keras-hub-nightly 0.15.0.dev20240823171555__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- keras_hub/__init__.py +52 -0
- keras_hub/api/__init__.py +27 -0
- keras_hub/api/layers/__init__.py +47 -0
- keras_hub/api/metrics/__init__.py +24 -0
- keras_hub/api/models/__init__.py +249 -0
- keras_hub/api/samplers/__init__.py +29 -0
- keras_hub/api/tokenizers/__init__.py +35 -0
- keras_hub/src/__init__.py +13 -0
- keras_hub/src/api_export.py +53 -0
- keras_hub/src/layers/__init__.py +13 -0
- keras_hub/src/layers/modeling/__init__.py +13 -0
- keras_hub/src/layers/modeling/alibi_bias.py +143 -0
- keras_hub/src/layers/modeling/cached_multi_head_attention.py +137 -0
- keras_hub/src/layers/modeling/f_net_encoder.py +200 -0
- keras_hub/src/layers/modeling/masked_lm_head.py +239 -0
- keras_hub/src/layers/modeling/position_embedding.py +123 -0
- keras_hub/src/layers/modeling/reversible_embedding.py +311 -0
- keras_hub/src/layers/modeling/rotary_embedding.py +169 -0
- keras_hub/src/layers/modeling/sine_position_encoding.py +108 -0
- keras_hub/src/layers/modeling/token_and_position_embedding.py +150 -0
- keras_hub/src/layers/modeling/transformer_decoder.py +496 -0
- keras_hub/src/layers/modeling/transformer_encoder.py +262 -0
- keras_hub/src/layers/modeling/transformer_layer_utils.py +106 -0
- keras_hub/src/layers/preprocessing/__init__.py +13 -0
- keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +220 -0
- keras_hub/src/layers/preprocessing/multi_segment_packer.py +319 -0
- keras_hub/src/layers/preprocessing/preprocessing_layer.py +62 -0
- keras_hub/src/layers/preprocessing/random_deletion.py +271 -0
- keras_hub/src/layers/preprocessing/random_swap.py +267 -0
- keras_hub/src/layers/preprocessing/start_end_packer.py +219 -0
- keras_hub/src/metrics/__init__.py +13 -0
- keras_hub/src/metrics/bleu.py +394 -0
- keras_hub/src/metrics/edit_distance.py +197 -0
- keras_hub/src/metrics/perplexity.py +181 -0
- keras_hub/src/metrics/rouge_base.py +204 -0
- keras_hub/src/metrics/rouge_l.py +97 -0
- keras_hub/src/metrics/rouge_n.py +125 -0
- keras_hub/src/models/__init__.py +13 -0
- keras_hub/src/models/albert/__init__.py +20 -0
- keras_hub/src/models/albert/albert_backbone.py +267 -0
- keras_hub/src/models/albert/albert_classifier.py +202 -0
- keras_hub/src/models/albert/albert_masked_lm.py +129 -0
- keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/albert/albert_preprocessor.py +206 -0
- keras_hub/src/models/albert/albert_presets.py +70 -0
- keras_hub/src/models/albert/albert_tokenizer.py +119 -0
- keras_hub/src/models/backbone.py +311 -0
- keras_hub/src/models/bart/__init__.py +20 -0
- keras_hub/src/models/bart/bart_backbone.py +261 -0
- keras_hub/src/models/bart/bart_preprocessor.py +276 -0
- keras_hub/src/models/bart/bart_presets.py +74 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm.py +490 -0
- keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +262 -0
- keras_hub/src/models/bart/bart_tokenizer.py +124 -0
- keras_hub/src/models/bert/__init__.py +23 -0
- keras_hub/src/models/bert/bert_backbone.py +227 -0
- keras_hub/src/models/bert/bert_classifier.py +183 -0
- keras_hub/src/models/bert/bert_masked_lm.py +131 -0
- keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/bert/bert_preprocessor.py +184 -0
- keras_hub/src/models/bert/bert_presets.py +147 -0
- keras_hub/src/models/bert/bert_tokenizer.py +112 -0
- keras_hub/src/models/bloom/__init__.py +20 -0
- keras_hub/src/models/bloom/bloom_attention.py +186 -0
- keras_hub/src/models/bloom/bloom_backbone.py +173 -0
- keras_hub/src/models/bloom/bloom_causal_lm.py +298 -0
- keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +176 -0
- keras_hub/src/models/bloom/bloom_decoder.py +206 -0
- keras_hub/src/models/bloom/bloom_preprocessor.py +185 -0
- keras_hub/src/models/bloom/bloom_presets.py +121 -0
- keras_hub/src/models/bloom/bloom_tokenizer.py +116 -0
- keras_hub/src/models/causal_lm.py +383 -0
- keras_hub/src/models/classifier.py +109 -0
- keras_hub/src/models/csp_darknet/__init__.py +13 -0
- keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +410 -0
- keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +133 -0
- keras_hub/src/models/deberta_v3/__init__.py +24 -0
- keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +210 -0
- keras_hub/src/models/deberta_v3/deberta_v3_classifier.py +228 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +135 -0
- keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +191 -0
- keras_hub/src/models/deberta_v3/deberta_v3_preprocessor.py +206 -0
- keras_hub/src/models/deberta_v3/deberta_v3_presets.py +82 -0
- keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +155 -0
- keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +227 -0
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py +412 -0
- keras_hub/src/models/deberta_v3/relative_embedding.py +94 -0
- keras_hub/src/models/densenet/__init__.py +13 -0
- keras_hub/src/models/densenet/densenet_backbone.py +210 -0
- keras_hub/src/models/densenet/densenet_image_classifier.py +131 -0
