keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,241 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import keras
15
+ from keras import ops
16
+
17
+ from keras_hub.src.layers.modeling.transformer_layer_utils import (
18
+ compute_causal_mask,
19
+ )
20
+ from keras_hub.src.layers.modeling.transformer_layer_utils import (
21
+ merge_padding_and_attention_mask,
22
+ )
23
+ from keras_hub.src.models.gemma.gemma_attention import CachedGemmaAttention
24
+ from keras_hub.src.models.gemma.rms_normalization import RMSNormalization
25
+
26
+
27
+ class GemmaDecoderBlock(keras.layers.Layer):
28
+ def __init__(
29
+ self,
30
+ hidden_dim,
31
+ intermediate_dim,
32
+ head_dim,
33
+ num_query_heads,
34
+ num_key_value_heads,
35
+ query_head_dim_normalize=True,
36
+ use_post_ffw_norm=False,
37
+ use_post_attention_norm=False,
38
+ logit_soft_cap=None,
39
+ use_sliding_window_attention=False,
40
+ sliding_window_size=4096,
41
+ layer_norm_epsilon=1e-6,
42
+ dropout=0,
43
+ **kwargs,
44
+ ):
45
+ super().__init__(**kwargs)
46
+
47
+ self.intermediate_dim = intermediate_dim
48
+ self.hidden_dim = hidden_dim
49
+ self.num_query_heads = num_query_heads
50
+ self.num_key_value_heads = num_key_value_heads
51
+ self.head_dim = head_dim
52
+ self.layer_norm_epsilon = layer_norm_epsilon
53
+ self.dropout = dropout
54
+ self.query_head_dim_normalize = query_head_dim_normalize
55
+ self.use_post_ffw_norm = use_post_ffw_norm
56
+ self.use_post_attention_norm = use_post_attention_norm
57
+ self.logit_soft_cap = logit_soft_cap
58
+ self.use_sliding_window_attention = use_sliding_window_attention
59
+ self.sliding_window_size = sliding_window_size
60
+
61
+ self.pre_attention_norm = RMSNormalization(
62
+ epsilon=self.layer_norm_epsilon,
63
+ dtype=self.dtype_policy,
64
+ name="pre_attention_norm",
65
+ )
66
+
67
+ if use_post_attention_norm:
68
+ self.post_attention_norm = RMSNormalization(
69
+ epsilon=self.layer_norm_epsilon,
70
+ dtype=self.dtype_policy,
71
+ name="pre_attention_norm",
72
+ )
73
+
74
+ self.attention = CachedGemmaAttention(
75
+ head_dim=head_dim,
76
+ num_query_heads=num_query_heads,
77
+ num_key_value_heads=num_key_value_heads,
78
+ logit_soft_cap=logit_soft_cap,
79
+ use_sliding_window_attention=use_sliding_window_attention,
80
+ sliding_window_size=sliding_window_size,
81
+ query_head_dim_normalize=True,
82
+ dropout=dropout,
83
+ dtype=self.dtype_policy,
84
+ name="attention",
85
+ )
86
+
87
+ if self.dropout > 0:
88
+ self.attention_dropout = keras.layers.Dropout(rate=dropout)
89
+ self.feedforward_dropout = keras.layers.Dropout(rate=dropout)
90
+
91
+ self.pre_ffw_norm = RMSNormalization(
92
+ epsilon=self.layer_norm_epsilon,
93
+ dtype=self.dtype_policy,
94
+ name="pre_ffw_norm",
95
+ )
96
+
97
+ if use_post_ffw_norm:
98
+ self.post_ffw_norm = RMSNormalization(
99
+ epsilon=self.layer_norm_epsilon,
100
+ dtype=self.dtype_policy,
101
+ name="post_ffw_norm",
102
+ )
103
+
104
+ self.gating_ffw = keras.layers.EinsumDense(
105
+ equation="btd,df->btf",
106
+ output_shape=(None, self.intermediate_dim // 2),
107
+ dtype=self.dtype_policy,
108
+ name="ffw_gating",
109
+ )
110
+
111
+ self.gating_ffw_2 = keras.layers.EinsumDense(
112
+ equation="btd,df->btf",
113
+ output_shape=(None, self.intermediate_dim // 2),
114
+ dtype=self.dtype_policy,
115
+ name="ffw_gating_2",
116
+ )
117
+
118
+ self.ffw_linear = keras.layers.EinsumDense(
119
+ equation="btf,fd->btd",
120
+ output_shape=(None, self.hidden_dim),
121
+ dtype=self.dtype_policy,
122
+ name="ffw_linear",
123
+ )
124
+
125
+ def build(self, input_shape):
126
+ self.pre_attention_norm.build(input_shape)
127
+ self.attention.build(input_shape)
128
+
129
+ if self.use_post_attention_norm:
130
+ shape = self.attention.compute_output_shape(input_shape)
131
+ self.post_attention_norm.build(shape)
