65
|
+
scaling_factor = (
|
66
|
+
self.max_sequence_length / self.pretraining_sequence_length
|
67
|
+
)
|
68
|
+
if scaling_factor <= 1.0:
|
69
|
+
self.embedding_scaling_factor = 1.0
|
70
|
+
else:
|
71
|
+
self.embedding_scaling_factor = math.sqrt(
|
72
|
+
1
|
73
|
+
+ math.log(scaling_factor)
|
74
|
+
/ math.log(self.pretraining_sequence_length)
|
75
|
+
)
|
76
|
+
|
77
|
+
self.inverese_freq_short_factor = inverese_freq_short_factor
|
78
|
+
self.inverese_freq_long_factor = inverese_freq_long_factor
|
79
|
+
|
80
|
+
def _compute_cos_sin_embedding(self, inputs, start_index=0, positions=None):
|
81
|
+
feature_axis = len(inputs.shape) - 1
|
82
|
+
sequence_axis = 1
|
83
|
+
|
84
|
+
rotary_dim = ops.shape(inputs)[feature_axis]
|
85
|
+
inverse_freq = self._get_inverse_freq(rotary_dim)
|
86
|
+
|
87
|
+
# Multiply inverse_freq by a factor.
|
88
|
+
if ops.shape(inputs)[sequence_axis] > self.pretraining_sequence_length:
|
89
|
+
inverse_freq = ops.divide(
|
90
|
+
inverse_freq,
|
91
|
+
ops.convert_to_tensor(self.inverese_freq_long_factor),
|
92
|
+
)
|
93
|
+
else:
|
94
|
+
inverse_freq = ops.divide(
|
95
|
+
inverse_freq,
|
96
|
+
ops.convert_to_tensor(self.inverese_freq_short_factor),
|
97
|
+
)
|
98
|
+
|
99
|
+
if positions is None:
|
100
|
+
positions = self._compute_positions(inputs, start_index)
|
101
|
+
else:
|
102
|
+
positions = ops.cast(positions, "float32")
|
103
|
+
|
104
|
+
freq = ops.einsum("i,j->ij", positions, inverse_freq)
|
105
|
+
embedding = ops.stack((freq, freq), axis=-2)
|
106
|
+
embedding = ops.reshape(
|
107
|
+
embedding, (*ops.shape(freq)[:-1], ops.shape(freq)[-1] * 2)
|
108
|
+
)
|
109
|
+
|
110
|
+
# Reshape the embedding to be broadcastable with input shape.
|
111
|
+
if feature_axis < sequence_axis:
|
112
|
+
embedding = ops.transpose(embedding)
|
113
|
+
for axis in range(len(inputs.shape)):
|
114
|
+
if axis != sequence_axis and axis != feature_axis:
|
115
|
+
embedding = ops.expand_dims(embedding, axis)
|
116
|
+
|
117
|
+
cos_emb = ops.cast(
|
118
|
+
ops.cos(embedding) * self.embedding_scaling_factor,
|
119
|
+
self.compute_dtype,
|
120
|
+
)
|
121
|
+
sin_emb = ops.cast(
|
122
|
+
ops.sin(embedding) * self.embedding_scaling_factor,
|
123
|
+
self.compute_dtype,
|
124
|
+
)
|
125
|
+
return cos_emb, sin_emb
|
126
|
+
|
127
|
+
def get_config(self):
|
128
|
+
config = super().get_config()
|
129
|
+
config.update(
|
130
|
+
{
|
131
|
+
"max_sequence_length": self.max_sequence_length,
|
132
|
+
"pretraining_sequence_length": self.pretraining_sequence_length,
|
133
|
+
"inverese_freq_short_factor": self.inverese_freq_short_factor,
|
134
|
+
"inverese_freq_long_factor": self.inverese_freq_long_factor,
|
135
|
+
}
|
136
|
+
)
|
137
|
+
return config
|
@@ -0,0 +1,94 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import copy
|
15
|
+
|
16
|
+
from keras_hub.src.api_export import keras_hub_export
|
17
|
+
from keras_hub.src.models.phi3.phi3_presets import backbone_presets
|
18
|
+
from keras_hub.src.tokenizers.sentence_piece_tokenizer import (
|
19
|
+
SentencePieceTokenizer,
|
20
|
+
)
|
21
|
+
from keras_hub.src.utils.python_utils import classproperty
|
22
|
+
|
23
|
+
|
24
|
+
@keras_hub_export("keras_hub.models.Phi3Tokenizer")
|
25
|
+
class Phi3Tokenizer(SentencePieceTokenizer):
|
26
|
+
"""Phi3 tokenizer layer based on SentencePiece.