- keras_hub/src/models/distil_bert/__init__.py +26 -0
- keras_hub/src/models/distil_bert/distil_bert_backbone.py +187 -0
- keras_hub/src/models/distil_bert/distil_bert_classifier.py +208 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +137 -0
- keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +194 -0
- keras_hub/src/models/distil_bert/distil_bert_preprocessor.py +175 -0
- keras_hub/src/models/distil_bert/distil_bert_presets.py +57 -0
- keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +114 -0
- keras_hub/src/models/electra/__init__.py +20 -0
- keras_hub/src/models/electra/electra_backbone.py +247 -0
- keras_hub/src/models/electra/electra_preprocessor.py +154 -0
- keras_hub/src/models/electra/electra_presets.py +95 -0
- keras_hub/src/models/electra/electra_tokenizer.py +104 -0
- keras_hub/src/models/f_net/__init__.py +20 -0
- keras_hub/src/models/f_net/f_net_backbone.py +236 -0
- keras_hub/src/models/f_net/f_net_classifier.py +154 -0
- keras_hub/src/models/f_net/f_net_masked_lm.py +132 -0
- keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +196 -0
- keras_hub/src/models/f_net/f_net_preprocessor.py +177 -0
- keras_hub/src/models/f_net/f_net_presets.py +43 -0
- keras_hub/src/models/f_net/f_net_tokenizer.py +95 -0
- keras_hub/src/models/falcon/__init__.py +20 -0
- keras_hub/src/models/falcon/falcon_attention.py +156 -0
- keras_hub/src/models/falcon/falcon_backbone.py +164 -0
- keras_hub/src/models/falcon/falcon_causal_lm.py +291 -0
- keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/falcon/falcon_preprocessor.py +187 -0
- keras_hub/src/models/falcon/falcon_presets.py +30 -0
- keras_hub/src/models/falcon/falcon_tokenizer.py +110 -0
- keras_hub/src/models/falcon/falcon_transformer_decoder.py +255 -0
- keras_hub/src/models/feature_pyramid_backbone.py +73 -0
- keras_hub/src/models/gemma/__init__.py +20 -0
- keras_hub/src/models/gemma/gemma_attention.py +250 -0
- keras_hub/src/models/gemma/gemma_backbone.py +316 -0
- keras_hub/src/models/gemma/gemma_causal_lm.py +448 -0
- keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +167 -0
- keras_hub/src/models/gemma/gemma_decoder_block.py +241 -0
- keras_hub/src/models/gemma/gemma_preprocessor.py +191 -0
- keras_hub/src/models/gemma/gemma_presets.py +248 -0
- keras_hub/src/models/gemma/gemma_tokenizer.py +103 -0
- keras_hub/src/models/gemma/rms_normalization.py +40 -0
- keras_hub/src/models/gpt2/__init__.py +20 -0
- keras_hub/src/models/gpt2/gpt2_backbone.py +199 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm.py +437 -0
- keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/gpt2/gpt2_preprocessor.py +187 -0
- keras_hub/src/models/gpt2/gpt2_presets.py +82 -0
- keras_hub/src/models/gpt2/gpt2_tokenizer.py +110 -0
- keras_hub/src/models/gpt_neo_x/__init__.py +13 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +251 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +175 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +201 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +141 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +258 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_preprocessor.py +145 -0
- keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +88 -0
- keras_hub/src/models/image_classifier.py +90 -0
- keras_hub/src/models/llama/__init__.py +20 -0
- keras_hub/src/models/llama/llama_attention.py +225 -0
- keras_hub/src/models/llama/llama_backbone.py +188 -0
- keras_hub/src/models/llama/llama_causal_lm.py +327 -0
- keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +170 -0
- keras_hub/src/models/llama/llama_decoder.py +246 -0
- keras_hub/src/models/llama/llama_layernorm.py +48 -0
- keras_hub/src/models/llama/llama_preprocessor.py +189 -0
- keras_hub/src/models/llama/llama_presets.py +80 -0
- keras_hub/src/models/llama/llama_tokenizer.py +84 -0
- keras_hub/src/models/llama3/__init__.py +20 -0
- keras_hub/src/models/llama3/llama3_backbone.py +84 -0
- keras_hub/src/models/llama3/llama3_causal_lm.py +46 -0
- keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/llama3/llama3_preprocessor.py +21 -0
- keras_hub/src/models/llama3/llama3_presets.py +69 -0
- keras_hub/src/models/llama3/llama3_tokenizer.py +63 -0
- keras_hub/src/models/masked_lm.py +101 -0
- keras_hub/src/models/mistral/__init__.py +20 -0
- keras_hub/src/models/mistral/mistral_attention.py +238 -0
- keras_hub/src/models/mistral/mistral_backbone.py +203 -0
- keras_hub/src/models/mistral/mistral_causal_lm.py +328 -0
- keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +175 -0
- keras_hub/src/models/mistral/mistral_layer_norm.py +48 -0
- keras_hub/src/models/mistral/mistral_preprocessor.py +190 -0
- keras_hub/src/models/mistral/mistral_presets.py +48 -0
- keras_hub/src/models/mistral/mistral_tokenizer.py +82 -0
- keras_hub/src/models/mistral/mistral_transformer_decoder.py +265 -0
- keras_hub/src/models/mix_transformer/__init__.py +13 -0
- keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +181 -0
- keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +133 -0
- keras_hub/src/models/mix_transformer/mix_transformer_layers.py +300 -0
- keras_hub/src/models/opt/__init__.py +20 -0
- keras_hub/src/models/opt/opt_backbone.py +173 -0
- keras_hub/src/models/opt/opt_causal_lm.py +301 -0
- keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +177 -0
- keras_hub/src/models/opt/opt_preprocessor.py +188 -0
- keras_hub/src/models/opt/opt_presets.py +72 -0
- keras_hub/src/models/opt/opt_tokenizer.py +116 -0
- keras_hub/src/models/pali_gemma/__init__.py +23 -0
- keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +277 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +313 -0
- keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +147 -0
- keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +160 -0
- keras_hub/src/models/pali_gemma/pali_gemma_presets.py +78 -0
- keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +79 -0
- keras_hub/src/models/pali_gemma/pali_gemma_vit.py +566 -0
- keras_hub/src/models/phi3/__init__.py +20 -0
- keras_hub/src/models/phi3/phi3_attention.py +260 -0
- keras_hub/src/models/phi3/phi3_backbone.py +224 -0
- keras_hub/src/models/phi3/phi3_causal_lm.py +218 -0
- keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +173 -0
- keras_hub/src/models/phi3/phi3_decoder.py +260 -0
- keras_hub/src/models/phi3/phi3_layernorm.py +48 -0
- keras_hub/src/models/phi3/phi3_preprocessor.py +190 -0
- keras_hub/src/models/phi3/phi3_presets.py +50 -0
- keras_hub/src/models/phi3/phi3_rotary_embedding.py +137 -0
- keras_hub/src/models/phi3/phi3_tokenizer.py +94 -0
- keras_hub/src/models/preprocessor.py +207 -0
- keras_hub/src/models/resnet/__init__.py +13 -0
- keras_hub/src/models/resnet/resnet_backbone.py +612 -0
- keras_hub/src/models/resnet/resnet_image_classifier.py +136 -0
- keras_hub/src/models/roberta/__init__.py +20 -0
- keras_hub/src/models/roberta/roberta_backbone.py +184 -0
- keras_hub/src/models/roberta/roberta_classifier.py +209 -0
- keras_hub/src/models/roberta/roberta_masked_lm.py +136 -0
- keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +198 -0
- keras_hub/src/models/roberta/roberta_preprocessor.py +192 -0
- keras_hub/src/models/roberta/roberta_presets.py +43 -0
- keras_hub/src/models/roberta/roberta_tokenizer.py +132 -0
- keras_hub/src/models/seq_2_seq_lm.py +54 -0
- keras_hub/src/models/t5/__init__.py +20 -0
- keras_hub/src/models/t5/t5_backbone.py +261 -0
- keras_hub/src/models/t5/t5_layer_norm.py +35 -0
- keras_hub/src/models/t5/t5_multi_head_attention.py +324 -0
- keras_hub/src/models/t5/t5_presets.py +95 -0
- keras_hub/src/models/t5/t5_tokenizer.py +100 -0
- keras_hub/src/models/t5/t5_transformer_layer.py +178 -0
- keras_hub/src/models/task.py +419 -0
- keras_hub/src/models/vgg/__init__.py +13 -0
- keras_hub/src/models/vgg/vgg_backbone.py +158 -0
- keras_hub/src/models/vgg/vgg_image_classifier.py +124 -0
- keras_hub/src/models/vit_det/__init__.py +13 -0
- keras_hub/src/models/vit_det/vit_det_backbone.py +204 -0
- keras_hub/src/models/vit_det/vit_layers.py +565 -0
- keras_hub/src/models/whisper/__init__.py +20 -0
- keras_hub/src/models/whisper/whisper_audio_feature_extractor.py +260 -0
- keras_hub/src/models/whisper/whisper_backbone.py +305 -0
- keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +153 -0
- keras_hub/src/models/whisper/whisper_decoder.py +141 -0
- keras_hub/src/models/whisper/whisper_encoder.py +106 -0
- keras_hub/src/models/whisper/whisper_preprocessor.py +326 -0
- keras_hub/src/models/whisper/whisper_presets.py +148 -0
- keras_hub/src/models/whisper/whisper_tokenizer.py +163 -0
- keras_hub/src/models/xlm_roberta/__init__.py +26 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +81 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_classifier.py +225 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +141 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +195 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_preprocessor.py +205 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +43 -0
- keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +191 -0
- keras_hub/src/models/xlnet/__init__.py +13 -0
- keras_hub/src/models/xlnet/relative_attention.py +459 -0
- keras_hub/src/models/xlnet/xlnet_backbone.py +222 -0
- keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +133 -0
- keras_hub/src/models/xlnet/xlnet_encoder.py +378 -0
- keras_hub/src/samplers/__init__.py +13 -0
- keras_hub/src/samplers/beam_sampler.py +207 -0
- keras_hub/src/samplers/contrastive_sampler.py +231 -0
- keras_hub/src/samplers/greedy_sampler.py +50 -0
- keras_hub/src/samplers/random_sampler.py +77 -0
- keras_hub/src/samplers/sampler.py +237 -0
- keras_hub/src/samplers/serialization.py +97 -0
- keras_hub/src/samplers/top_k_sampler.py +92 -0
- keras_hub/src/samplers/top_p_sampler.py +113 -0
- keras_hub/src/tests/__init__.py +13 -0
- keras_hub/src/tests/test_case.py +608 -0
- keras_hub/src/tokenizers/__init__.py +13 -0
- keras_hub/src/tokenizers/byte_pair_tokenizer.py +638 -0
