keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (297) hide show
  1. keras_hub/__init__.py +52 -0
  2. keras_hub/api/__init__.py +27 -0
  3. keras_hub/api/layers/__init__.py +47 -0
  4. keras_hub/api/metrics/__init__.py +24 -0
  5. keras_hub/api/models/__init__.py +249 -0
  6. keras_hub/api/samplers/__init__.py +29 -0
  7. keras_hub/api/tokenizers/__init__.py +35 -0
  8. keras_hub/src/__init__.py +13 -0
  9. keras_hub/src/api_export.py +53 -0
  10. keras_hub/src/layers/__init__.py +13 -0
  11. keras_hub/src/layers/modeling/__init__.py +13 -0
  12. keras_hub/src/layers/modeling/alibi_bias.py +143 -0
  13. keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
  14. keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
  15. keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
  16. keras_hub/src/layers/modeling/position_embedding.py +123 -0
  17. keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
  18. keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
  19. keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
  20. keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
  21. keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
  22. keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
  23. keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
  24. keras_hub/src/layers/preprocessing/__init__.py +13 -0
  25. keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
  26. keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
  27. keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
  28. keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
  29. keras_hub/src/layers/preprocessing/random_swap.py +267 -0
  30. keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
  31. keras_hub/src/metrics/__init__.py +13 -0
  32. keras_hub/src/metrics/bleu.py +394 -0
  33. keras_hub/src/metrics/edit_distance.py +197 -0
  34. keras_hub/src/metrics/perplexity.py +181 -0
  35. keras_hub/src/metrics/rouge_base.py +204 -0
  36. keras_hub/src/metrics/rouge_l.py +97 -0
  37. keras_hub/src/metrics/rouge_n.py +125 -0
  38. keras_hub/src/models/__init__.py +13 -0
  39. keras_hub/src/models/albert/__init__.py +20 -0
  40. keras_hub/src/models/albert/albert_backbone.py +267 -0
  41. keras_hub/src/models/albert/albert_classifier.py +202 -0
  42. keras_hub/src/models/albert/albert_masked_lm.py +129 -0
  43. keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
  44. keras_hub/src/models/albert/albert_preprocessor.py +206 -0
  45. keras_hub/src/models/albert/albert_presets.py +70 -0
  46. keras_hub/src/models/albert/albert_tokenizer.py +119 -0
  47. keras_hub/src/models/backbone.py +311 -0
  48. keras_hub/src/models/bart/__init__.py +20 -0
  49. keras_hub/src/models/bart/bart_backbone.py +261 -0
  50. keras_hub/src/models/bart/bart_preprocessor.py +276 -0
  51. keras_hub/src/models/bart/bart_presets.py +74 -0
  52. keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
  53. keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
  54. keras_hub/src/models/bart/bart_tokenizer.py +124 -0
  55. keras_hub/src/models/bert/__init__.py +23 -0
  56. keras_hub/src/models/bert/bert_backbone.py +227 -0
  57. keras_hub/src/models/bert/bert_classifier.py +183 -0
  58. keras_hub/src/models/bert/bert_masked_lm.py +131 -0
  59. keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
  60. keras_hub/src/models/bert/bert_preprocessor.py +184 -0
  61. keras_hub/src/models/bert/bert_presets.py +147 -0
  62. keras_hub/src/models/bert/bert_tokenizer.py +112 -0
  63. keras_hub/src/models/bloom/__init__.py +20 -0
  64. keras_hub/src/models/bloom/bloom_attention.py +186 -0
  65. keras_hub/src/models/bloom/bloom_backbone.py +173 -0
  66. keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
  67. keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
  68. keras_hub/src/models/bloom/bloom_decoder.py +206 -0
  69. keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
  70. keras_hub/src/models/bloom/bloom_presets.py +121 -0
  71. keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
  72. keras_hub/src/models/causal_lm.py +383 -0
  73. keras_hub/src/models/classifier.py +109 -0
  74. keras_hub/src/models/csp_darknet/__init__.py +13 -0
  75. keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
  76. keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
  77. keras_hub/src/models/deberta_v3/__init__.py +24 -0
  78. keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
  79. keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
  80. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
  81. keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
  82. keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
  83. keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
  84. keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
  85. keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
  86. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
  87. keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
  88. keras_hub/src/models/densenet/__init__.py +13 -0
  89. keras_hub/src/models/densenet/densenet_backbone.py +210 -0
  90. keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
  91. keras_hub/src/models/distil_bert/__init__.py +26 -0
  92. keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
  93. keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
  94. keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
  95. keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
  96. keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
  97. keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
  98. keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
  99. keras_hub/src/models/electra/__init__.py +20 -0
  100. keras_hub/src/models/electra/electra_backbone.py +247 -0
  101. keras_hub/src/models/electra/electra_preprocessor.py +154 -0
  102. keras_hub/src/models/electra/electra_presets.py +95 -0
  103. keras_hub/src/models/electra/electra_tokenizer.py +104 -0
  104. keras_hub/src/models/f_net/__init__.py +20 -0
  105. keras_hub/src/models/f_net/f_net_backbone.py +236 -0
