keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,94 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import keras
16
+ from keras import ops
17
+
18
+
19
+ class RelativeEmbedding(keras.layers.Layer):
20
+ """Relative embedding layer.
21
+
22
+ This is an implementation of relative embedding as described in the
23
+ paper ["DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing"](https://arxiv.org/abs/2111.09543).
24
+ This layer initializes an embedding matrix (of shape
25
+ `(2 * batch_size, hidden_dim)`) for relative position encoding. It then
26
+ applies layer normalization on the embedding matrix and returns the relative
27
+ embedding matrix.
28
+
29
+ Args:
30
+ hidden_dim: int. The size of the dense embedding.
31
+ bucket_size: int. The size of the relative position buckets.
32
+ layer_norm_epsilon: float. Epsilon value to initialize the layer
33
+ normalization layer.
34
+ kernel_initializer: string or `keras.initializers` initializer.
35
+ The kernel initializer for the dense embedding.
36
+ Defaults to `"glorot_uniform"`.
37
+ """
38
+
39
+ def __init__(
40
+ self,
41
+ hidden_dim,
42
+ bucket_size,
43
+ layer_norm_epsilon=1e-05,
44
+ kernel_initializer="glorot_uniform",
45
+ **kwargs,
46
+ ):
47
+ super().__init__(**kwargs)
48
+
49
+ self.hidden_dim = hidden_dim
50
+ self.bucket_size = bucket_size
51
+ self.layer_norm_epsilon = layer_norm_epsilon
52
+ self.kernel_initializer = keras.initializers.get(kernel_initializer)
53
+
54
+ self.rel_embeddings = self.add_weight(
55
+ shape=(self.bucket_size * 2, self.hidden_dim),
56
+ initializer=self.kernel_initializer,
57
+ name="rel_embedding",
58
+ )
59
+ self.layer_norm = keras.layers.LayerNormalization(
60
+ epsilon=layer_norm_epsilon,
61
+ dtype=self.dtype_policy,
62
+ name="rel_embeddings_layer_norm",
63
+ )
64
+
65
+ def call(self, inputs):
66
+ batch_size = ops.shape(inputs)[0]
67
+
68
+ rel_embeddings = ops.expand_dims(
69
+ ops.convert_to_tensor(self.rel_embeddings), axis=0
70
+ )
71
+ rel_embeddings = self.layer_norm(rel_embeddings)
72
+
73
+ # Repeat `rel_embeddings` along axis = 0 `batch_size` times. The
74
+ # resultant shape is `(batch_size, bucket_size * 2, hidden_dim)`.
75
+ rel_embeddings = ops.repeat(rel_embeddings, repeats=batch_size, axis=0)
76
+
77
+ return rel_embeddings
78
+
79
+ def get_config(self):
80
+ config = super().get_config()
81
+ config.update(
82
+ {
83
+ "hidden_dim": self.hidden_dim,
84
+ "bucket_size": self.bucket_size,
85
+ "layer_norm_epsilon": self.layer_norm_epsilon,
86
+ "kernel_initializer": keras.initializers.serialize(
87
+ self.kernel_initializer
88
+ ),
89
+ }
90
+ )
91
+ return config
92
+
93
+ def compute_output_shape(self, input_shape):
94
+ return (input_shape[0],) + (self.bucket_size * 2, self.hidden_dim)
@@ -0,0 +1,13 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
@@ -0,0 +1,210 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import keras
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.models.backbone import Backbone
18
+
19
+ BN_AXIS = 3
20
+ BN_EPSILON = 1.001e-5
21
+
22
+
23
+ @keras_hub_export("keras_hub.models.DenseNetBackbone")
24
+ class DenseNetBackbone(Backbone):
25
+ """Instantiates the DenseNet architecture.
26
+
27
+ This class implements a DenseNet backbone as described in
28
+ [Densely Connected Convolutional Networks (CVPR 2017)](
29
+ https://arxiv.org/abs/1608.06993
30
+ ).
31
+
32
+ Args:
33
+ stackwise_num_repeats: list of ints, number of repeated convolutional
34
+ blocks per dense block.
35
+ include_rescaling: bool, whether to rescale the inputs. If set
36
+ to `True`, inputs will be passed through a `Rescaling(1/255.0)`
37
+ layer. Defaults to `True`.
38
+ image_shape: optional shape tuple, defaults to (224, 224, 3).
39
+ compression_ratio: float, compression rate at transition layers,
40
+ defaults to 0.5.