- keras_hub/src/tokenizers/byte_tokenizer.py +299 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer.py +267 -0
- keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +150 -0
- keras_hub/src/tokenizers/tokenizer.py +235 -0
- keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +355 -0
- keras_hub/src/tokenizers/word_piece_tokenizer.py +544 -0
- keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +176 -0
- keras_hub/src/utils/__init__.py +13 -0
- keras_hub/src/utils/keras_utils.py +130 -0
- keras_hub/src/utils/pipeline_model.py +293 -0
- keras_hub/src/utils/preset_utils.py +621 -0
- keras_hub/src/utils/python_utils.py +21 -0
- keras_hub/src/utils/tensor_utils.py +206 -0
- keras_hub/src/utils/timm/__init__.py +13 -0
- keras_hub/src/utils/timm/convert.py +37 -0
- keras_hub/src/utils/timm/convert_resnet.py +171 -0
- keras_hub/src/utils/transformers/__init__.py +13 -0
- keras_hub/src/utils/transformers/convert.py +101 -0
- keras_hub/src/utils/transformers/convert_bert.py +173 -0
- keras_hub/src/utils/transformers/convert_distilbert.py +184 -0
- keras_hub/src/utils/transformers/convert_gemma.py +187 -0
- keras_hub/src/utils/transformers/convert_gpt2.py +186 -0
- keras_hub/src/utils/transformers/convert_llama3.py +136 -0
- keras_hub/src/utils/transformers/convert_pali_gemma.py +303 -0
- keras_hub/src/utils/transformers/safetensor_utils.py +97 -0
- keras_hub/src/version_utils.py +23 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/METADATA +34 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/RECORD +297 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/WHEEL +5 -0
- keras_hub_nightly-0.15.0.dev20240823171555.dist-info/top_level.txt +1 -0
@@ -0,0 +1,154 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import keras
|
16
|
+
|
17
|
+
from keras_hub.src.api_export import keras_hub_export
|
18
|
+
from keras_hub.src.layers.preprocessing.multi_segment_packer import (
|
19
|
+
MultiSegmentPacker,
|
20
|
+
)
|
21
|
+
from keras_hub.src.models.electra.electra_tokenizer import ElectraTokenizer
|
22
|
+
from keras_hub.src.models.preprocessor import Preprocessor
|
23
|
+
from keras_hub.src.utils.keras_utils import (
|
24
|
+
convert_inputs_to_list_of_tensor_segments,
|
25
|
+
)
|
26
|
+
|
27
|
+
|
28
|
+
@keras_hub_export("keras_hub.models.ElectraPreprocessor")
|
29
|
+
class ElectraPreprocessor(Preprocessor):
|
30
|
+
"""A ELECTRA preprocessing layer which tokenizes and packs inputs.
|
31
|
+
|
32
|
+
This preprocessing layer will do three things:
|
33
|
+
|
34
|
+
1. Tokenize any number of input segments using the `tokenizer`.
|
35
|
+
2. Pack the inputs together using a `keras_hub.layers.MultiSegmentPacker`.
|
36
|
+
with the appropriate `"[CLS]"`, `"[SEP]"` and `"[PAD]"` tokens.
|
37
|
+
3. Construct a dictionary of with keys `"token_ids"` and `"padding_mask"`,
|
38
|
+
that can be passed directly to a ELECTRA model.
|
39
|
+
|
40
|
+
This layer can be used directly with `tf.data.Dataset.map` to preprocess
|
41
|
+
string data in the `(x, y, sample_weight)` format used by
|
42
|
+
`keras.Model.fit`.
|
43
|
+
|
44
|
+
Args:
|
45
|
+
tokenizer: A `keras_hub.models.ElectraTokenizer` instance.
|
46
|
+
sequence_length: The length of the packed inputs.
|
47
|
+
truncate: string. The algorithm to truncate a list of batched segments
|
48
|
+
to fit within `sequence_length`. The value can be either
|
49
|
+
`round_robin` or `waterfall`:
|
50
|
+
- `"round_robin"`: Available space is assigned one token at a
|
51
|
+
time in a round-robin fashion to the inputs that still need
|
52
|
+
some, until the limit is reached.
|
53
|
+
- `"waterfall"`: The allocation of the budget is done using a
|
54
|
+
"waterfall" algorithm that allocates quota in a
|
55
|
+
left-to-right manner and fills up the buckets until we run
|
56
|
+
out of budget. It supports an arbitrary number of segments.
|
57
|
+
|
58
|
+
Call arguments:
|
59
|
+
x: A tensor of single string sequences, or a tuple of multiple
|
60
|
+
tensor sequences to be packed together. Inputs may be batched or
|
61
|
+
unbatched. For single sequences, raw python inputs will be converted
|
62
|
+
to tensors. For multiple sequences, pass tensors directly.
|
63
|
+
y: Any label data. Will be passed through unaltered.
|
64
|
+
sample_weight: Any label weight data. Will be passed through unaltered.
|
65
|
+
|
66
|
+
Examples:
|
67
|
+
|
68
|
+
Directly calling the layer on data.
|
69
|
+
```python
|
70
|
+
preprocessor = keras_hub.models.ElectraPreprocessor.from_preset(
|
71
|
+
"electra_base_discriminator_en"
|
72
|
+
)
|
73
|
+
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
|
74
|
+
|
75
|
+
# Custom vocabulary.
|
76
|
+
vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
|
77
|
+
vocab += ["The", "quick", "brown", "fox", "jumped", "."]
|
78
|
+
tokenizer = keras_hub.models.ElectraTokenizer(vocabulary=vocab)
|
79
|
+
preprocessor = keras_hub.models.ElectraPreprocessor(tokenizer)
|
80
|
+
preprocessor("The quick brown fox jumped.")
|
81
|
+
```
|
82
|
+
|
83
|
+
Mapping with `tf.data.Dataset`.