132
+
133
+ shape = input_shape
134
+ self.pre_ffw_norm.build(shape)
135
+ self.gating_ffw.build(shape)
136
+ self.gating_ffw_2.build(shape)
137
+
138
+ shape = self.gating_ffw.compute_output_shape(shape)
139
+ self.ffw_linear.build(shape)
140
+
141
+ if self.use_post_ffw_norm:
142
+ shape = self.ffw_linear.compute_output_shape(shape)
143
+ self.post_ffw_norm.build(shape)
144
+
145
+ self.built = True
146
+
147
+ def compute_output_shape(self, input_shape):
148
+ # Isometric
149
+ return input_shape
150
+
151
+ def _compute_attention_mask(
152
+ self, x, padding_mask, cache, cache_update_index
153
+ ):
154
+ decoder_mask = merge_padding_and_attention_mask(
155
+ inputs=x, padding_mask=padding_mask, attention_mask=None
156
+ )
157
+ batch_size = ops.shape(x)[0]
158
+ input_length = output_length = ops.shape(x)[1]
159
+ if cache is not None:
160
+ input_length = ops.shape(cache)[2]
161
+
162
+ causal_mask = compute_causal_mask(
163
+ batch_size=batch_size,
164
+ input_length=input_length,
165
+ output_length=output_length,
166
+ cache_index=cache_update_index,
167
+ )
168
+
169
+ return (
170
+ ops.minimum(decoder_mask, causal_mask)
171
+ if decoder_mask is not None
172
+ else causal_mask
173
+ )
174
+
175
+ def call(
176
+ self,
177
+ x,
178
+ padding_mask=None,
179
+ cache=None,
180
+ cache_update_index=0,
181
+ ):
182
+ normalized_x = self.pre_attention_norm(x)
183
+ attention_mask = self._compute_attention_mask(
184
+ normalized_x, padding_mask, cache, cache_update_index
185
+ )
186
+ if cache is not None:
187
+ attention, new_cache = self.attention(
188
+ normalized_x,
189
+ attention_mask=attention_mask,
190
+ cache=cache,
191
+ cache_update_index=cache_update_index,
192
+ )
193
+ else:
194
+ attention = self.attention(
195
+ normalized_x,
196
+ attention_mask=attention_mask,
197
+ )
198
+
199
+ if self.use_post_attention_norm:
200
+ attention = self.post_attention_norm(attention)
201
+
202
+ if self.dropout:
203
+ attention = self.attention_dropout(attention)
204
+
205
+ attention_x = x + attention
206
+ normalized_x = self.pre_ffw_norm(attention_x)
207
+
208
+ x1 = self.gating_ffw(normalized_x)
209
+ x2 = self.gating_ffw_2(normalized_x)
210
+ x = keras.activations.gelu(x1, approximate=True) * x2
211
+ x = self.ffw_linear(x)
212
+
213
+ if self.use_post_ffw_norm:
214
+ x = self.post_ffw_norm(x)
215
+
216
+ x = x + attention_x
217
+
218
+ if cache is not None:
219
+ return x, new_cache
220
+ return x
221
+
222
+ def get_config(self):
223
+ config = super().get_config()
224
+ config.update(
225
+ {
226
+ "hidden_dim": self.hidden_dim,
227
+ "intermediate_dim": self.intermediate_dim,
228
+ "head_dim": self.head_dim,
229
+ "num_query_heads": self.num_query_heads,
230
+ "num_key_value_heads": self.num_key_value_heads,
231
+ "layer_norm_epsilon": self.layer_norm_epsilon,
232
+ "dropout": self.dropout,
233
+ "use_post_ffw_norm": self.use_post_ffw_norm,
234
+ "use_post_attention_norm": self.use_post_attention_norm,
235
+ "logit_soft_cap": self.logit_soft_cap,
236
+ "use_sliding_window_attention": self.use_sliding_window_attention,
237
+ "sliding_window_size": self.sliding_window_size,
238
+ "query_head_dim_normalize": self.query_head_dim_normalize,
239
+ }
240
+ )
241
+ return config
@@ -0,0 +1,191 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import keras
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
20
+ from keras_hub.src.models.gemma.gemma_tokenizer import GemmaTokenizer
21
+ from keras_hub.src.models.preprocessor import Preprocessor
22
+ from keras_hub.src.utils.keras_utils import (
23
+ convert_inputs_to_list_of_tensor_segments,
24
+ )
25
+
26
+
27
+ @keras_hub_export("keras_hub.models.GemmaPreprocessor")
28
+ class GemmaPreprocessor(Preprocessor):
29
+ """Gemma preprocessing layer which tokenizes and packs inputs.