  106. keras_hub/src/models/f_net/f_net_classifier.py +154 -0
  107. keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
  108. keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
  109. keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
  110. keras_hub/src/models/f_net/f_net_presets.py +43 -0
  111. keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
  112. keras_hub/src/models/falcon/__init__.py +20 -0
  113. keras_hub/src/models/falcon/falcon_attention.py +156 -0
  114. keras_hub/src/models/falcon/falcon_backbone.py +164 -0
  115. keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
  116. keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
  117. keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
  118. keras_hub/src/models/falcon/falcon_presets.py +30 -0
  119. keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
  120. keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
  121. keras_hub/src/models/feature_pyramid_backbone.py +73 -0
  122. keras_hub/src/models/gemma/__init__.py +20 -0
  123. keras_hub/src/models/gemma/gemma_attention.py +250 -0
  124. keras_hub/src/models/gemma/gemma_backbone.py +316 -0
  125. keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
  126. keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
  127. keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
  128. keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
  129. keras_hub/src/models/gemma/gemma_presets.py +248 -0
  130. keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
  131. keras_hub/src/models/gemma/rms_normalization.py +40 -0
  132. keras_hub/src/models/gpt2/__init__.py +20 -0
  133. keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
  134. keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
  135. keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
  136. keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
  137. keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
  138. keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
  139. keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
  140. keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
  141. keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
  142. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
  143. keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
  144. keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
  145. keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
  146. keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
  147. keras_hub/src/models/image_classifier.py +90 -0
  148. keras_hub/src/models/llama/__init__.py +20 -0
  149. keras_hub/src/models/llama/llama_attention.py +225 -0
  150. keras_hub/src/models/llama/llama_backbone.py +188 -0
  151. keras_hub/src/models/llama/llama_causal_lm.py +327 -0
  152. keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
  153. keras_hub/src/models/llama/llama_decoder.py +246 -0
  154. keras_hub/src/models/llama/llama_layernorm.py +48 -0
  155. keras_hub/src/models/llama/llama_preprocessor.py +189 -0
  156. keras_hub/src/models/llama/llama_presets.py +80 -0
  157. keras_hub/src/models/llama/llama_tokenizer.py +84 -0
  158. keras_hub/src/models/llama3/__init__.py +20 -0
  159. keras_hub/src/models/llama3/llama3_backbone.py +84 -0
  160. keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
  161. keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
  162. keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
  163. keras_hub/src/models/llama3/llama3_presets.py +69 -0
  164. keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
  165. keras_hub/src/models/masked_lm.py +101 -0
  166. keras_hub/src/models/mistral/__init__.py +20 -0
  167. keras_hub/src/models/mistral/mistral_attention.py +238 -0
  168. keras_hub/src/models/mistral/mistral_backbone.py +203 -0
  169. keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
  170. keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
  171. keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
  172. keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
  173. keras_hub/src/models/mistral/mistral_presets.py +48 -0
  174. keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
  175. keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
  176. keras_hub/src/models/mix_transformer/__init__.py +13 -0
  177. keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
  178. keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
  179. keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
  180. keras_hub/src/models/opt/__init__.py +20 -0
  181. keras_hub/src/models/opt/opt_backbone.py +173 -0
  182. keras_hub/src/models/opt/opt_causal_lm.py +301 -0
  183. keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
  184. keras_hub/src/models/opt/opt_preprocessor.py +188 -0
  185. keras_hub/src/models/opt/opt_presets.py +72 -0
  186. keras_hub/src/models/opt/opt_tokenizer.py +116 -0
  187. keras_hub/src/models/pali_gemma/__init__.py +23 -0
  188. keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
  189. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
  190. keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
  191. keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
  192. keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
  193. keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
  194. keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
  195. keras_hub/src/models/phi3/__init__.py +20 -0
  196. keras_hub/src/models/phi3/phi3_attention.py +260 -0
  197. keras_hub/src/models/phi3/phi3_backbone.py +224 -0
  198. keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
  199. keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
  200. keras_hub/src/models/phi3/phi3_decoder.py +260 -0
  201. keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
  202. keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
  203. keras_hub/src/models/phi3/phi3_presets.py +50 -0
  204. keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