41
+ growth_rate: int, number of filters added by each dense block,
42
+ defaults to 32
43
+
44
+ Examples:
45
+ ```python
46
+ input_data = np.ones(shape=(8, 224, 224, 3))
47
+
48
+ # Pretrained backbone
49
+ model = keras_hub.models.DenseNetBackbone.from_preset("densenet121_imagenet")
50
+ model(input_data)
51
+
52
+ # Randomly initialized backbone with a custom config
53
+ model = keras_hub.models.DenseNetBackbone(
54
+ stackwise_num_repeats=[6, 12, 24, 16],
55
+ include_rescaling=False,
56
+ )
57
+ model(input_data)
58
+ ```
59
+ """
60
+
61
+ def __init__(
62
+ self,
63
+ stackwise_num_repeats,
64
+ include_rescaling=True,
65
+ image_shape=(224, 224, 3),
66
+ compression_ratio=0.5,
67
+ growth_rate=32,
68
+ **kwargs,
69
+ ):
70
+ # === Functional Model ===
71
+ image_input = keras.layers.Input(shape=image_shape)
72
+
73
+ x = image_input
74
+ if include_rescaling:
75
+ x = keras.layers.Rescaling(1 / 255.0)(x)
76
+
77
+ x = keras.layers.Conv2D(
78
+ 64, 7, strides=2, use_bias=False, padding="same", name="conv1_conv"
79
+ )(x)
80
+ x = keras.layers.BatchNormalization(
81
+ axis=BN_AXIS, epsilon=BN_EPSILON, name="conv1_bn"
82
+ )(x)
83
+ x = keras.layers.Activation("relu", name="conv1_relu")(x)
84
+ x = keras.layers.MaxPooling2D(
85
+ 3, strides=2, padding="same", name="pool1"
86
+ )(x)
87
+
88
+ for stack_index in range(len(stackwise_num_repeats) - 1):
89
+ index = stack_index + 2
90
+ x = apply_dense_block(
91
+ x,
92
+ stackwise_num_repeats[stack_index],
93
+ growth_rate,
94
+ name=f"conv{index}",
95
+ )
96
+ x = apply_transition_block(
97
+ x, compression_ratio, name=f"pool{index}"
98
+ )
99
+
100
+ x = apply_dense_block(
101
+ x,
102
+ stackwise_num_repeats[-1],
103
+ growth_rate,
104
+ name=f"conv{len(stackwise_num_repeats) + 1}",
105
+ )
106
+
107
+ x = keras.layers.BatchNormalization(
108
+ axis=BN_AXIS, epsilon=BN_EPSILON, name="bn"
109
+ )(x)
110
+ x = keras.layers.Activation("relu", name="relu")(x)
111
+
112
+ super().__init__(inputs=image_input, outputs=x, **kwargs)
113
+
114
+ # === Config ===
115
+ self.stackwise_num_repeats = stackwise_num_repeats
116
+ self.include_rescaling = include_rescaling
117
+ self.compression_ratio = compression_ratio
118
+ self.growth_rate = growth_rate
119
+ self.image_shape = image_shape
120
+
121
+ def get_config(self):
122
+ config = super().get_config()
123
+ config.update(
124
+ {
125
+ "stackwise_num_repeats": self.stackwise_num_repeats,
126
+ "include_rescaling": self.include_rescaling,
127
+ "compression_ratio": self.compression_ratio,
128
+ "growth_rate": self.growth_rate,
129
+ "image_shape": self.image_shape,
130
+ }
131
+ )
132
+ return config
133
+
134
+
135
+ def apply_dense_block(x, num_repeats, growth_rate, name=None):
136
+ """A dense block.
137
+
138
+ Args:
139
+ x: input tensor.
140
+ num_repeats: int, number of repeated convolutional blocks.
141
+ growth_rate: int, number of filters added by each dense block.
142
+ name: string, block label.
143
+ """
144
+ if name is None:
145
+ name = f"dense_block_{keras.backend.get_uid('dense_block')}"
146
+
147
+ for i in range(num_repeats):
148
+ x = apply_conv_block(x, growth_rate, name=f"{name}_block_{i}")
149
+ return x
150
+
151
+
152
+ def apply_transition_block(x, compression_ratio, name=None):
153
+ """A transition block.
154
+
155
+ Args:
156
+ x: input tensor.
157
+ compression_ratio: float, compression rate at transition layers.
158
+ name: string, block label.