30
+
31
+ This preprocessing layer will do 2 things:
32
+
33
+ - Tokenize the inputs using the `tokenizer`.
34
+ - Construct a dictionary with keys `"token_ids"`, `"padding_mask"`, that can
35
+ be passed directly to a `keras_hub.models.GemmaBackbone`.
36
+
37
+ This layer can be used directly with `tf.data.Dataset.map` to preprocess
38
+ string data in the `(x, y, sample_weight)` format used by
39
+ `keras.Model.fit`.
40
+
41
+ The call method of this layer accepts three arguments, `x`, `y`, and
42
+ `sample_weight`. `x` can be a python string or tensor representing a single
43
+ segment, a list of python strings representing a batch of single segments,
44
+ or a list of tensors representing multiple segments to be packed together.
45
+ `y` and `sample_weight` are both optional, can have any format, and will be
46
+ passed through unaltered.
47
+
48
+ `GemmaPreprocessor` expects the input to have only one segment, as Gemma is
49
+ mainly used for generation tasks. For tasks having multi-segment inputs
50
+ please combine inputs into a single string input before passing to the
51
+ preprocessor layer.
52
+
53
+ Args:
54
+ tokenizer: A `keras_hub.models.GemmaTokenizer` instance.
55
+ sequence_length: The length of the packed inputs.
56
+ add_start_token: If `True`, the preprocessor will prepend the tokenizer
57
+ start token to each input sequence.
58
+ add_end_token: If `True`, the preprocessor will append the tokenizer
59
+ end token to each input sequence.
60
+
61
+ Call arguments:
62
+ x: A string, `tf.Tensor` or list of python strings.
63
+ y: Any label data. Will be passed through unaltered.
64
+ sample_weight: Any label weight data. Will be passed through unaltered.
65
+ sequence_length: Pass to override the configured `sequence_length` of
66
+ the layer.
67
+
68
+ Examples:
69
+
70
+ Directly calling the layer on data.
71
+ ```python
72
+ preprocessor = keras_hub.models.GemmaPreprocessor.from_preset(
73
+ "gemma_2b_en"
74
+ )
75
+
76
+ # Tokenize and pack a single sentence.
77
+ preprocessor("The quick brown fox jumped.")
78
+
79
+ # Tokenize a batch of sentences.
80
+ preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
81
+
82
+ # Custom vocabulary.
83
+ bytes_io = io.BytesIO()
84
+ ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
85
+ sentencepiece.SentencePieceTrainer.train(
86
+ sentence_iterator=ds.as_numpy_iterator(),
87
+ model_writer=bytes_io,
88
+ vocab_size=8,
89
+ model_type="WORD",
90
+ pad_id=0,
91
+ bos_id=1,
92
+ eos_id=2,
93
+ unk_id=3,
94
+ pad_piece="<pad>",
95
+ bos_piece="<bos>",
96
+ eos_piece="<eos>",
97
+ unk_piece="<unk>",
98
+ )
99
+ tokenizer = keras_hub.models.GemmaTokenizer(
100
+ proto=bytes_io.getvalue(),
101
+ )
102
+ preprocessor = keras_hub.models.GemmaPreprocessor(tokenizer=tokenizer)
103
+ preprocessor("The quick brown fox jumped.")
104
+ ```
105
+
106
+ Apply preprocessing to a `tf.data.Dataset`.