  205. keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
  206. keras_hub/src/models/preprocessor.py +207 -0
  207. keras_hub/src/models/resnet/__init__.py +13 -0
  208. keras_hub/src/models/resnet/resnet_backbone.py +612 -0
  209. keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
  210. keras_hub/src/models/roberta/__init__.py +20 -0
  211. keras_hub/src/models/roberta/roberta_backbone.py +184 -0
  212. keras_hub/src/models/roberta/roberta_classifier.py +209 -0
  213. keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
  214. keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
  215. keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
  216. keras_hub/src/models/roberta/roberta_presets.py +43 -0
  217. keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
  218. keras_hub/src/models/seq_2_seq_lm.py +54 -0
  219. keras_hub/src/models/t5/__init__.py +20 -0
  220. keras_hub/src/models/t5/t5_backbone.py +261 -0
  221. keras_hub/src/models/t5/t5_layer_norm.py +35 -0
  222. keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
  223. keras_hub/src/models/t5/t5_presets.py +95 -0
  224. keras_hub/src/models/t5/t5_tokenizer.py +100 -0
  225. keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
  226. keras_hub/src/models/task.py +419 -0
  227. keras_hub/src/models/vgg/__init__.py +13 -0
  228. keras_hub/src/models/vgg/vgg_backbone.py +158 -0
  229. keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
  230. keras_hub/src/models/vit_det/__init__.py +13 -0
  231. keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
  232. keras_hub/src/models/vit_det/vit_layers.py +565 -0
  233. keras_hub/src/models/whisper/__init__.py +20 -0
  234. keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
  235. keras_hub/src/models/whisper/whisper_backbone.py +305 -0
  236. keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
  237. keras_hub/src/models/whisper/whisper_decoder.py +141 -0
  238. keras_hub/src/models/whisper/whisper_encoder.py +106 -0
  239. keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
  240. keras_hub/src/models/whisper/whisper_presets.py +148 -0
  241. keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
  242. keras_hub/src/models/xlm_roberta/__init__.py +26 -0
  243. keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
  244. keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
  245. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
  246. keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
  247. keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
  248. keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
  249. keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
  250. keras_hub/src/models/xlnet/__init__.py +13 -0
  251. keras_hub/src/models/xlnet/relative_attention.py +459 -0
  252. keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
  253. keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
  254. keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
  255. keras_hub/src/samplers/__init__.py +13 -0
  256. keras_hub/src/samplers/beam_sampler.py +207 -0
  257. keras_hub/src/samplers/contrastive_sampler.py +231 -0
  258. keras_hub/src/samplers/greedy_sampler.py +50 -0
  259. keras_hub/src/samplers/random_sampler.py +77 -0
  260. keras_hub/src/samplers/sampler.py +237 -0
  261. keras_hub/src/samplers/serialization.py +97 -0
  262. keras_hub/src/samplers/top_k_sampler.py +92 -0
  263. keras_hub/src/samplers/top_p_sampler.py +113 -0
  264. keras_hub/src/tests/__init__.py +13 -0
  265. keras_hub/src/tests/test_case.py +608 -0
  266. keras_hub/src/tokenizers/__init__.py +13 -0
  267. keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
  268. keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
  269. keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
  270. keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
  271. keras_hub/src/tokenizers/tokenizer.py +235 -0
  272. keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
  273. keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
  274. keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
  275. keras_hub/src/utils/__init__.py +13 -0
  276. keras_hub/src/utils/keras_utils.py +130 -0
  277. keras_hub/src/utils/pipeline_model.py +293 -0
  278. keras_hub/src/utils/preset_utils.py +621 -0
  279. keras_hub/src/utils/python_utils.py +21 -0
  280. keras_hub/src/utils/tensor_utils.py +206 -0
  281. keras_hub/src/utils/timm/__init__.py +13 -0
  282. keras_hub/src/utils/timm/convert.py +37 -0
  283. keras_hub/src/utils/timm/convert_resnet.py +171 -0
  284. keras_hub/src/utils/transformers/__init__.py +13 -0
  285. keras_hub/src/utils/transformers/convert.py +101 -0
  286. keras_hub/src/utils/transformers/convert_bert.py +173 -0
  287. keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
  288. keras_hub/src/utils/transformers/convert_gemma.py +187 -0
  289. keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
  290. keras_hub/src/utils/transformers/convert_llama3.py +136 -0
  291. keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
  292. keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
  293. keras_hub/src/version_utils.py +23 -0
  294. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
  295. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
  296. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
  297. keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,154 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import keras
16
+
17
+ from keras_hub.src.api_export import keras_hub_export
18
+ from keras_hub.src.layers.preprocessing.multi_segment_packer import (
19
+ MultiSegmentPacker,
20
+ )
21
+ from keras_hub.src.models.electra.electra_tokenizer import ElectraTokenizer
22
+ from keras_hub.src.models.preprocessor import Preprocessor
23
+ from keras_hub.src.utils.keras_utils import (
24
+ convert_inputs_to_list_of_tensor_segments,
25
+ )
26
+
27
+
28
+ @keras_hub_export("keras_hub.models.ElectraPreprocessor")
29
+ class ElectraPreprocessor(Preprocessor):
30
+ """A ELECTRA preprocessing layer which tokenizes and packs inputs.
