keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,190 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import keras
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
18
+ from keras_hub.src.models.phi3.phi3_tokenizer import Phi3Tokenizer
19
+ from keras_hub.src.models.preprocessor import Preprocessor
20
+ from keras_hub.src.utils.keras_utils import (
21
+ convert_inputs_to_list_of_tensor_segments,
22
+ )
23
+
24
+
25
+ @keras_hub_export("keras_hub.models.Phi3Preprocessor")
26
+ class Phi3Preprocessor(Preprocessor):
27
+ """A Phi3 preprocessing layer which tokenizes and packs inputs.
28
+
29
+ This preprocessing layer will do three things:
30
+
31
+ 1. Tokenize any number of input segments using the `tokenizer`.
32
+ 2. Pack the inputs together using a `keras_hub.layers.StartEndPacker`.
33
+ with the appropriate tokens.
34
+ 3. Construct a dictionary with keys `"token_ids"`, and `"padding_mask"`
35
+ that can be passed directly to `keras_hub.models.Phi3Backbone`.
36
+
37
+ This layer can be used directly with `tf.data.Dataset.map` to preprocess
38
+ string data in the `(x, y, sample_weight)` format used by
39
+ `keras.Model.fit`.
40
+
41
+ Args:
42
+ tokenizer: A `keras_hub.models.Phi3Tokenizer` instance.
43
+ sequence_length: The length of the packed inputs.
44
+ add_start_token: If `True`, the preprocessor will prepend the tokenizer
45
+ start token to each input sequence. Default is `True`.
46
+ add_end_token: If `True`, the preprocessor will append the tokenizer
47
+ end token to each input sequence. Default is `False`.
48
+
49
+ Call arguments:
50
+ x: A tensor of single string sequences, or a tuple of multiple
51
+ tensor sequences to be packed together. Inputs may be batched or
52
+ unbatched. For single sequences, raw python inputs will be converted
53
+ to tensors. For multiple sequences, pass tensors directly.
54
+ y: Any label data. Will be passed through unaltered.
55
+ sample_weight: Any label weight data. Will be passed through unaltered.
56
+ sequence_length: Pass to override the configured `sequence_length` of
57
+ the layer.
58
+
59
+ Examples:
60
+
61
+ Directly calling the from_preset().
62
+ ```python
63
+ preprocessor = keras_hub.models.Phi3Preprocessor.from_preset(
64
+ ""
65
+ )
66
+
67
+ # Tokenize and pack a single sentence.
68
+ preprocessor("The quick brown fox jumped.")
69
+
70
+ # Tokenize and a batch of single sentences.
71
+ preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
72
+
73
+ # Preprocess a batch of sentence pairs.
74
+ # When handling multiple sequences, always convert to tensors first!
75
+ first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
76
+ second = tf.constant(["The fox tripped.", "Oh look, a whale."])
77
+ preprocessor((first, second))
78
+ ```
79
+
80
+ Mapping with `tf.data.Dataset`.
81
+ ```python
82
+ preprocessor = keras_hub.models.Phi3Preprocessor.from_preset(
83
+ "phi3_mini_4k_instruct_en"
84
+ )
85
+ first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
86
+ second = tf.constant(["The fox tripped.", "Oh look, a whale."])
87
+ label = tf.constant([1, 1])
88
+
89
+ # Map labeled single sentences.
90
+ ds = tf.data.Dataset.from_tensor_slices((first, label))
91
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
92
+
93
+ # Map unlabeled single sentences.
94
+ ds = tf.data.Dataset.from_tensor_slices(first)
95
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
96
+
97
+ # Map labeled sentence pairs.
98
+ ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
99
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
100
+
101
+ # Map unlabeled sentence pairs.
102
+ ds = tf.data.Dataset.from_tensor_slices((first, second))
103
+
104
+ # Watch out for tf.data's default unpacking of tuples here!
105
+ # Best to invoke the `preprocessor` directly in this case.