159
+ """
160
+ if name is None:
161
+ name = f"transition_block_{keras.backend.get_uid('transition_block')}"
162
+
163
+ x = keras.layers.BatchNormalization(
164
+ axis=BN_AXIS, epsilon=BN_EPSILON, name=f"{name}_bn"
165
+ )(x)
166
+ x = keras.layers.Activation("relu", name=f"{name}_relu")(x)
167
+ x = keras.layers.Conv2D(
168
+ int(x.shape[BN_AXIS] * compression_ratio),
169
+ 1,
170
+ use_bias=False,
171
+ name=f"{name}_conv",
172
+ )(x)
173
+ x = keras.layers.AveragePooling2D(2, strides=2, name=f"{name}_pool")(x)
174
+ return x
175
+
176
+
177
+ def apply_conv_block(x, growth_rate, name=None):
178
+ """A building block for a dense block.
179
+
180
+ Args:
181
+ x: input tensor.
182
+ growth_rate: int, number of filters added by each dense block.
183
+ name: string, block label.
184
+ """
185
+ if name is None:
186
+ name = f"conv_block_{keras.backend.get_uid('conv_block')}"
187
+
188
+ shortcut = x
189
+ x = keras.layers.BatchNormalization(
190
+ axis=BN_AXIS, epsilon=BN_EPSILON, name=f"{name}_0_bn"
191
+ )(x)
192
+ x = keras.layers.Activation("relu", name=f"{name}_0_relu")(x)
193
+ x = keras.layers.Conv2D(
194
+ 4 * growth_rate, 1, use_bias=False, name=f"{name}_1_conv"
195
+ )(x)
196
+ x = keras.layers.BatchNormalization(
197
+ axis=BN_AXIS, epsilon=BN_EPSILON, name=f"{name}_1_bn"
198
+ )(x)
199
+ x = keras.layers.Activation("relu", name=f"{name}_1_relu")(x)
200
+ x = keras.layers.Conv2D(
201
+ growth_rate,
202
+ 3,
203
+ padding="same",
204
+ use_bias=False,
205
+ name=f"{name}_2_conv",
206
+ )(x)
207
+ x = keras.layers.Concatenate(axis=BN_AXIS, name=f"{name}_concat")(
208
+ [shortcut, x]
209
+ )
210
+ return x
@@ -0,0 +1,131 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import keras
15
+
16
+ from keras_hub.src.api_export import keras_hub_export
17
+ from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
18
+ from keras_hub.src.models.image_classifier import ImageClassifier
19
+
20
+
21
+ @keras_hub_export("keras_hub.models.DenseNetImageClassifier")
22
+ class DenseNetImageClassifier(ImageClassifier):
23
+ """DenseNet image classifier task model.
24
+
25
+ To fine-tune with `fit()`, pass a dataset containing tuples of `(x, y)`
26
+ where `x` is a tensor and `y` is a integer from `[0, num_classes)`.
27
+ All `ImageClassifier` tasks include a `from_preset()` constructor which can
28
+ be used to load a pre-trained config and weights.
29
+
30
+ Args:
31
+ backbone: A `keras_hub.models.DenseNetBackbone` instance.
32
+ num_classes: int. The number of classes to predict.
33
+ activation: `None`, str or callable. The activation function to use on
34
+ the `Dense` layer. Set `activation=None` to return the output
35
+ logits. Defaults to `"softmax"`.
36
+
37
+ Examples:
38
+
39
+ Call `predict()` to run inference.
40
+ ```python
41
+ # Load preset and train
42
+ images = np.ones((2, 224, 224, 3), dtype="float32")
43
+ classifier = keras_hub.models.DenseNetImageClassifier.from_preset(
44
+ "densenet121_imagenet")
45
+ classifier.predict(images)
46
+ ```
47
+
48
+ Call `fit()` on a single batch.
49
+ ```python
50
+ # Load preset and train
51
+ images = np.ones((2, 224, 224, 3), dtype="float32")
52
+ labels = [0, 3]
53
+ classifier = keras_hub.models.DenseNetImageClassifier.from_preset(
54
+ "densenet121_imagenet")
55
+ classifier.fit(x=images, y=labels, batch_size=2)
56
+ ```
57
+
58
+ Call `fit()` with custom loss, optimizer and backbone.
59
+ ```python
60
+ classifier = keras_hub.models.DenseNetImageClassifier.from_preset(
61
+ "densenet121_imagenet")
62
+ classifier.compile(
63
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
64
+ optimizer=keras.optimizers.Adam(5e-5),
65
+ )
66
+ classifier.backbone.trainable = False
67
+ classifier.fit(x=images, y=labels, batch_size=2)
68
+ ```
69
+
70
+ Custom backbone.