107
+ ```python
108
+ preprocessor = keras_hub.models.GemmaPreprocessor.from_preset(
109
+ "gemma_2b_en"
110
+ )
111
+
112
+ text = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
113
+ label = tf.constant([1, 1])
114
+
115
+ # Map labeled single sentences.
116
+ ds = tf.data.Dataset.from_tensor_slices((text, label))
117
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
118
+
119
+ # Map unlabeled single sentences.
120
+ ds = tf.data.Dataset.from_tensor_slices(text)
121
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
122
+ ```
123
+ """
124
+
125
+ tokenizer_cls = GemmaTokenizer
126
+
127
+ def __init__(
128
+ self,
129
+ tokenizer,
130
+ sequence_length=1024,
131
+ add_start_token=True,
132
+ add_end_token=True,
133
+ **kwargs,
134
+ ):
135
+ super().__init__(**kwargs)
136
+
137
+ self.tokenizer = tokenizer
138
+ self.sequence_length = sequence_length
139
+ self.add_start_token = add_start_token
140
+ self.add_end_token = add_end_token
141
+
142
+ def build(self, input_shape):
143
+ # Defer packer creation to `build()` so that we can be sure tokenizer
144
+ # assets have loaded when restoring a saved model.
145
+ self.packer = StartEndPacker(
146
+ start_value=self.tokenizer.start_token_id,
147
+ end_value=self.tokenizer.end_token_id,
148
+ pad_value=self.tokenizer.pad_token_id,
149
+ sequence_length=self.sequence_length,
150
+ return_padding_mask=True,
151
+ )
152
+ self.built = True
153
+
154
+ def call(
155
+ self,
156
+ x,
157
+ y=None,
158
+ sample_weight=None,
159
+ sequence_length=None,
160
+ ):
161
+ x = convert_inputs_to_list_of_tensor_segments(x)
162
+ if len(x) != 1:
163
+ raise ValueError(
164
+ "GemmaPreprocessor requires each input to contain only "
165
+ f"one segment, but received {len(x)}. If you are using Gemma "
166
+ "for a multi-segment classification task, please combine your "
167
+ "input into a single string."
168
+ )
169
+ sequence_length = sequence_length or self.sequence_length
170
+ token_ids, padding_mask = self.packer(
171
+ self.tokenizer(x[0]),
172
+ sequence_length=sequence_length,
173
+ add_start_value=self.add_start_token,
174
+ add_end_value=self.add_end_token,
175
+ )
176
+ x = {
177
+ "token_ids": token_ids,
178
+ "padding_mask": padding_mask,
179
+ }
180
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
181
+
182
+ def get_config(self):
183
+ config = super().get_config()
184
+ config.update(
185
+ {
186
+ "sequence_length": self.sequence_length,
187
+ "add_start_token": self.add_start_token,
188
+ "add_end_token": self.add_end_token,
189
+ }
190
+ )
191
+ return config
@@ -0,0 +1,248 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Gemma model preset configurations."""
15
+
16
+ # Metadata for loading pretrained model weights.
17
+ backbone_presets = {
18
+ "gemma_2b_en": {
19
+ "metadata": {
20
+ "description": "2 billion parameter, 18-layer, base Gemma model.",
21
+ "params": 2506172416,
22
+ "official_name": "Gemma",
23
+ "path": "gemma",
24
+ "model_card": "https://www.kaggle.com/models/google/gemma",
25
+ },
26
+ "kaggle_handle": "kaggle://keras/gemma/keras/gemma_2b_en/2",
27
+ },
28
+ "gemma_instruct_2b_en": {
29
+ "metadata": {
30
+ "description": (
31
+ "2 billion parameter, 18-layer, instruction tuned Gemma model."
32
+ ),
33
+ "params": 2506172416,
34
+ "official_name": "Gemma",
35
+ "path": "gemma",
36
+ "model_card": "https://www.kaggle.com/models/google/gemma",
37
+ },
38
+ "kaggle_handle": "kaggle://keras/gemma/keras/gemma_instruct_2b_en/2",
39
+ },
40
+ "gemma_1.1_instruct_2b_en": {
41
+ "metadata": {
42
+ "description": (
43
+ "2 billion parameter, 18-layer, instruction tuned Gemma model. "
44
+ "The 1.1 update improves model quality."