|
27
|
+
|
28
|
+
This tokenizer class will tokenize raw strings into integer sequences and
|
29
|
+
is based on `keras_hub.tokenizers.SentencePieceTokenizer`. Unlike the
|
30
|
+
underlying tokenizer, it will check for all special tokens needed by
|
31
|
+
Phi3 models and provides a `from_preset()` method to automatically
|
32
|
+
download a matching vocabulary for a Phi3 preset.
|
33
|
+
|
34
|
+
This tokenizer does not provide truncation or padding of inputs. It can be
|
35
|
+
combined with a `keras_hub.models.Phi3Preprocessor` layer for input
|
36
|
+
packing.
|
37
|
+
|
38
|
+
If input is a batch of strings (rank > 0), the layer will output a
|
39
|
+
`tf.RaggedTensor` where the last dimension of the output is ragged.
|
40
|
+
|
41
|
+
If input is a scalar string (rank == 0), the layer will output a dense
|
42
|
+
`tf.Tensor` with static shape `[None]`.
|
43
|
+
|
44
|
+
Args:
|
45
|
+
proto: Either a `string` path to a SentencePiece proto file, or a
|
46
|
+
`bytes` object with a serialized SentencePiece proto. See the
|
47
|
+
[SentencePiece repository](https://github.com/google/sentencepiece)
|
48
|
+
for more details on the format.
|
49
|
+
|
50
|
+
Examples:
|
51
|
+
```python
|
52
|
+
# Unbatched input.
|
53
|
+
tokenizer = keras_hub.models.Phi3Tokenizer.from_preset(
|
54
|
+
"phi3_mini_4k_instruct_en",
|
55
|
+
)
|
56
|
+
tokenizer("The quick brown fox jumped.")
|
57
|
+
|
58
|
+
# Batched input.
|
59
|
+
tokenizer(["The quick brown fox jumped.", "The fox slept."])
|
60
|
+
|
61
|
+
# Detokenization.
|
62
|
+
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
|
63
|
+
```
|
64
|
+
"""
|
65
|
+
|
66
|
+
def __init__(self, proto, **kwargs):
|
67
|
+
self.start_token = "<s>"
|
68
|
+
self.end_token = "<|endoftext|>"
|
69
|
+
super().__init__(proto=proto, **kwargs)
|
70
|
+
|
71
|
+
def set_proto(self, proto):
|
72
|
+
super().set_proto(proto)
|
73
|
+
if proto is not None:
|
74
|
+
for token in [self.start_token, self.end_token]:
|
75
|
+
if token not in self.get_vocabulary():
|
76
|
+
raise ValueError(
|
77
|
+
f"Cannot find token `'{token}'` in the provided "
|
78
|
+
f"`vocabulary`. Please provide `'{token}'` in your "
|
79
|
+
"`vocabulary` or use a pretrained `vocabulary` name."
|
80
|
+
)
|
81
|
+
self.start_token_id = self.token_to_id(self.start_token)
|
82
|
+
self.end_token_id = self.token_to_id(self.end_token)
|
83
|
+
# TODO: `pad_token` is `<|endoftext|>`, but setting it to `<unk>`
|
84
|
+
# for now, because of the way sampler works. sampler will think that
|
85
|
+
# `pad_token` is `end_token` and stop generation immediatly.
|
86
|
+
self.pad_token_id = 0
|
87
|
+
else:
|
88
|
+
self.start_token_id = None
|
89
|
+
self.end_token_id = None
|
90
|
+
self.pad_token_id = None
|
91
|
+
|
92
|
+
@classproperty
|
93
|
+
def presets(cls):
|
94
|
+
return copy.deepcopy(backbone_presets)
|
@@ -0,0 +1,207 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import keras
|
16
|
+
|
17
|
+
from keras_hub.src.api_export import keras_hub_export
|
18
|
+
from keras_hub.src.layers.preprocessing.preprocessing_layer import (
|
19
|
+
PreprocessingLayer,
|
20
|
+
)
|
21
|
+
from keras_hub.src.utils.preset_utils import PREPROCESSOR_CONFIG_FILE
|
22
|
+
from keras_hub.src.utils.preset_utils import TOKENIZER_CONFIG_FILE
|
23
|
+
from keras_hub.src.utils.preset_utils import check_config_class
|
24
|
+
from keras_hub.src.utils.preset_utils import check_file_exists
|
25
|
+
from keras_hub.src.utils.preset_utils import check_format
|
26
|
+
from keras_hub.src.utils.preset_utils import list_presets
|
27
|
+
from keras_hub.src.utils.preset_utils import list_subclasses
|
28
|
+
from keras_hub.src.utils.preset_utils import load_serialized_object
|
29
|
+
from keras_hub.src.utils.preset_utils import save_serialized_object
|
30
|
+
from keras_hub.src.utils.python_utils import classproperty
|
31
|
+
|
32
|
+
|
33
|
+
@keras_hub_export("keras_hub.models.Preprocessor")
|
34
|
+
class Preprocessor(PreprocessingLayer):
|
35
|
+
"""Base class for preprocessing layers.