106
+ ds = ds.map(
107
+ lambda first, second: preprocessor(x=(first, second)),
108
+ num_parallel_calls=tf.data.AUTOTUNE,
109
+ )
110
+ ```
111
+ """
112
+
113
+ tokenizer_cls = Phi3Tokenizer
114
+
115
+ def __init__(
116
+ self,
117
+ tokenizer,
118
+ sequence_length=1024,
119
+ add_start_token=True,
120
+ add_end_token=False,
121
+ **kwargs,
122
+ ):
123
+ super().__init__(**kwargs)
124
+ self.tokenizer = tokenizer
125
+ self.packer = None
126
+ self.add_start_token = add_start_token
127
+ self.add_end_token = add_end_token
128
+ self.sequence_length = sequence_length
129
+
130
+ def build(self, input_shape):
131
+ # Defer packer creation to `build()` so that we can be sure tokenizer
132
+ # assets have loaded when restoring a saved model.
133
+ self.packer = StartEndPacker(
134
+ start_value=self.tokenizer.start_token_id,
135
+ end_value=self.tokenizer.end_token_id,
136
+ pad_value=self.tokenizer.pad_token_id,
137
+ sequence_length=self.sequence_length,
138
+ return_padding_mask=True,
139
+ )
140
+ self.built = True
141
+
142
+ def get_config(self):
143
+ config = super().get_config()
144
+ config.update(
145
+ {
146
+ "sequence_length": self.sequence_length,
147
+ "add_start_token": self.add_start_token,
148
+ "add_end_token": self.add_end_token,
149
+ }
150
+ )
151
+ return config
152
+
153
+ def call(
154
+ self,
155
+ x,
156
+ y=None,
157
+ sample_weight=None,
158
+ sequence_length=None,
159
+ ):
160
+ x = convert_inputs_to_list_of_tensor_segments(x)
161
+ if len(x) != 1:
162
+ raise ValueError(
163
+ "Phi3 requires each input feature to contain only "
164
+ f"one segment, but received {len(x)}. If you are using Phi3"
165
+ " for a multi-segment classification task, please refer to "
166
+ "classification models like BERT or RoBERTa."
167
+ )
168
+ sequence_length = sequence_length or self.sequence_length
169
+ token_ids, padding_mask = self.packer(
170
+ self.tokenizer(x[0]),
171
+ sequence_length=sequence_length,
172
+ add_start_value=self.add_start_token,
173
+ add_end_value=self.add_end_token,
174
+ )
175
+ x = {
176
+ "token_ids": token_ids,
177
+ "padding_mask": padding_mask,
178
+ }
179
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
180
+
181
+ @property
182
+ def sequence_length(self):
183
+ """The padded length of model input sequences."""
184
+ return self._sequence_length
185
+
186
+ @sequence_length.setter
187
+ def sequence_length(self, value):
188
+ self._sequence_length = value
189
+ if self.packer is not None:
190
+ self.packer.sequence_length = value
@@ -0,0 +1,50 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Phi-3 model preset configurations."""
15
+
16
+ # Metadata for loading pretrained model weights.
17
+ backbone_presets = {
18
+ "phi3_mini_4k_instruct_en": {
19
+ "metadata": {
20
+ "description": (
21
+ "3.8 billion parameters, 32 layers, 4k context length, Phi-3 "
22
+ "model. The model was trained using the Phi-3 datasets. This "
23
+ "dataset includes both synthetic data and filtered publicly "
24
+ "available website data, with an emphasis on high-quality and "
25
+ "reasoning-dense properties."
26
+ ),
27
+ "params": 3821079552,
28
+ "official_name": "Phi-3",
29
+ "path": "phi3",
30
+ "model_card": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
31
+ },
32
+ "kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_4k_instruct_en",
33
+ },
34
+ "phi3_mini_128k_instruct_en": {
35
+ "metadata": {
36
+ "description": (
37
+ "3.8 billion parameters, 32 layers, 128k context length, Phi-3 "
38
+ "model. The model was trained using the Phi-3 datasets. This "
39
+ "dataset includes both synthetic data and filtered publicly "
40
+ "available website data, with an emphasis on high-quality and "
41
+ "reasoning-dense properties."
42
+ ),
43
+ "params": 3821079552,
44
+ "official_name": "Phi-3",
45
+ "path": "phi3",
46
+ "model_card": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct",
47
+ },
48
+ "kaggle_handle": "kaggle://keras/phi3/keras/phi3_mini_128k_instruct_en",
49
+ },
50
+ }
@@ -0,0 +1,137 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import math
15
+
16
+ from keras import ops
17
+
18
+ from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
19
+
20
+
21
+ class Phi3SuScaledRotaryEmbedding(RotaryEmbedding):
22
+ """SuRotary positional encoding layer.