45
+ ),
46
+ "params": 2506172416,
47
+ "official_name": "Gemma",
48
+ "path": "gemma",
49
+ "model_card": "https://www.kaggle.com/models/google/gemma",
50
+ },
51
+ "kaggle_handle": "kaggle://keras/gemma/keras/gemma_1.1_instruct_2b_en/3",
52
+ },
53
+ "code_gemma_1.1_2b_en": {
54
+ "metadata": {
55
+ "description": (
56
+ "2 billion parameter, 18-layer, CodeGemma model. This model "
57
+ "has been trained on a fill-in-the-middle (FIM) task for code "
58
+ "completion. The 1.1 update improves model quality."
59
+ ),
60
+ "params": 2506172416,
61
+ "official_name": "Gemma",
62
+ "path": "gemma",
63
+ "model_card": "https://www.kaggle.com/models/google/gemma",
64
+ },
65
+ "kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_1.1_2b_en/1",
66
+ },
67
+ "code_gemma_2b_en": {
68
+ "metadata": {
69
+ "description": (
70
+ "2 billion parameter, 18-layer, CodeGemma model. This model "
71
+ "has been trained on a fill-in-the-middle (FIM) task for code "
72
+ "completion."
73
+ ),
74
+ "params": 2506172416,
75
+ "official_name": "Gemma",
76
+ "path": "gemma",
77
+ "model_card": "https://www.kaggle.com/models/google/gemma",
78
+ },
79
+ "kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_2b_en/1",
80
+ },
81
+ "gemma_7b_en": {
82
+ "metadata": {
83
+ "description": "7 billion parameter, 28-layer, base Gemma model.",
84
+ "params": 8537680896,
85
+ "official_name": "Gemma",
86
+ "path": "gemma",
87
+ "model_card": "https://www.kaggle.com/models/google/gemma",
88
+ },
89
+ "kaggle_handle": "kaggle://keras/gemma/keras/gemma_7b_en/2",
90
+ },
91
+ "gemma_instruct_7b_en": {
92
+ "metadata": {
93
+ "description": (
94
+ "7 billion parameter, 28-layer, instruction tuned Gemma model."
95
+ ),
96
+ "params": 8537680896,
97
+ "official_name": "Gemma",
98
+ "path": "gemma",
99
+ "model_card": "https://www.kaggle.com/models/google/gemma",
100
+ },
101
+ "kaggle_handle": "kaggle://keras/gemma/keras/gemma_instruct_7b_en/2",
102
+ },
103
+ "gemma_1.1_instruct_7b_en": {
104
+ "metadata": {
105
+ "description": (
106
+ "7 billion parameter, 28-layer, instruction tuned Gemma model. "
107
+ "The 1.1 update improves model quality."
108
+ ),
109
+ "params": 8537680896,
110
+ "official_name": "Gemma",
111
+ "path": "gemma",
112
+ "model_card": "https://www.kaggle.com/models/google/gemma",
113
+ },
114
+ "kaggle_handle": "kaggle://keras/gemma/keras/gemma_1.1_instruct_7b_en/3",
115
+ },
116
+ "code_gemma_7b_en": {
117
+ "metadata": {
118
+ "description": (
119
+ "7 billion parameter, 28-layer, CodeGemma model. This model "
120
+ "has been trained on a fill-in-the-middle (FIM) task for code "
121
+ "completion."
122
+ ),
123
+ "params": 8537680896,
124
+ "official_name": "Gemma",
125
+ "path": "gemma",
126
+ "model_card": "https://www.kaggle.com/models/google/gemma",
127
+ },
128
+ "kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_7b_en/1",
129
+ },
130
+ "code_gemma_instruct_7b_en": {
131
+ "metadata": {
132
+ "description": (
133
+ "7 billion parameter, 28-layer, instruction tuned CodeGemma "
134
+ "model. This model has been trained for chat use cases related "
135
+ "to code."
136
+ ),
137
+ "params": 8537680896,
138
+ "official_name": "Gemma",
139
+ "path": "gemma",
140
+ "model_card": "https://www.kaggle.com/models/google/gemma",
141
+ },
142
+ "kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_instruct_7b_en/1",
143
+ },
144
+ "code_gemma_1.1_instruct_7b_en": {
145
+ "metadata": {
146
+ "description": (
147
+ "7 billion parameter, 28-layer, instruction tuned CodeGemma "
148
+ "model. This model has been trained for chat use cases related "
149
+ "to code. The 1.1 update improves model quality."