71
+ ```python
72
+ images = np.ones((2, 224, 224, 3), dtype="float32")
73
+ labels = [0, 3]
74
+ backbone = keras_hub.models.DenseNetBackbone(
75
+ stackwise_num_filters=[128, 256, 512, 1024],
76
+ stackwise_depth=[3, 9, 9, 3],
77
+ include_rescaling=False,
78
+ block_type="basic_block",
79
+ image_shape = (224, 224, 3),
80
+ )
81
+ classifier = keras_hub.models.DenseNetImageClassifier(
82
+ backbone=backbone,
83
+ num_classes=4,
84
+ )
85
+ classifier.fit(x=images, y=labels, batch_size=2)
86
+ ```
87
+ """
88
+
89
+ backbone_cls = DenseNetBackbone
90
+
91
+ def __init__(
92
+ self,
93
+ backbone,
94
+ num_classes,
95
+ activation="softmax",
96
+ preprocessor=None, # adding this dummy arg for saved model test
97
+ # TODO: once preprocessor flow is figured out, this needs to be updated
98
+ **kwargs,
99
+ ):
100
+ # === Layers ===
101
+ self.backbone = backbone
102
+ self.output_dense = keras.layers.Dense(
103
+ num_classes,
104
+ activation=activation,
105
+ name="predictions",
106
+ )
107
+
108
+ # === Functional Model ===
109
+ inputs = self.backbone.input
110
+ x = self.backbone(inputs)
111
+ outputs = self.output_dense(x)
112
+ super().__init__(
113
+ inputs=inputs,
114
+ outputs=outputs,
115
+ **kwargs,
116
+ )
117
+
118
+ # === Config ===
119
+ self.num_classes = num_classes
120
+ self.activation = activation
121
+
122
+ def get_config(self):
123
+ # Backbone serialized in `super`
124
+ config = super().get_config()
125
+ config.update(
126
+ {
127
+ "num_classes": self.num_classes,
128
+ "activation": self.activation,
129
+ }
130
+ )
131
+ return config
@@ -0,0 +1,26 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from keras_hub.src.models.distil_bert.distil_bert_backbone import (
16
+ DistilBertBackbone,
17
+ )
18
+ from keras_hub.src.models.distil_bert.distil_bert_presets import (
19
+ backbone_presets,
20
+ )
21
+ from keras_hub.src.models.distil_bert.distil_bert_tokenizer import (
22
+ DistilBertTokenizer,
23
+ )
24
+ from keras_hub.src.utils.preset_utils import register_presets
25
+
26
+ register_presets(backbone_presets, (DistilBertBackbone, DistilBertTokenizer))
@@ -0,0 +1,187 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import keras
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.layers.modeling.token_and_position_embedding import (
20
+ TokenAndPositionEmbedding,
21
+ )
22
+ from keras_hub.src.layers.modeling.transformer_encoder import TransformerEncoder
23
+ from keras_hub.src.models.backbone import Backbone
24
+
25
+
26
+ def distilbert_kernel_initializer(stddev=0.02):
27
+ return keras.initializers.TruncatedNormal(stddev=stddev)
28
+
29
+
30
+ @keras_hub_export("keras_hub.models.DistilBertBackbone")
31
+ class DistilBertBackbone(Backbone):
32
+ """A DistilBERT encoder network.
33
+
34
+ This network implements a bi-directional Transformer-based encoder as
35
+ described in ["DistilBERT, a distilled version of BERT: smaller, faster,
36
+ cheaper and lighter"](https://arxiv.org/abs/1910.01108). It includes the
37
+ embedding lookups and transformer layers, but not the masked language model
38
+ or classification task networks.
39
+
40
+ The default constructor gives a fully customizable, randomly initialized
41
+ DistilBERT encoder with any number of layers, heads, and embedding
42
+ dimensions. To load preset architectures and weights, use the
43
+ `from_preset()` constructor.
44
+
45
+ Disclaimer: Pre-trained models are provided on an "as is" basis, without
46
+ warranties or conditions of any kind. The underlying model is provided by a
47
+ third party and subject to a separate license, available
48
+ [here](https://github.com/huggingface/transformers).
49
+
50
+ Args:
51
+ vocabulary_size: int. The size of the token vocabulary.
52
+ num_layers: int. The number of transformer layers.
53
+ num_heads: int. The number of attention heads for each transformer.
54
+ The hidden size must be divisible by the number of attention heads.
55
+ hidden_dim: int. The size of the transformer encoding and pooler layers.
56
+ intermediate_dim: int. The output dimension of the first Dense layer in
57
+ a two-layer feedforward network for each transformer.
58
+ dropout: float. Dropout probability for the Transformer encoder.
59
+ max_sequence_length: int. The maximum sequence length that this encoder
60
+ can consume. If None, `max_sequence_length` uses the value from
61
+ sequence length. This determines the variable shape for positional
62
+ embeddings.