31
+
32
+ This preprocessing layer will do three things:
33
+
34
+ 1. Tokenize any number of input segments using the `tokenizer`.
35
+ 2. Pack the inputs together using a `keras_hub.layers.MultiSegmentPacker`.
36
+ with the appropriate `"[CLS]"`, `"[SEP]"` and `"[PAD]"` tokens.
37
+ 3. Construct a dictionary of with keys `"token_ids"` and `"padding_mask"`,
38
+ that can be passed directly to a ELECTRA model.
39
+
40
+ This layer can be used directly with `tf.data.Dataset.map` to preprocess
41
+ string data in the `(x, y, sample_weight)` format used by
42
+ `keras.Model.fit`.
43
+
44
+ Args:
45
+ tokenizer: A `keras_hub.models.ElectraTokenizer` instance.
46
+ sequence_length: The length of the packed inputs.
47
+ truncate: string. The algorithm to truncate a list of batched segments
48
+ to fit within `sequence_length`. The value can be either
49
+ `round_robin` or `waterfall`:
50
+ - `"round_robin"`: Available space is assigned one token at a
51
+ time in a round-robin fashion to the inputs that still need
52
+ some, until the limit is reached.
53
+ - `"waterfall"`: The allocation of the budget is done using a
54
+ "waterfall" algorithm that allocates quota in a
55
+ left-to-right manner and fills up the buckets until we run
56
+ out of budget. It supports an arbitrary number of segments.
57
+
58
+ Call arguments:
59
+ x: A tensor of single string sequences, or a tuple of multiple
60
+ tensor sequences to be packed together. Inputs may be batched or
61
+ unbatched. For single sequences, raw python inputs will be converted
62
+ to tensors. For multiple sequences, pass tensors directly.
63
+ y: Any label data. Will be passed through unaltered.
64
+ sample_weight: Any label weight data. Will be passed through unaltered.
65
+
66
+ Examples:
67
+
68
+ Directly calling the layer on data.
69
+ ```python
70
+ preprocessor = keras_hub.models.ElectraPreprocessor.from_preset(
71
+ "electra_base_discriminator_en"
72
+ )
73
+ preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
74
+
75
+ # Custom vocabulary.
76
+ vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
77
+ vocab += ["The", "quick", "brown", "fox", "jumped", "."]
78
+ tokenizer = keras_hub.models.ElectraTokenizer(vocabulary=vocab)
79
+ preprocessor = keras_hub.models.ElectraPreprocessor(tokenizer)
80
+ preprocessor("The quick brown fox jumped.")
81
+ ```
82
+
83
+ Mapping with `tf.data.Dataset`.
84
+ ```python
85
+ preprocessor = keras_hub.models.ElectraPreprocessor.from_preset(
86
+ "electra_base_discriminator_en"
87
+ )
88
+
89
+ first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
90
+ second = tf.constant(["The fox tripped.", "Oh look, a whale."])
91
+ label = tf.constant([1, 1])
92
+ # Map labeled single sentences.
93
+ ds = tf.data.Dataset.from_tensor_slices((first, label))
94
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
95
+
96
+
97
+ # Map unlabeled single sentences.
98
+ ds = tf.data.Dataset.from_tensor_slices(first)
99
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
100
+
101
+ # Map labeled sentence pairs.
102
+ ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
103
+ ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
104
+ # Map unlabeled sentence pairs.