|
84
|
+
```python
|
85
|
+
preprocessor = keras_hub.models.ElectraPreprocessor.from_preset(
|
86
|
+
"electra_base_discriminator_en"
|
87
|
+
)
|
88
|
+
|
89
|
+
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
|
90
|
+
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
|
91
|
+
label = tf.constant([1, 1])
|
92
|
+
# Map labeled single sentences.
|
93
|
+
ds = tf.data.Dataset.from_tensor_slices((first, label))
|
94
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
95
|
+
|
96
|
+
|
97
|
+
# Map unlabeled single sentences.
|
98
|
+
ds = tf.data.Dataset.from_tensor_slices(first)
|
99
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
100
|
+
|
101
|
+
# Map labeled sentence pairs.
|
102
|
+
ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
|
103
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
104
|
+
# Map unlabeled sentence pairs.
|
105
|
+
ds = tf.data.Dataset.from_tensor_slices((first, second))
|
106
|
+
|
107
|
+
# Watch out for tf.data's default unpacking of tuples here!
|
108
|
+
# Best to invoke the `preprocessor` directly in this case.
|
109
|
+
ds = ds.map(
|
110
|
+
lambda first, second: preprocessor(x=(first, second)),
|
111
|
+
num_parallel_calls=tf.data.AUTOTUNE,
|
112
|
+
)
|
113
|
+
```
|
114
|
+
"""
|
115
|
+
|
116
|
+
tokenizer_cls = ElectraTokenizer
|
117
|
+
|
118
|
+
def __init__(
|
119
|
+
self,
|
120
|
+
tokenizer,
|
121
|
+
sequence_length=512,
|
122
|
+
truncate="round_robin",
|
123
|
+
**kwargs,
|
124
|
+
):
|
125
|
+
super().__init__(**kwargs)
|
126
|
+
self.tokenizer = tokenizer
|
127
|
+
self.packer = MultiSegmentPacker(
|
128
|
+
start_value=self.tokenizer.cls_token_id,
|
129
|
+
end_value=self.tokenizer.sep_token_id,
|
130
|
+
pad_value=self.tokenizer.pad_token_id,
|
131
|
+
truncate=truncate,
|
132
|
+
sequence_length=sequence_length,
|
133
|
+
)
|
134
|
+
|
135
|
+
def get_config(self):
|
136
|
+
config = super().get_config()
|
137
|
+
config.update(
|
138
|
+
{
|
139
|
+
"sequence_length": self.packer.sequence_length,
|
140
|
+
"truncate": self.packer.truncate,
|
141
|
+
}
|
142
|
+
)
|
143
|
+
return config
|
144
|
+
|
145
|
+
def call(self, x, y=None, sample_weight=None):
|
146
|
+
x = convert_inputs_to_list_of_tensor_segments(x)
|
147
|
+
x = [self.tokenizer(segment) for segment in x]
|
148
|
+
token_ids, segment_ids = self.packer(x)
|
149
|
+
x = {
|
150
|
+
"token_ids": token_ids,
|
151
|
+
"segment_ids": segment_ids,
|
152
|
+
"padding_mask": token_ids != self.tokenizer.pad_token_id,
|
153
|
+
}
|
154
|
+
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
|
@@ -0,0 +1,95 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
"""ELECTRA model preset configurations."""
|
15
|
+
|
16
|
+
backbone_presets = {
|
17
|
+
"electra_small_discriminator_uncased_en": {
|
18
|
+
"metadata": {
|
19
|
+
"description": (
|
20
|
+
"12-layer small ELECTRA discriminator model. All inputs are "
|
21
|
+
"lowercased. Trained on English Wikipedia + BooksCorpus."
|
22
|
+
),
|
23
|
+
"params": 13548800,
|
24
|
+
"official_name": "ELECTRA",
|
25
|
+
"path": "electra",
|
26
|
+
"model_card": "https://github.com/google-research/electra",
|
27
|
+
},
|
28
|
+
"kaggle_handle": "kaggle://keras/electra/keras/electra_small_discriminator_uncased_en/1",
|
29
|
+
},
|
30
|
+
"electra_small_generator_uncased_en": {
|
31
|
+
"metadata": {
|
32
|
+
"description": (
|
33
|
+
"12-layer small ELECTRA generator model. All inputs are "
|
34
|
+
"lowercased. Trained on English Wikipedia + BooksCorpus."
|
35
|
+
),
|
36
|
+
"params": 13548800,
|
37
|
+
"official_name": "ELECTRA",
|
38
|
+
"path": "electra",
|
39
|
+
"model_card": "https://github.com/google-research/electra",
|
40
|
+
},
|
41
|
+
"kaggle_handle": "kaggle://keras/electra/keras/electra_small_generator_uncased_en/1",
|
42
|
+
},
|
43
|
+
"electra_base_discriminator_uncased_en": {
|
44
|
+
"metadata": {
|
45
|
+
"description": (
|
46
|
+
"12-layer base ELECTRA discriminator model. All inputs are "
|
47
|
+
"lowercased. Trained on English Wikipedia + BooksCorpus."
|
48
|
+
),
|
49
|
+
"params": 109482240,
|
50
|
+
"official_name": "ELECTRA",
|
51
|
+
"path": "electra",
|
52
|
+
"model_card": "https://github.com/google-research/electra",
|
53
|
+
},
|
54
|
+
"kaggle_handle": "kaggle://keras/electra/keras/electra_base_discriminator_uncased_en/1",
|
55
|
+
},
|
56
|
+
"electra_base_generator_uncased_en": {
|
57
|
+
"metadata": {
|
58
|
+
"description": (
|
59
|
+
"12-layer base ELECTRA generator model. All inputs are "
|
60
|
+
"lowercased. Trained on English Wikipedia + BooksCorpus."
|
61
|
+
),
|
62
|
+
"params": 33576960,
|
63
|
+
"official_name": "ELECTRA",
|
64
|
+
"path": "electra",
|
65
|
+
"model_card": "https://github.com/google-research/electra",
|
66
|
+
},
|
67
|
+
"kaggle_handle": "kaggle://keras/electra/keras/electra_base_generator_uncased_en/1",
|
68
|
+
},
|
69
|
+
"electra_large_discriminator_uncased_en": {
|
70
|
+
"metadata": {
|
71
|
+
"description": (
|
72
|
+
"24-layer large ELECTRA discriminator model. All inputs are "
|
73
|
+
"lowercased. Trained on English Wikipedia + BooksCorpus."