23
+
24
+ Args:
25
+ inverese_freq_short_factor List[float]: List of factors used to adjust
26
+ rope frequencies when the `rope_scaling_type` is `"su"`. List must
27
+ be of length `hidden_dim//num_query_heads//2`. It is used when
28
+ `sequence_length` is smaller than `original_max_sequence_length`.
29
+ inverese_freq_long_factor List[float]: List of factors used to adjust
30
+ rope frequencies when the `rope_scaling_type` is `"su"`. List must
31
+ be of length `hidden_dim//num_query_heads//2`. It is used when
32
+ `sequence_length` is larger than `original_max_sequence_length`.
33
+ max_sequence_length: int. The maximum sequence length that this
34
+ model might ever be used with.
35
+ pretraining_sequence_length: int. The maximum sequence length that
36
+ this model was pretrained with.
37
+ max_wavelength: int. The maximum angular wavelength of the sine/cosine
38
+ curves.
39
+
40
+ Call arguments:
41
+ inputs: The tensor inputs to apply the embedding to. This can have
42
+ any shape, but must contain both a sequence and feature axis. The
43
+ rotary embedding will be applied to `inputs` and returned.
44
+ start_index: An integer or integer tensor. The starting position to
45
+ compute the rotary embedding from. This is useful during cached
46
+ decoding, where each position is predicted separately in a loop.
47
+
48
+ References:
49
+ - [Phi-3-mini-128k-instruct original implementation](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/blob/0693e0b867d29e7318280ddd3ff9d5e66698f488/modeling_phi3.py#L142)
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ inverese_freq_short_factor,
55
+ inverese_freq_long_factor,
56
+ max_sequence_length=4096,
57
+ pretraining_sequence_length=4096,
58
+ max_wavelength=10000,
59
+ **kwargs
60
+ ):
61
+ super().__init__(max_wavelength=max_wavelength, **kwargs)
62
+ self.max_sequence_length = max_sequence_length
63
+ self.pretraining_sequence_length = pretraining_sequence_length
64
+
65
+ scaling_factor = (
66
+ self.max_sequence_length / self.pretraining_sequence_length
67
+ )
68
+ if scaling_factor <= 1.0:
69
+ self.embedding_scaling_factor = 1.0
70
+ else:
71
+ self.embedding_scaling_factor = math.sqrt(
72
+ 1
73
+ + math.log(scaling_factor)
74
+ / math.log(self.pretraining_sequence_length)
75
+ )
76
+
77
+ self.inverese_freq_short_factor = inverese_freq_short_factor
78
+ self.inverese_freq_long_factor = inverese_freq_long_factor
79
+
80
+ def _compute_cos_sin_embedding(self, inputs, start_index=0, positions=None):
81
+ feature_axis = len(inputs.shape) - 1
82
+ sequence_axis = 1
83
+
84
+ rotary_dim = ops.shape(inputs)[feature_axis]
85
+ inverse_freq = self._get_inverse_freq(rotary_dim)
86
+
87
+ # Multiply inverse_freq by a factor.
88
+ if ops.shape(inputs)[sequence_axis] > self.pretraining_sequence_length:
89
+ inverse_freq = ops.divide(
90
+ inverse_freq,
91
+ ops.convert_to_tensor(self.inverese_freq_long_factor),
92
+ )
93
+ else:
94
+ inverse_freq = ops.divide(
95
+ inverse_freq,
96
+ ops.convert_to_tensor(self.inverese_freq_short_factor),
97
+ )
98
+
99
+ if positions is None:
100
+ positions = self._compute_positions(inputs, start_index)
101
+ else:
102
+ positions = ops.cast(positions, "float32")
103
+
104
+ freq = ops.einsum("i,j->ij", positions, inverse_freq)
105
+ embedding = ops.stack((freq, freq), axis=-2)
106
+ embedding = ops.reshape(
107
+ embedding, (*ops.shape(freq)[:-1], ops.shape(freq)[-1] * 2)
108
+ )
109
+
110
+ # Reshape the embedding to be broadcastable with input shape.