|
36
|
+
|
37
|
+
A `Preprocessor` layer wraps a `keras_hub.tokenizer.Tokenizer` to provide a
|
38
|
+
complete preprocessing setup for a given task. For example a masked language
|
39
|
+
modeling preprocessor will take in raw input strings, and output
|
40
|
+
`(x, y, sample_weight)` tuples. Where `x` contains token id sequences with
|
41
|
+
some
|
42
|
+
|
43
|
+
This class can be subclassed similar to any `keras.layers.Layer`, by
|
44
|
+
defining `build()`, `call()` and `get_config()` methods. All subclasses
|
45
|
+
should set the `tokenizer` property on construction.
|
46
|
+
"""
|
47
|
+
|
48
|
+
tokenizer_cls = None
|
49
|
+
|
50
|
+
def __init__(self, *args, **kwargs):
|
51
|
+
super().__init__(*args, **kwargs)
|
52
|
+
self._tokenizer = None
|
53
|
+
|
54
|
+
def __setattr__(self, name, value):
|
55
|
+
# Work around torch setattr for properties.
|
56
|
+
if name in ["tokenizer"]:
|
57
|
+
return object.__setattr__(self, name, value)
|
58
|
+
return super().__setattr__(name, value)
|
59
|
+
|
60
|
+
@property
|
61
|
+
def tokenizer(self):
|
62
|
+
"""The tokenizer used to tokenize strings."""
|
63
|
+
return self._tokenizer
|
64
|
+
|
65
|
+
@tokenizer.setter
|
66
|
+
def tokenizer(self, value):
|
67
|
+
self._tokenizer = value
|
68
|
+
|
69
|
+
def get_config(self):
|
70
|
+
config = super().get_config()
|
71
|
+
config["tokenizer"] = keras.layers.serialize(self.tokenizer)
|
72
|
+
return config
|
73
|
+
|
74
|
+
@classmethod
|
75
|
+
def from_config(cls, config):
|
76
|
+
if "tokenizer" in config and isinstance(config["tokenizer"], dict):
|
77
|
+
config["tokenizer"] = keras.layers.deserialize(config["tokenizer"])
|
78
|
+
return cls(**config)
|
79
|
+
|
80
|
+
@classproperty
|
81
|
+
def presets(cls):
|
82
|
+
presets = list_presets(cls)
|
83
|
+
# We can also load backbone presets.
|
84
|
+
if cls.tokenizer_cls is not None:
|
85
|
+
presets.update(cls.tokenizer_cls.presets)
|
86
|
+
for subclass in list_subclasses(cls):
|
87
|
+
presets.update(subclass.presets)
|
88
|
+
return presets
|
89
|
+
|
90
|
+
@classmethod
|
91
|
+
def from_preset(
|
92
|
+
cls,
|
93
|
+
preset,
|
94
|
+
**kwargs,
|
95
|
+
):
|
96
|
+
"""Instantiate a `keras_hub.models.Preprocessor` from a model preset.
|
97
|
+
|
98
|
+
A preset is a directory of configs, weights and other file assets used
|
99
|
+
to save and load a pre-trained model. The `preset` can be passed as a
|
100
|
+
one of:
|
101
|
+
|
102
|
+
1. a built in preset identifier like `'bert_base_en'`
|
103
|
+
2. a Kaggle Models handle like `'kaggle://user/bert/keras/bert_base_en'`
|
104
|
+
3. a Hugging Face handle like `'hf://user/bert_base_en'`
|
105
|
+
4. a path to a local preset directory like `'./bert_base_en'`
|
106
|
+
|
107
|
+
For any `Preprocessor` subclass, you can run `cls.presets.keys()` to
|
108
|
+
list all built-in presets available on the class.
|
109
|
+
|
110
|
+
As there are usually multiple preprocessing classes for a given model,
|
111
|
+
this method should be called on a specific subclass like
|
112
|
+
`keras_hub.models.BertPreprocessor.from_preset()`.
|
113
|
+
|
114
|
+
Args:
|
115
|
+
preset: string. A built in preset identifier, a Kaggle Models
|
116
|
+
handle, a Hugging Face handle, or a path to a local directory.