|
74
|
+
),
|
75
|
+
"params": 335141888,
|
76
|
+
"official_name": "ELECTRA",
|
77
|
+
"path": "electra",
|
78
|
+
"model_card": "https://github.com/google-research/electra",
|
79
|
+
},
|
80
|
+
"kaggle_handle": "kaggle://keras/electra/keras/electra_large_discriminator_uncased_en/1",
|
81
|
+
},
|
82
|
+
"electra_large_generator_uncased_en": {
|
83
|
+
"metadata": {
|
84
|
+
"description": (
|
85
|
+
"24-layer large ELECTRA generator model. All inputs are "
|
86
|
+
"lowercased. Trained on English Wikipedia + BooksCorpus."
|
87
|
+
),
|
88
|
+
"params": 51065344,
|
89
|
+
"official_name": "ELECTRA",
|
90
|
+
"path": "electra",
|
91
|
+
"model_card": "https://github.com/google-research/electra",
|
92
|
+
},
|
93
|
+
"kaggle_handle": "kaggle://keras/electra/keras/electra_large_generator_uncased_en/1",
|
94
|
+
},
|
95
|
+
}
|
@@ -0,0 +1,104 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from keras_hub.src.api_export import keras_hub_export
|
16
|
+
from keras_hub.src.tokenizers.word_piece_tokenizer import WordPieceTokenizer
|
17
|
+
|
18
|
+
|
19
|
+
@keras_hub_export("keras_hub.models.ElectraTokenizer")
|
20
|
+
class ElectraTokenizer(WordPieceTokenizer):
|
21
|
+
"""A ELECTRA tokenizer using WordPiece subword segmentation.
|
22
|
+
|
23
|
+
This tokenizer class will tokenize raw strings into integer sequences and
|
24
|
+
is based on `keras_hub.tokenizers.WordPieceTokenizer`.
|
25
|
+
|
26
|
+
If input is a batch of strings (rank > 0), the layer will output a
|
27
|
+
`tf.RaggedTensor` where the last dimension of the output is ragged.
|
28
|
+
|
29
|
+
If input is a scalar string (rank == 0), the layer will output a dense
|
30
|
+
`tf.Tensor` with static shape `[None]`.
|
31
|
+
|
32
|
+
Args:
|
33
|
+
vocabulary: A list of strings or a string filename path. If
|
34
|
+
passing a list, each element of the list should be a single word
|
35
|
+
piece token string. If passing a filename, the file should be a
|
36
|
+
plain text file containing a single word piece token per line.
|
37
|
+
lowercase: If `True`, the input text will be first lowered before
|
38
|
+
tokenization.
|
39
|
+
special_tokens_in_strings: bool. A bool to indicate if the tokenizer
|
40
|
+
should expect special tokens in input strings that should be
|
41
|
+
tokenized and mapped correctly to their ids. Defaults to False.
|
42
|
+
|
43
|
+
Examples:
|
44
|
+
```python
|
45
|
+
# Custom Vocabulary.
|
46
|
+
vocab = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
|
47
|
+
vocab += ["The", "quick", "brown", "fox", "jumped", "."]
|
48
|
+
|
49
|
+
# Instantiate the tokenizer.
|
50
|
+
tokenizer = keras_hub.models.ElectraTokenizer(vocabulary=vocab)
|
51
|
+
|
52
|
+
# Unbatched input.
|
53
|
+
tokenizer("The quick brown fox jumped.")
|
54
|
+
|
55
|
+
# Batched input.
|
56
|
+
tokenizer(["The quick brown fox jumped.", "The fox slept."])
|
57
|
+
|
58
|
+
# Detokenization.
|
59
|
+
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
|
60
|
+
```
|
61
|
+
"""
|
62
|
+
|
63
|
+
def __init__(
|
64
|
+
self,
|
65
|
+
vocabulary,
|
66
|
+
lowercase=False,
|
67
|
+
special_tokens_in_strings=False,
|
68
|
+
**kwargs,
|
69
|
+
):
|
70
|
+
self.cls_token = "[CLS]"
|
71
|
+
self.sep_token = "[SEP]"
|
72
|
+
self.pad_token = "[PAD]"
|
73
|
+
self.mask_token = "[MASK]"
|
74
|
+
super().__init__(
|
75
|
+
vocabulary=vocabulary,
|
76
|
+
lowercase=lowercase,
|
77
|
+
special_tokens=[
|
78
|
+
self.cls_token,
|
79
|
+
self.sep_token,
|
80
|
+
self.pad_token,
|
81
|
+
self.mask_token,
|
82
|
+
],
|
83
|
+
special_tokens_in_strings=special_tokens_in_strings,
|
84
|
+
**kwargs,
|
85
|
+
)
|
86
|
+
|
87
|
+
def set_vocabulary(self, vocabulary):
|
88
|
+
super().set_vocabulary(vocabulary)
|
89
|
+
|
90
|
+
if vocabulary is not None:
|
91
|
+
self.cls_token_id = self.token_to_id(self.cls_token)
|
92
|
+
self.sep_token_id = self.token_to_id(self.sep_token)
|
93
|
+
self.pad_token_id = self.token_to_id(self.pad_token)
|
94
|
+
self.mask_token_id = self.token_to_id(self.mask_token)
|
95
|
+
else:
|
96
|
+
self.cls_token_id = None
|
97
|
+
self.sep_token_id = None
|
98
|
+
self.pad_token_id = None
|
99
|
+
self.mask_token_id = None
|
100
|
+
|
101
|
+
def get_config(self):
|
102
|
+
config = super().get_config()
|
103
|
+
del config["special_tokens"] # Not configurable; set in __init__.