111
+ if feature_axis < sequence_axis:
112
+ embedding = ops.transpose(embedding)
113
+ for axis in range(len(inputs.shape)):
114
+ if axis != sequence_axis and axis != feature_axis:
115
+ embedding = ops.expand_dims(embedding, axis)
116
+
117
+ cos_emb = ops.cast(
118
+ ops.cos(embedding) * self.embedding_scaling_factor,
119
+ self.compute_dtype,
120
+ )
121
+ sin_emb = ops.cast(
122
+ ops.sin(embedding) * self.embedding_scaling_factor,
123
+ self.compute_dtype,
124
+ )
125
+ return cos_emb, sin_emb
126
+
127
+ def get_config(self):
128
+ config = super().get_config()
129
+ config.update(
130
+ {
131
+ "max_sequence_length": self.max_sequence_length,
132
+ "pretraining_sequence_length": self.pretraining_sequence_length,
133
+ "inverese_freq_short_factor": self.inverese_freq_short_factor,
134
+ "inverese_freq_long_factor": self.inverese_freq_long_factor,
135
+ }
136
+ )
137
+ return config
@@ -0,0 +1,94 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import copy
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.models.phi3.phi3_presets import backbone_presets
18
+ from keras_hub.src.tokenizers.sentence_piece_tokenizer import (
19
+ SentencePieceTokenizer,
20
+ )
21
+ from keras_hub.src.utils.python_utils import classproperty
22
+
23
+
24
+ @keras_hub_export("keras_hub.models.Phi3Tokenizer")
25
+ class Phi3Tokenizer(SentencePieceTokenizer):
26
+ """Phi3 tokenizer layer based on SentencePiece.
27
+
28
+ This tokenizer class will tokenize raw strings into integer sequences and
29
+ is based on `keras_hub.tokenizers.SentencePieceTokenizer`. Unlike the
30
+ underlying tokenizer, it will check for all special tokens needed by
31
+ Phi3 models and provides a `from_preset()` method to automatically
32
+ download a matching vocabulary for a Phi3 preset.
33
+
34
+ This tokenizer does not provide truncation or padding of inputs. It can be
35
+ combined with a `keras_hub.models.Phi3Preprocessor` layer for input
36
+ packing.
37
+
38
+ If input is a batch of strings (rank > 0), the layer will output a
39
+ `tf.RaggedTensor` where the last dimension of the output is ragged.
40
+
41
+ If input is a scalar string (rank == 0), the layer will output a dense
42
+ `tf.Tensor` with static shape `[None]`.
43
+
44
+ Args:
45
+ proto: Either a `string` path to a SentencePiece proto file, or a
46
+ `bytes` object with a serialized SentencePiece proto. See the
47
+ [SentencePiece repository](https://github.com/google/sentencepiece)
48
+ for more details on the format.
49
+
50
+ Examples:
51
+ ```python
52
+ # Unbatched input.
53
+ tokenizer = keras_hub.models.Phi3Tokenizer.from_preset(
54
+ "phi3_mini_4k_instruct_en",
55
+ )
56
+ tokenizer("The quick brown fox jumped.")
57
+
58
+ # Batched input.
59
+ tokenizer(["The quick brown fox jumped.", "The fox slept."])
60
+
61
+ # Detokenization.
62
+ tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
63
+ ```
64
+ """
65
+
66
+ def __init__(self, proto, **kwargs):
67
+ self.start_token = "<s>"
68
+ self.end_token = "<|endoftext|>"
69
+ super().__init__(proto=proto, **kwargs)
70
+
71
+ def set_proto(self, proto):
72
+ super().set_proto(proto)
73
+ if proto is not None:
74
+ for token in [self.start_token, self.end_token]:
75
+ if token not in self.get_vocabulary():
76
+ raise ValueError(
77
+ f"Cannot find token `'{token}'` in the provided "
78
+ f"`vocabulary`. Please provide `'{token}'` in your "
79
+ "`vocabulary` or use a pretrained `vocabulary` name."
80
+ )
81
+ self.start_token_id = self.token_to_id(self.start_token)
82
+ self.end_token_id = self.token_to_id(self.end_token)
83
+ # TODO: `pad_token` is `<|endoftext|>`, but setting it to `<unk>`
84
+ # for now, because of the way sampler works. sampler will think that
85
+ # `pad_token` is `end_token` and stop generation immediatly.