|
117
|
+
|
118
|
+
Examples:
|
119
|
+
```python
|
120
|
+
# Load a preprocessor for Gemma generation.
|
121
|
+
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
|
122
|
+
"gemma_2b_en",
|
123
|
+
)
|
124
|
+
|
125
|
+
# Load a preprocessor for Bert classification.
|
126
|
+
preprocessor = keras_hub.models.BertPreprocessor.from_preset(
|
127
|
+
"bert_base_en",
|
128
|
+
)
|
129
|
+
```
|
130
|
+
"""
|
131
|
+
format = check_format(preset)
|
132
|
+
|
133
|
+
if format == "transformers":
|
134
|
+
if cls.tokenizer_cls is None:
|
135
|
+
raise ValueError("Tokenizer class is None")
|
136
|
+
tokenizer = cls.tokenizer_cls.from_preset(preset)
|
137
|
+
return cls(tokenizer=tokenizer, **kwargs)
|
138
|
+
|
139
|
+
if cls == Preprocessor:
|
140
|
+
raise ValueError(
|
141
|
+
"Do not call `Preprocessor.from_preset()` directly. Instead call a "
|
142
|
+
"choose a particular task class, e.g. "
|
143
|
+
"`keras_hub.models.BertPreprocessor.from_preset()`."
|
144
|
+
)
|
145
|
+
# Check if we should load a `preprocessor.json` directly.
|
146
|
+
load_preprocessor_config = False
|
147
|
+
if check_file_exists(preset, PREPROCESSOR_CONFIG_FILE):
|
148
|
+
preprocessor_preset_cls = check_config_class(
|
149
|
+
preset, PREPROCESSOR_CONFIG_FILE
|
150
|
+
)
|
151
|
+
if issubclass(preprocessor_preset_cls, cls):
|
152
|
+
load_preprocessor_config = True
|
153
|
+
if load_preprocessor_config:
|
154
|
+
# Preprocessor case.
|
155
|
+
preprocessor = load_serialized_object(
|
156
|
+
preset,
|
157
|
+
PREPROCESSOR_CONFIG_FILE,
|
158
|
+
)
|
159
|
+
preprocessor.tokenizer.load_preset_assets(preset)
|
160
|
+
return preprocessor
|
161
|
+
|
162
|
+
# Tokenizer case.
|
163
|
+
# If `preprocessor.json` doesn't exist or preprocessor preset class is
|
164
|
+
# different from the calling class, create the preprocessor based on
|
165
|
+
# `tokenizer.json`.
|
166
|
+
tokenizer_preset_cls = check_config_class(
|
167
|
+
preset, config_file=TOKENIZER_CONFIG_FILE
|
168
|
+
)
|
169
|
+
if tokenizer_preset_cls is not cls.tokenizer_cls:
|
170
|
+
subclasses = list_subclasses(cls)
|
171
|
+
subclasses = tuple(
|
172
|
+
filter(
|
173
|
+
lambda x: x.tokenizer_cls == tokenizer_preset_cls,
|
174
|
+
subclasses,
|
175
|
+
)
|
176
|
+
)
|
177
|
+
if len(subclasses) == 0:
|
178
|
+
raise ValueError(
|
179
|
+
f"No registered subclass of `{cls.__name__}` can load "
|
180
|
+
f"a `{tokenizer_preset_cls.__name__}`."
|
181
|
+
)
|
182
|
+
if len(subclasses) > 1:
|
183
|
+
names = ", ".join(f"`{x.__name__}`" for x in subclasses)
|
184
|
+
raise ValueError(
|
185
|
+
f"Ambiguous call to `{cls.__name__}.from_preset()`. "
|
186
|
+
f"Found multiple possible subclasses {names}. "
|
187
|
+
"Please call `from_preset` on a subclass directly."
|
188
|
+
)
|
189
|
+
|
190
|
+
tokenizer = load_serialized_object(preset, TOKENIZER_CONFIG_FILE)
|
191
|
+
tokenizer.load_preset_assets(preset)
|
192
|
+
preprocessor = cls(tokenizer=tokenizer, **kwargs)
|
193
|
+
|
194
|
+
return preprocessor
|
195
|
+
|
196
|
+
def save_to_preset(self, preset_dir):
|
197
|
+
"""Save preprocessor to a preset directory.
|
198
|
+
|
199
|
+
Args:
|
200
|
+
preset_dir: The path to the local model preset directory.
|
201
|
+
"""
|
202
|
+
save_serialized_object(
|
203
|
+
self,
|
204
|
+
preset_dir,
|
205
|
+
config_file=PREPROCESSOR_CONFIG_FILE,
|
206
|
+
)
|
207
|
+
self.tokenizer.save_to_preset(preset_dir)
|
@@ -0,0 +1,13 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|