105
+ ds = tf.data.Dataset.from_tensor_slices((first, second))
106
+
107
+ # Watch out for tf.data's default unpacking of tuples here!
108
+ # Best to invoke the `preprocessor` directly in this case.
109
+ ds = ds.map(
110
+ lambda first, second: preprocessor(x=(first, second)),
111
+ num_parallel_calls=tf.data.AUTOTUNE,
112
+ )
113
+ ```
114
+ """
115
+
116
+ tokenizer_cls = ElectraTokenizer
117
+
118
+ def __init__(
119
+ self,
120
+ tokenizer,
121
+ sequence_length=512,
122
+ truncate="round_robin",
123
+ **kwargs,
124
+ ):
125
+ super().__init__(**kwargs)
126
+ self.tokenizer = tokenizer
127
+ self.packer = MultiSegmentPacker(
128
+ start_value=self.tokenizer.cls_token_id,
129
+ end_value=self.tokenizer.sep_token_id,
130
+ pad_value=self.tokenizer.pad_token_id,
131
+ truncate=truncate,
132
+ sequence_length=sequence_length,
133
+ )
134
+
135
+ def get_config(self):
136
+ config = super().get_config()
137
+ config.update(
138
+ {
139
+ "sequence_length": self.packer.sequence_length,
140
+ "truncate": self.packer.truncate,
141
+ }
142
+ )
143
+ return config
144
+
145
+ def call(self, x, y=None, sample_weight=None):
146
+ x = convert_inputs_to_list_of_tensor_segments(x)
147
+ x = [self.tokenizer(segment) for segment in x]
148
+ token_ids, segment_ids = self.packer(x)
149
+ x = {
150
+ "token_ids": token_ids,
151
+ "segment_ids": segment_ids,
152
+ "padding_mask": token_ids != self.tokenizer.pad_token_id,
153
+ }
154
+ return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
@@ -0,0 +1,95 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """ELECTRA model preset configurations."""
15
+
16
+ backbone_presets = {
17
+ "electra_small_discriminator_uncased_en": {
18
+ "metadata": {
19
+ "description": (
20
+ "12-layer small ELECTRA discriminator model. All inputs are "
21
+ "lowercased. Trained on English Wikipedia + BooksCorpus."
22
+ ),
23
+ "params": 13548800,
24
+ "official_name": "ELECTRA",
25
+ "path": "electra",
26
+ "model_card": "https://github.com/google-research/electra",
27
+ },
28
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_small_discriminator_uncased_en/1",
29
+ },
30
+ "electra_small_generator_uncased_en": {
31
+ "metadata": {
32
+ "description": (
33
+ "12-layer small ELECTRA generator model. All inputs are "
34
+ "lowercased. Trained on English Wikipedia + BooksCorpus."
35
+ ),
36
+ "params": 13548800,
37
+ "official_name": "ELECTRA",
38
+ "path": "electra",
39
+ "model_card": "https://github.com/google-research/electra",
40
+ },
41
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_small_generator_uncased_en/1",
42
+ },
43
+ "electra_base_discriminator_uncased_en": {
44
+ "metadata": {
45
+ "description": (
46
+ "12-layer base ELECTRA discriminator model. All inputs are "
47
+ "lowercased. Trained on English Wikipedia + BooksCorpus."
48
+ ),
49
+ "params": 109482240,
50
+ "official_name": "ELECTRA",
51
+ "path": "electra",
52
+ "model_card": "https://github.com/google-research/electra",
53
+ },
54
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_base_discriminator_uncased_en/1",
55
+ },
56
+ "electra_base_generator_uncased_en": {
57
+ "metadata": {
58
+ "description": (
59
+ "12-layer base ELECTRA generator model. All inputs are "
60
+ "lowercased. Trained on English Wikipedia + BooksCorpus."
61
+ ),
62
+ "params": 33576960,
63
+ "official_name": "ELECTRA",
64
+ "path": "electra",
65
+ "model_card": "https://github.com/google-research/electra",
66
+ },
67
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_base_generator_uncased_en/1",
68
+ },
69
+ "electra_large_discriminator_uncased_en": {
70
+ "metadata": {
71
+ "description": (
72
+ "24-layer large ELECTRA discriminator model. All inputs are "
73
+ "lowercased. Trained on English Wikipedia + BooksCorpus."
74
+ ),
75
+ "params": 335141888,
76
+ "official_name": "ELECTRA",
77
+ "path": "electra",
78
+ "model_card": "https://github.com/google-research/electra",
79
+ },
80
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_large_discriminator_uncased_en/1",
81
+ },
82
+ "electra_large_generator_uncased_en": {
83
+ "metadata": {
84
+ "description": (
85
+ "24-layer large ELECTRA generator model. All inputs are "
86
+ "lowercased. Trained on English Wikipedia + BooksCorpus."