86
+ self.pad_token_id = 0
87
+ else:
88
+ self.start_token_id = None
89
+ self.end_token_id = None
90
+ self.pad_token_id = None
91
+
92
+ @classproperty
93
+ def presets(cls):
94
+ return copy.deepcopy(backbone_presets)
@@ -0,0 +1,207 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import keras
16
+
17
+ from keras_hub.src.api_export import keras_hub_export
18
+ from keras_hub.src.layers.preprocessing.preprocessing_layer import (
19
+ PreprocessingLayer,
20
+ )
21
+ from keras_hub.src.utils.preset_utils import PREPROCESSOR_CONFIG_FILE
22
+ from keras_hub.src.utils.preset_utils import TOKENIZER_CONFIG_FILE
23
+ from keras_hub.src.utils.preset_utils import check_config_class
24
+ from keras_hub.src.utils.preset_utils import check_file_exists
25
+ from keras_hub.src.utils.preset_utils import check_format
26
+ from keras_hub.src.utils.preset_utils import list_presets
27
+ from keras_hub.src.utils.preset_utils import list_subclasses
28
+ from keras_hub.src.utils.preset_utils import load_serialized_object
29
+ from keras_hub.src.utils.preset_utils import save_serialized_object
30
+ from keras_hub.src.utils.python_utils import classproperty
31
+
32
+
33
+ @keras_hub_export("keras_hub.models.Preprocessor")
34
+ class Preprocessor(PreprocessingLayer):
35
+ """Base class for preprocessing layers.
36
+
37
+ A `Preprocessor` layer wraps a `keras_hub.tokenizer.Tokenizer` to provide a
38
+ complete preprocessing setup for a given task. For example a masked language
39
+ modeling preprocessor will take in raw input strings, and output
40
+ `(x, y, sample_weight)` tuples. Where `x` contains token id sequences with
41
+ some
42
+
43
+ This class can be subclassed similar to any `keras.layers.Layer`, by
44
+ defining `build()`, `call()` and `get_config()` methods. All subclasses
45
+ should set the `tokenizer` property on construction.
46
+ """
47
+
48
+ tokenizer_cls = None
49
+
50
+ def __init__(self, *args, **kwargs):
51
+ super().__init__(*args, **kwargs)
52
+ self._tokenizer = None
53
+
54
+ def __setattr__(self, name, value):
55
+ # Work around torch setattr for properties.
56
+ if name in ["tokenizer"]:
57
+ return object.__setattr__(self, name, value)
58
+ return super().__setattr__(name, value)
59
+
60
+ @property
61
+ def tokenizer(self):
62
+ """The tokenizer used to tokenize strings."""
63
+ return self._tokenizer
64
+
65
+ @tokenizer.setter
66
+ def tokenizer(self, value):
67
+ self._tokenizer = value
68
+
69
+ def get_config(self):
70
+ config = super().get_config()
71
+ config["tokenizer"] = keras.layers.serialize(self.tokenizer)
72
+ return config
73
+
74
+ @classmethod
75
+ def from_config(cls, config):
76
+ if "tokenizer" in config and isinstance(config["tokenizer"], dict):
77
+ config["tokenizer"] = keras.layers.deserialize(config["tokenizer"])
78
+ return cls(**config)
79
+
80
+ @classproperty
81
+ def presets(cls):
82
+ presets = list_presets(cls)
83
+ # We can also load backbone presets.
84
+ if cls.tokenizer_cls is not None:
85
+ presets.update(cls.tokenizer_cls.presets)
86
+ for subclass in list_subclasses(cls):
87
+ presets.update(subclass.presets)
88
+ return presets
89
+
90
+ @classmethod
91
+ def from_preset(
92
+ cls,
93
+ preset,
94
+ **kwargs,
95
+ ):
96
+ """Instantiate a `keras_hub.models.Preprocessor` from a model preset.
97
+
98
+ A preset is a directory of configs, weights and other file assets used
99
+ to save and load a pre-trained model. The `preset` can be passed as a
100
+ one of:
101
+
102
+ 1. a built in preset identifier like `'bert_base_en'`
103
+ 2. a Kaggle Models handle like `'kaggle://user/bert/keras/bert_base_en'`
104
+ 3. a Hugging Face handle like `'hf://user/bert_base_en'`
105
+ 4. a path to a local preset directory like `'./bert_base_en'`
106
+
107
+ For any `Preprocessor` subclass, you can run `cls.presets.keys()` to
108
+ list all built-in presets available on the class.