|
104
|
+
return config
|
@@ -0,0 +1,20 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from keras_hub.src.models.f_net.f_net_backbone import FNetBackbone
|
16
|
+
from keras_hub.src.models.f_net.f_net_presets import backbone_presets
|
17
|
+
from keras_hub.src.models.f_net.f_net_tokenizer import FNetTokenizer
|
18
|
+
from keras_hub.src.utils.preset_utils import register_presets
|
19
|
+
|
20
|
+
register_presets(backbone_presets, (FNetBackbone, FNetTokenizer))
|
@@ -0,0 +1,236 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
import keras
|
17
|
+
|
18
|
+
from keras_hub.src.api_export import keras_hub_export
|
19
|
+
from keras_hub.src.layers.modeling.f_net_encoder import FNetEncoder
|
20
|
+
from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
|
21
|
+
from keras_hub.src.layers.modeling.reversible_embedding import (
|
22
|
+
ReversibleEmbedding,
|
23
|
+
)
|
24
|
+
from keras_hub.src.models.backbone import Backbone
|
25
|
+
from keras_hub.src.utils.keras_utils import gelu_approximate
|
26
|
+
|
27
|
+
|
28
|
+
def f_net_kernel_initializer(stddev=0.02):
|
29
|
+
return keras.initializers.RandomNormal(stddev=stddev)
|
30
|
+
|
31
|
+
|
32
|
+
def f_net_bias_initializer(stddev=0.02):
|
33
|
+
return keras.initializers.RandomNormal(stddev=stddev)
|
34
|
+
|
35
|
+
|
36
|
+
@keras_hub_export("keras_hub.models.FNetBackbone")
|
37
|
+
class FNetBackbone(Backbone):
|
38
|
+
"""A FNet encoder network.
|
39
|
+
|
40
|
+
This class implements a bi-directional Fourier Transform-based encoder as
|
41
|
+
described in ["FNet: Mixing Tokens with Fourier Transforms"](https://arxiv.org/abs/2105.03824).
|
42
|
+
It includes the embedding lookups and `keras_hub.layers.FNetEncoder` layers,
|
43
|
+
but not the masked language model or next sentence prediction heads.
|
44
|
+
|
45
|
+
The default constructor gives a fully customizable, randomly initialized
|
46
|
+
FNet encoder with any number of layers and embedding dimensions. To
|
47
|
+
load preset architectures and weights, use the `from_preset()` constructor.
|
48
|
+
|
49
|
+
Note: unlike other models, FNet does not take in a `"padding_mask"` input,
|
50
|
+
the `"<pad>"` token is handled equivalently to all other tokens in the input
|
51
|
+
sequence.
|
52
|
+
|
53
|
+
Disclaimer: Pre-trained models are provided on an "as is" basis, without
|
54
|
+
warranties or conditions of any kind.
|
55
|
+
|
56
|
+
Args:
|
57
|
+
vocabulary_size: int. The size of the token vocabulary.
|
58
|
+
num_layers: int. The number of FNet layers.
|
59
|
+
hidden_dim: int. The size of the FNet encoding and pooler layers.
|
60
|
+
intermediate_dim: int. The output dimension of the first Dense layer in
|
61
|
+
a two-layer feedforward network for each FNet layer.
|
62
|
+
dropout: float. Dropout probability for the embeddings and FNet encoder.
|
63
|
+
max_sequence_length: int. The maximum sequence length that this encoder
|
64
|
+
can consume. If None, `max_sequence_length` uses the value from
|
65
|
+
sequence length. This determines the variable shape for positional
|
66
|
+
embeddings.
|
67
|
+
num_segments: int. The number of types that the 'segment_ids' input can
|
68
|
+
take.
|
69
|
+
dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
|
70
|
+
for model computations and weights. Note that some computations,
|
71
|
+
such as softmax and layer normalization, will always be done at
|
72
|
+
float32 precision regardless of dtype.
|
73
|
+
|
74
|
+
Examples:
|
75
|
+
```python
|
76
|
+
input_data = {
|
77
|
+
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
|
78
|
+
"segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]]),
|
79
|
+
}
|
80
|
+
|
81
|
+
# Pretrained BERT encoder.
|
82
|
+
model = keras_hub.models.FNetBackbone.from_preset("f_net_base_en")
|
83
|
+
model(input_data)