87
+ ),
88
+ "params": 51065344,
89
+ "official_name": "ELECTRA",
90
+ "path": "electra",
91
+ "model_card": "https://github.com/google-research/electra",
92
+ },
93
+ "kaggle_handle": "kaggle://keras/electra/keras/electra_large_generator_uncased_en/1",
94
+ },
95
+ }
@@ -0,0 +1,104 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from keras_hub.src.api_export import keras_hub_export
16
+ from keras_hub.src.tokenizers.word_piece_tokenizer import WordPieceTokenizer
17
+
18
+
19
+ @keras_hub_export("keras_hub.models.ElectraTokenizer")
20
+ class ElectraTokenizer(WordPieceTokenizer):
21
+ """A ELECTRA tokenizer using WordPiece subword segmentation.
22
+
23
+ This tokenizer class will tokenize raw strings into integer sequences and
24
+ is based on `keras_hub.tokenizers.WordPieceTokenizer`.
25
+
26
+ If input is a batch of strings (rank > 0), the layer will output a
27
+ `tf.RaggedTensor` where the last dimension of the output is ragged.
28
+
29
+ If input is a scalar string (rank == 0), the layer will output a dense
30
+ `tf.Tensor` with static shape `[None]`.
31
+
32
+ Args:
33
+ vocabulary: A list of strings or a string filename path. If
34
+ passing a list, each element of the list should be a single word
35
+ piece token string. If passing a filename, the file should be a
36
+ plain text file containing a single word piece token per line.
37
+ lowercase: If `True`, the input text will be first lowered before
38
+ tokenization.
39
+ special_tokens_in_strings: bool. A bool to indicate if the tokenizer
40
+ should expect special tokens in input strings that should be
41
+ tokenized and mapped correctly to their ids. Defaults to False.
42
+
43
+ Examples:
44
+ ```python
45
+ # Custom Vocabulary.
46
+ vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
47
+ vocab += ["The", "quick", "brown", "fox", "jumped", "."]
48
+
49
+ # Instantiate the tokenizer.
50
+ tokenizer = keras_hub.models.ElectraTokenizer(vocabulary=vocab)
51
+
52
+ # Unbatched input.
53
+ tokenizer("The quick brown fox jumped.")
54
+
55
+ # Batched input.
56
+ tokenizer(["The quick brown fox jumped.", "The fox slept."])
57
+
58
+ # Detokenization.
59
+ tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
60
+ ```
61
+ """
62
+
63
+ def __init__(
64
+ self,
65
+ vocabulary,
66
+ lowercase=False,
67
+ special_tokens_in_strings=False,
68
+ **kwargs,
69
+ ):
70
+ self.cls_token = "[CLS]"
71
+ self.sep_token = "[SEP]"
72
+ self.pad_token = "[PAD]"
73
+ self.mask_token = "[MASK]"
74
+ super().__init__(
75
+ vocabulary=vocabulary,
76
+ lowercase=lowercase,
77
+ special_tokens=[
78
+ self.cls_token,
79
+ self.sep_token,
80
+ self.pad_token,
81
+ self.mask_token,
82
+ ],
83
+ special_tokens_in_strings=special_tokens_in_strings,
84
+ **kwargs,
85
+ )
86
+
87
+ def set_vocabulary(self, vocabulary):
88
+ super().set_vocabulary(vocabulary)
89
+
90
+ if vocabulary is not None:
91
+ self.cls_token_id = self.token_to_id(self.cls_token)
92
+ self.sep_token_id = self.token_to_id(self.sep_token)
93
+ self.pad_token_id = self.token_to_id(self.pad_token)
94
+ self.mask_token_id = self.token_to_id(self.mask_token)
95
+ else:
96
+ self.cls_token_id = None
97
+ self.sep_token_id = None
98
+ self.pad_token_id = None
99
+ self.mask_token_id = None
100
+
101
+ def get_config(self):
102
+ config = super().get_config()
103
+ del config["special_tokens"] # Not configurable; set in __init__.