109
+
110
+ As there are usually multiple preprocessing classes for a given model,
111
+ this method should be called on a specific subclass like
112
+ `keras_hub.models.BertPreprocessor.from_preset()`.
113
+
114
+ Args:
115
+ preset: string. A built in preset identifier, a Kaggle Models
116
+ handle, a Hugging Face handle, or a path to a local directory.
117
+
118
+ Examples:
119
+ ```python
120
+ # Load a preprocessor for Gemma generation.
121
+ preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
122
+ "gemma_2b_en",
123
+ )
124
+
125
+ # Load a preprocessor for Bert classification.
126
+ preprocessor = keras_hub.models.BertPreprocessor.from_preset(
127
+ "bert_base_en",
128
+ )
129
+ ```
130
+ """
131
+ format = check_format(preset)
132
+
133
+ if format == "transformers":
134
+ if cls.tokenizer_cls is None:
135
+ raise ValueError("Tokenizer class is None")
136
+ tokenizer = cls.tokenizer_cls.from_preset(preset)
137
+ return cls(tokenizer=tokenizer, **kwargs)
138
+
139
+ if cls == Preprocessor:
140
+ raise ValueError(
141
+ "Do not call `Preprocessor.from_preset()` directly. Instead call a "
142
+ "choose a particular task class, e.g. "
143
+ "`keras_hub.models.BertPreprocessor.from_preset()`."
144
+ )
145
+ # Check if we should load a `preprocessor.json` directly.
146
+ load_preprocessor_config = False
147
+ if check_file_exists(preset, PREPROCESSOR_CONFIG_FILE):
148
+ preprocessor_preset_cls = check_config_class(
149
+ preset, PREPROCESSOR_CONFIG_FILE
150
+ )
151
+ if issubclass(preprocessor_preset_cls, cls):
152
+ load_preprocessor_config = True
153
+ if load_preprocessor_config:
154
+ # Preprocessor case.
155
+ preprocessor = load_serialized_object(
156
+ preset,
157
+ PREPROCESSOR_CONFIG_FILE,
158
+ )
159
+ preprocessor.tokenizer.load_preset_assets(preset)
160
+ return preprocessor
161
+
162
+ # Tokenizer case.
163
+ # If `preprocessor.json` doesn't exist or preprocessor preset class is
164
+ # different from the calling class, create the preprocessor based on
165
+ # `tokenizer.json`.
166
+ tokenizer_preset_cls = check_config_class(
167
+ preset, config_file=TOKENIZER_CONFIG_FILE
168
+ )
169
+ if tokenizer_preset_cls is not cls.tokenizer_cls:
170
+ subclasses = list_subclasses(cls)
171
+ subclasses = tuple(
172
+ filter(
173
+ lambda x: x.tokenizer_cls == tokenizer_preset_cls,
174
+ subclasses,
175
+ )
176
+ )
177
+ if len(subclasses) == 0:
178
+ raise ValueError(
179
+ f"No registered subclass of `{cls.__name__}` can load "
180
+ f"a `{tokenizer_preset_cls.__name__}`."
181
+ )
182
+ if len(subclasses) > 1:
183
+ names = ", ".join(f"`{x.__name__}`" for x in subclasses)
184
+ raise ValueError(
185
+ f"Ambiguous call to `{cls.__name__}.from_preset()`. "
186
+ f"Found multiple possible subclasses {names}. "
187
+ "Please call `from_preset` on a subclass directly."
188
+ )
189
+
190
+ tokenizer = load_serialized_object(preset, TOKENIZER_CONFIG_FILE)
191
+ tokenizer.load_preset_assets(preset)
192
+ preprocessor = cls(tokenizer=tokenizer, **kwargs)
193
+
194
+ return preprocessor
195
+
196
+ def save_to_preset(self, preset_dir):
197
+ """Save preprocessor to a preset directory.
198
+
199
+ Args:
200
+ preset_dir: The path to the local model preset directory.
201
+ """
202
+ save_serialized_object(
203
+ self,
204
+ preset_dir,
205
+ config_file=PREPROCESSOR_CONFIG_FILE,
206
+ )
207
+ self.tokenizer.save_to_preset(preset_dir)
@@ -0,0 +1,13 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.