150
+ ),
151
+ "params": 8537680896,
152
+ "official_name": "Gemma",
153
+ "path": "gemma",
154
+ "model_card": "https://www.kaggle.com/models/google/gemma",
155
+ },
156
+ "kaggle_handle": "kaggle://keras/codegemma/keras/code_gemma_1.1_instruct_7b_en/1",
157
+ },
158
+ "gemma2_2b_en": {
159
+ "metadata": {
160
+ "description": "2 billion parameter, 26-layer, base Gemma model.",
161
+ "params": 2614341888,
162
+ "official_name": "Gemma",
163
+ "path": "gemma",
164
+ "model_card": "https://www.kaggle.com/models/google/gemma",
165
+ },
166
+ "kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_2b_en/1",
167
+ },
168
+ "gemma2_instruct_2b_en": {
169
+ "metadata": {
170
+ "description": "2 billion parameter, 26-layer, instruction tuned Gemma model.",
171
+ "params": 2614341888,
172
+ "official_name": "Gemma",
173
+ "path": "gemma",
174
+ "model_card": "https://www.kaggle.com/models/google/gemma",
175
+ },
176
+ "kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_instruct_2b_en/1",
177
+ },
178
+ "gemma2_9b_en": {
179
+ "metadata": {
180
+ "description": "9 billion parameter, 42-layer, base Gemma model.",
181
+ "params": 9241705984,
182
+ "official_name": "Gemma",
183
+ "path": "gemma",
184
+ "model_card": "https://www.kaggle.com/models/google/gemma",
185
+ },
186
+ "kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_9b_en/2",
187
+ },
188
+ "gemma2_instruct_9b_en": {
189
+ "metadata": {
190
+ "description": "9 billion parameter, 42-layer, instruction tuned Gemma model.",
191
+ "params": 9241705984,
192
+ "official_name": "Gemma",
193
+ "path": "gemma",
194
+ "model_card": "https://www.kaggle.com/models/google/gemma",
195
+ },
196
+ "kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_instruct_9b_en/2",
197
+ },
198
+ "gemma2_27b_en": {
199
+ "metadata": {
200
+ "description": "27 billion parameter, 42-layer, base Gemma model.",
201
+ "params": 27227128320,
202
+ "official_name": "Gemma",
203
+ "path": "gemma",
204
+ "model_card": "https://www.kaggle.com/models/google/gemma",
205
+ },
206
+ "kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_27b_en/1",
207
+ },
208
+ "gemma2_instruct_27b_en": {
209
+ "metadata": {
210
+ "description": "27 billion parameter, 42-layer, instruction tuned Gemma model.",
211
+ "params": 27227128320,
212
+ "official_name": "Gemma",
213
+ "path": "gemma",
214
+ "model_card": "https://www.kaggle.com/models/google/gemma",
215
+ },
216
+ "kaggle_handle": "kaggle://keras/gemma2/keras/gemma2_instruct_27b_en/1",
217
+ },
218
+ "shieldgemma_2b_en": {
219
+ "metadata": {
220
+ "description": "2 billion parameter, 26-layer, ShieldGemma model.",
221
+ "params": 2614341888,
222
+ "official_name": "Gemma",
223
+ "path": "gemma",
224
+ "model_card": "https://www.kaggle.com/models/google/gemma",
225
+ },
226
+ "kaggle_handle": "kaggle://google/shieldgemma/keras/shieldgemma_2b_en/1",
227
+ },
228
+ "shieldgemma_9b_en": {
229
+ "metadata": {
230
+ "description": "9 billion parameter, 42-layer, ShieldGemma model.",
231
+ "params": 9241705984,
232
+ "official_name": "Gemma",
233
+ "path": "gemma",
234
+ "model_card": "https://www.kaggle.com/models/google/gemma",
235
+ },
236
+ "kaggle_handle": "kaggle://google/shieldgemma/keras/shieldgemma_9b_en/1",
237
+ },
238
+ "shieldgemma_27b_en": {
239
+ "metadata": {
240
+ "description": "27 billion parameter, 42-layer, ShieldGemma model.",
241
+ "params": 27227128320,
242
+ "official_name": "Gemma",
243
+ "path": "gemma",
244
+ "model_card": "https://www.kaggle.com/models/google/gemma",
245
+ },
246
+ "kaggle_handle": "kaggle://google/shieldgemma/keras/shieldgemma_27b_en/1",
247
+ },
248
+ }