104
+ return config
@@ -0,0 +1,20 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from keras_hub.src.models.f_net.f_net_backbone import FNetBackbone
16
+ from keras_hub.src.models.f_net.f_net_presets import backbone_presets
17
+ from keras_hub.src.models.f_net.f_net_tokenizer import FNetTokenizer
18
+ from keras_hub.src.utils.preset_utils import register_presets
19
+
20
+ register_presets(backbone_presets, (FNetBackbone, FNetTokenizer))
@@ -0,0 +1,236 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import keras
17
+
18
+ from keras_hub.src.api_export import keras_hub_export
19
+ from keras_hub.src.layers.modeling.f_net_encoder import FNetEncoder
20
+ from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
21
+ from keras_hub.src.layers.modeling.reversible_embedding import (
22
+ ReversibleEmbedding,
23
+ )
24
+ from keras_hub.src.models.backbone import Backbone
25
+ from keras_hub.src.utils.keras_utils import gelu_approximate
26
+
27
+
28
+ def f_net_kernel_initializer(stddev=0.02):
29
+ return keras.initializers.RandomNormal(stddev=stddev)
30
+
31
+
32
+ def f_net_bias_initializer(stddev=0.02):
33
+ return keras.initializers.RandomNormal(stddev=stddev)
34
+
35
+
36
+ @keras_hub_export("keras_hub.models.FNetBackbone")
37
+ class FNetBackbone(Backbone):
38
+ """A FNet encoder network.
39
+
40
+ This class implements a bi-directional Fourier Transform-based encoder as
41
+ described in ["FNet: Mixing Tokens with Fourier Transforms"](https://arxiv.org/abs/2105.03824).
42
+ It includes the embedding lookups and `keras_hub.layers.FNetEncoder` layers,
43
+ but not the masked language model or next sentence prediction heads.
44
+
45
+ The default constructor gives a fully customizable, randomly initialized
46
+ FNet encoder with any number of layers and embedding dimensions. To
47
+ load preset architectures and weights, use the `from_preset()` constructor.
48
+
49
+ Note: unlike other models, FNet does not take in a `"padding_mask"` input,
50
+ the `"<pad>"` token is handled equivalently to all other tokens in the input
51
+ sequence.
52
+
53
+ Disclaimer: Pre-trained models are provided on an "as is" basis, without
54
+ warranties or conditions of any kind.
55
+
56
+ Args:
57
+ vocabulary_size: int. The size of the token vocabulary.
58
+ num_layers: int. The number of FNet layers.
59
+ hidden_dim: int. The size of the FNet encoding and pooler layers.
60
+ intermediate_dim: int. The output dimension of the first Dense layer in
61
+ a two-layer feedforward network for each FNet layer.
62
+ dropout: float. Dropout probability for the embeddings and FNet encoder.
63
+ max_sequence_length: int. The maximum sequence length that this encoder
64
+ can consume. If None, `max_sequence_length` uses the value from
65
+ sequence length. This determines the variable shape for positional
66
+ embeddings.
67
+ num_segments: int. The number of types that the 'segment_ids' input can
68
+ take.
69
+ dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
70
+ for model computations and weights. Note that some computations,
71
+ such as softmax and layer normalization, will always be done at
72
+ float32 precision regardless of dtype.
73
+
74
+ Examples:
75
+ ```python
76
+ input_data = {
77
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
78
+ "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]]),
79
+ }
80
+
81
+ # Pretrained BERT encoder.
82
+ model = keras_hub.models.FNetBackbone.from_preset("f_net_base_en")
83
+ model(input_data)
84
+
85
+ # Randomly initialized FNet encoder with a custom config.