63
+ dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
64
+ for model computations and weights. Note that some computations,
65
+ such as softmax and layer normalization, will always be done at
66
+ float32 precision regardless of dtype.
67
+
68
+ Examples:
69
+ ```python
70
+ input_data = {
71
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
72
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
73
+ }
74
+
75
+ # Pretrained DistilBERT encoder.
76
+ model = keras_hub.models.DistilBertBackbone.from_preset(
77
+ "distil_bert_base_en_uncased"
78
+ )
79
+ model(input_data)
80
+
81
+ # Randomly initialized DistilBERT encoder with custom config.
82
+ model = keras_hub.models.DistilBertBackbone(
83
+ vocabulary_size=30552,
84
+ num_layers=4,
85
+ num_heads=4,
86
+ hidden_dim=256,
87
+ intermediate_dim=512,
88
+ max_sequence_length=128,
89
+ )
90
+ model(input_data)
91
+ ```
92
+ """
93
+
94
+ def __init__(
95
+ self,
96
+ vocabulary_size,
97
+ num_layers,
98
+ num_heads,
99
+ hidden_dim,
100
+ intermediate_dim,
101
+ dropout=0.1,
102
+ max_sequence_length=512,
103
+ dtype=None,
104
+ **kwargs,
105
+ ):
106
+ # === Layers ===
107
+ self.embeddings = TokenAndPositionEmbedding(
108
+ vocabulary_size=vocabulary_size,
109
+ sequence_length=max_sequence_length,
110
+ embedding_dim=hidden_dim,
111
+ embeddings_initializer=distilbert_kernel_initializer(),
112
+ dtype=dtype,
113
+ name="token_and_position_embedding",
114
+ )
115
+ # Keep the token_embedding property for consistency across models.
116
+ self.token_embedding = self.embeddings.token_embedding
117
+ self.embeddings_layer_norm = keras.layers.LayerNormalization(
118
+ axis=-1,
119
+ epsilon=1e-12,
120
+ dtype=dtype,
121
+ name="embeddings_layer_norm",
122
+ )
123
+ self.embeddings_dropout = keras.layers.Dropout(
124
+ dropout,
125
+ dtype=dtype,
126
+ name="embeddings_dropout",
127
+ )
128
+ self.transformer_layers = []
129
+ for i in range(num_layers):
130
+ layer = TransformerEncoder(
131
+ num_heads=num_heads,
132
+ intermediate_dim=intermediate_dim,
133
+ activation="gelu",
134
+ dropout=dropout,
135
+ layer_norm_epsilon=1e-12,
136
+ kernel_initializer=distilbert_kernel_initializer(),
137
+ dtype=dtype,
138
+ name=f"transformer_layer_{i}",
139
+ )
140
+ self.transformer_layers.append(layer)
141
+
142
+ # === Functional Model ===
143
+ token_id_input = keras.Input(
144
+ shape=(None,), dtype="int32", name="token_ids"
145
+ )
146
+ padding_mask_input = keras.Input(
147
+ shape=(None,), dtype="int32", name="padding_mask"
148
+ )
149
+ x = self.embeddings(token_id_input)
150
+ x = self.embeddings_layer_norm(x)
151
+ x = self.embeddings_dropout(x)
152
+ for transformer_layer in self.transformer_layers:
153
+ x = transformer_layer(x, padding_mask=padding_mask_input)
154
+ super().__init__(
155
+ inputs={
156
+ "token_ids": token_id_input,
157
+ "padding_mask": padding_mask_input,
158
+ },
159
+ outputs=x,
160
+ dtype=dtype,
161
+ **kwargs,
162
+ )
163
+
164
+ # === Config ===
165
+ self.vocabulary_size = vocabulary_size
166
+ self.num_layers = num_layers
167
+ self.num_heads = num_heads
168
+ self.hidden_dim = hidden_dim
169
+ self.intermediate_dim = intermediate_dim
170
+ self.dropout = dropout
171
+ self.max_sequence_length = max_sequence_length
172
+ self.cls_token_index = 0
173
+
174
+ def get_config(self):
175
+ config = super().get_config()
176
+ config.update(
177
+ {
178
+ "vocabulary_size": self.vocabulary_size,
179
+ "num_layers": self.num_layers,
180
+ "num_heads": self.num_heads,
181
+ "hidden_dim": self.hidden_dim,
182
+ "intermediate_dim": self.intermediate_dim,
183
+ "dropout": self.dropout,
184
+ "max_sequence_length": self.max_sequence_length,
185
+ }
186
+ )
187
+ return config