|
84
|
+
|
85
|
+
# Randomly initialized FNet encoder with a custom config.
|
86
|
+
model = keras_hub.models.FNetBackbone(
|
87
|
+
vocabulary_size=32000,
|
88
|
+
num_layers=4,
|
89
|
+
hidden_dim=256,
|
90
|
+
intermediate_dim=512,
|
91
|
+
max_sequence_length=128,
|
92
|
+
)
|
93
|
+
model(input_data)
|
94
|
+
```
|
95
|
+
"""
|
96
|
+
|
97
|
+
def __init__(
|
98
|
+
self,
|
99
|
+
vocabulary_size,
|
100
|
+
num_layers,
|
101
|
+
hidden_dim,
|
102
|
+
intermediate_dim,
|
103
|
+
dropout=0.1,
|
104
|
+
max_sequence_length=512,
|
105
|
+
num_segments=4,
|
106
|
+
dtype=None,
|
107
|
+
**kwargs,
|
108
|
+
):
|
109
|
+
# === Layers ===
|
110
|
+
self.token_embedding = ReversibleEmbedding(
|
111
|
+
input_dim=vocabulary_size,
|
112
|
+
output_dim=hidden_dim,
|
113
|
+
embeddings_initializer=f_net_kernel_initializer(),
|
114
|
+
dtype=dtype,
|
115
|
+
name="token_embedding",
|
116
|
+
)
|
117
|
+
self.position_embedding = PositionEmbedding(
|
118
|
+
initializer=f_net_kernel_initializer(),
|
119
|
+
sequence_length=max_sequence_length,
|
120
|
+
dtype=dtype,
|
121
|
+
name="position_embedding",
|
122
|
+
)
|
123
|
+
self.segment_embedding = keras.layers.Embedding(
|
124
|
+
input_dim=num_segments,
|
125
|
+
output_dim=hidden_dim,
|
126
|
+
embeddings_initializer=f_net_kernel_initializer(),
|
127
|
+
dtype=dtype,
|
128
|
+
name="segment_embedding",
|
129
|
+
)
|
130
|
+
self.embeddings_add = keras.layers.Add(
|
131
|
+
dtype=dtype,
|
132
|
+
name="embeddings_add",
|
133
|
+
)
|
134
|
+
self.embeddings_layer_norm = keras.layers.LayerNormalization(
|
135
|
+
axis=-1,
|
136
|
+
epsilon=1e-12,
|
137
|
+
dtype=dtype,
|
138
|
+
name="embeddings_layer_norm",
|
139
|
+
)
|
140
|
+
self.embedding_projection = keras.layers.Dense(
|
141
|
+
hidden_dim,
|
142
|
+
kernel_initializer=f_net_kernel_initializer(),
|
143
|
+
bias_initializer=f_net_bias_initializer(),
|
144
|
+
dtype=dtype,
|
145
|
+
name="embedding_projection",
|
146
|
+
)
|
147
|
+
self.embeddings_dropout = keras.layers.Dropout(
|
148
|
+
dropout,
|
149
|
+
dtype=dtype,
|
150
|
+
name="embeddings_dropout",
|
151
|
+
)
|
152
|
+
self.transformer_layers = []
|
153
|
+
for i in range(num_layers):
|
154
|
+
layer = FNetEncoder(
|
155
|
+
intermediate_dim=intermediate_dim,
|
156
|
+
activation=gelu_approximate,
|
157
|
+
dropout=dropout,
|
158
|
+
layer_norm_epsilon=1e-12,
|
159
|
+
kernel_initializer=f_net_kernel_initializer(),
|
160
|
+
bias_initializer=f_net_bias_initializer(),
|
161
|
+
dtype=dtype,
|
162
|
+
name=f"f_net_layer_{i}",
|
163
|
+
)
|
164
|
+
self.transformer_layers.append(layer)
|
165
|
+
self.pooled_dense = keras.layers.Dense(
|
166
|
+
hidden_dim,
|
167
|
+
kernel_initializer=f_net_kernel_initializer(),
|
168
|
+
bias_initializer=f_net_bias_initializer(),
|
169
|
+
activation="tanh",
|
170
|
+
dtype=dtype,
|
171
|
+
name="pooled_dense",
|
172
|
+
)
|
173
|
+
|
174
|
+
# === Functional Model ===
|
175
|
+
token_id_input = keras.Input(
|
176
|
+
shape=(None,), dtype="int32", name="token_ids"
|
177
|
+
)
|
178
|
+
segment_id_input = keras.Input(
|
179
|
+
shape=(None,), dtype="int32", name="segment_ids"
|
180
|
+
)
|
181
|
+
# Embed tokens, positions, and segment ids.
|
182
|
+
tokens = self.token_embedding(token_id_input)
|
183
|
+
positions = self.position_embedding(tokens)
|
184
|
+
segments = self.segment_embedding(segment_id_input)
|
185
|
+
# Sum, normalize and apply dropout to embeddings.
|
186
|
+
x = self.embeddings_add((tokens, positions, segments))
|
187
|
+
x = self.embeddings_layer_norm(x)
|
188
|
+
x = self.embedding_projection(x)
|
189
|
+
x = self.embeddings_dropout(x)
|
190
|
+
# Apply successive FNet encoder blocks.
|
191
|
+
for transformer_layer in self.transformer_layers:
|
192
|
+
x = transformer_layer(x)
|
193
|
+
# Index of classification token in the vocabulary
|
194
|
+
cls_token_index = 0
|
195
|
+
# Construct the two FNet outputs. The pooled output is a dense layer on
|
196
|
+
# top of the [CLS] token.
|
197
|
+
sequence_output = x
|
198
|
+
pooled_output = self.pooled_dense(x[:, cls_token_index, :])
|
199
|
+
# Instantiate using Functional API Model constructor
|
200
|
+
super().__init__(
|
201
|
+
inputs={
|
202
|
+
"token_ids": token_id_input,
|
203
|
+
"segment_ids": segment_id_input,
|
204
|
+
},
|
205
|
+
outputs={
|
206
|
+
"sequence_output": sequence_output,
|
207
|
+
"pooled_output": pooled_output,
|
208
|
+
},
|
209
|
+
dtype=dtype,
|
210
|
+
**kwargs,
|
211
|
+
)
|
212
|
+
|
213
|
+
# === Config ===
|
214
|
+
self.vocabulary_size = vocabulary_size
|
215
|
+
self.num_layers = num_layers
|
216
|
+
self.hidden_dim = hidden_dim
|
217
|
+
self.intermediate_dim = intermediate_dim
|
218
|
+
self.dropout = dropout
|
219
|
+
self.max_sequence_length = max_sequence_length
|
220
|
+
self.num_segments = num_segments
|
221
|
+
self.cls_token_index = cls_token_index
|
222
|
+
|
223
|
+
def get_config(self):
|
224
|
+
config = super().get_config()
|
225
|
+
config.update(
|
226
|
+
{
|
227
|
+
"vocabulary_size": self.vocabulary_size,
|
228
|
+
"num_layers": self.num_layers,
|
229
|
+
"hidden_dim": self.hidden_dim,
|
230
|
+
"intermediate_dim": self.intermediate_dim,
|
231
|
+
"dropout": self.dropout,
|
232
|
+
"max_sequence_length": self.max_sequence_length,
|
233
|
+
"num_segments": self.num_segments,
|
234
|
+
}
|
235
|
+
)
|
236
|
+
return config
|