86
+ model = keras_hub.models.FNetBackbone(
87
+ vocabulary_size=32000,
88
+ num_layers=4,
89
+ hidden_dim=256,
90
+ intermediate_dim=512,
91
+ max_sequence_length=128,
92
+ )
93
+ model(input_data)
94
+ ```
95
+ """
96
+
97
+ def __init__(
98
+ self,
99
+ vocabulary_size,
100
+ num_layers,
101
+ hidden_dim,
102
+ intermediate_dim,
103
+ dropout=0.1,
104
+ max_sequence_length=512,
105
+ num_segments=4,
106
+ dtype=None,
107
+ **kwargs,
108
+ ):
109
+ # === Layers ===
110
+ self.token_embedding = ReversibleEmbedding(
111
+ input_dim=vocabulary_size,
112
+ output_dim=hidden_dim,
113
+ embeddings_initializer=f_net_kernel_initializer(),
114
+ dtype=dtype,
115
+ name="token_embedding",
116
+ )
117
+ self.position_embedding = PositionEmbedding(
118
+ initializer=f_net_kernel_initializer(),
119
+ sequence_length=max_sequence_length,
120
+ dtype=dtype,
121
+ name="position_embedding",
122
+ )
123
+ self.segment_embedding = keras.layers.Embedding(
124
+ input_dim=num_segments,
125
+ output_dim=hidden_dim,
126
+ embeddings_initializer=f_net_kernel_initializer(),
127
+ dtype=dtype,
128
+ name="segment_embedding",
129
+ )
130
+ self.embeddings_add = keras.layers.Add(
131
+ dtype=dtype,
132
+ name="embeddings_add",
133
+ )
134
+ self.embeddings_layer_norm = keras.layers.LayerNormalization(
135
+ axis=-1,
136
+ epsilon=1e-12,
137
+ dtype=dtype,
138
+ name="embeddings_layer_norm",
139
+ )
140
+ self.embedding_projection = keras.layers.Dense(
141
+ hidden_dim,
142
+ kernel_initializer=f_net_kernel_initializer(),
143
+ bias_initializer=f_net_bias_initializer(),
144
+ dtype=dtype,
145
+ name="embedding_projection",
146
+ )
147
+ self.embeddings_dropout = keras.layers.Dropout(
148
+ dropout,
149
+ dtype=dtype,
150
+ name="embeddings_dropout",
151
+ )
152
+ self.transformer_layers = []
153
+ for i in range(num_layers):
154
+ layer = FNetEncoder(
155
+ intermediate_dim=intermediate_dim,
156
+ activation=gelu_approximate,
157
+ dropout=dropout,
158
+ layer_norm_epsilon=1e-12,
159
+ kernel_initializer=f_net_kernel_initializer(),
160
+ bias_initializer=f_net_bias_initializer(),
161
+ dtype=dtype,
162
+ name=f"f_net_layer_{i}",
163
+ )
164
+ self.transformer_layers.append(layer)
165
+ self.pooled_dense = keras.layers.Dense(
166
+ hidden_dim,
167
+ kernel_initializer=f_net_kernel_initializer(),
168
+ bias_initializer=f_net_bias_initializer(),
169
+ activation="tanh",
170
+ dtype=dtype,
171
+ name="pooled_dense",
172
+ )
173
+
174
+ # === Functional Model ===
175
+ token_id_input = keras.Input(
176
+ shape=(None,), dtype="int32", name="token_ids"
177
+ )
178
+ segment_id_input = keras.Input(
179
+ shape=(None,), dtype="int32", name="segment_ids"
180
+ )
181
+ # Embed tokens, positions, and segment ids.
182
+ tokens = self.token_embedding(token_id_input)
183
+ positions = self.position_embedding(tokens)
184
+ segments = self.segment_embedding(segment_id_input)
185
+ # Sum, normalize and apply dropout to embeddings.
186
+ x = self.embeddings_add((tokens, positions, segments))
187
+ x = self.embeddings_layer_norm(x)
188
+ x = self.embedding_projection(x)
189
+ x = self.embeddings_dropout(x)
190
+ # Apply successive FNet encoder blocks.
191
+ for transformer_layer in self.transformer_layers:
192
+ x = transformer_layer(x)
193
+ # Index of classification token in the vocabulary
194
+ cls_token_index = 0
195
+ # Construct the two FNet outputs. The pooled output is a dense layer on
196
+ # top of the [CLS] token.
197
+ sequence_output = x
198
+ pooled_output = self.pooled_dense(x[:, cls_token_index, :])
199
+ # Instantiate using Functional API Model constructor
200
+ super().__init__(
201
+ inputs={
202
+ "token_ids": token_id_input,
203
+ "segment_ids": segment_id_input,
204
+ },
205
+ outputs={
206
+ "sequence_output": sequence_output,
207
+ "pooled_output": pooled_output,
208
+ },
209
+ dtype=dtype,
210
+ **kwargs,
211
+ )
212
+
213
+ # === Config ===
214
+ self.vocabulary_size = vocabulary_size
215
+ self.num_layers = num_layers
216
+ self.hidden_dim = hidden_dim
217
+ self.intermediate_dim = intermediate_dim
218
+ self.dropout = dropout
219
+ self.max_sequence_length = max_sequence_length
220
+ self.num_segments = num_segments
221
+ self.cls_token_index = cls_token_index
222
+
223
+ def get_config(self):
224
+ config = super().get_config()
225
+ config.update(
226
+ {
227
+ "vocabulary_size": self.vocabulary_size,
228
+ "num_layers": self.num_layers,
229
+ "hidden_dim": self.hidden_dim,
230
+ "intermediate_dim": self.intermediate_dim,
231
+ "dropout": self.dropout,
232
+ "max_sequence_length": self.max_sequence_length,
233
+ "num_segments": self.num_segments,
234
+ }
235
+ )
236
+ return config